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Abstract

A control law is constructed for a linear time varying system by solving a two player
zero sum differential game on a moving horizon, the game being that which is used to
construct an H∞ controller on a finite horizon. Conditions are given under which this
controller results in a stable system and satisfies an infinite horizon H∞ norm bound.
A risk sensitive formulation is used to provide a state estimator in the observation
feedback case.

1 Introduction

The moving horizon control technique was developed in the 1970’s, with one of the first
papers being that by Kleinman (Kleinman 1970) in 1970. The techniques in his paper
were later reformulated and generalized by various authors, see for example (Chen & Shaw
1982, Kwon & Pearson 1977, Kwon, Bruckstein & Kailath 1983). Kwon and Pearson (Kwon
& Pearson 1977) proved stability for linear time varying systems using a controller which
optimised a quadratic cost function integrated over a time interval from the current time t
to a fixed distance ahead t+T . The solution to this problem was given in terms of a Riccati
differential equation, integrated backwards from time t+ T at each time t.

For time varying systems, this gives a practical method of stabilising the system. Kwon
et. al. (Kwon et al. 1983) formulated a general procedure for the recursive update of such
Riccati equations, which generalise easily to the indefinite Riccati equations in this paper.

Further, this method allows stabilization of systems which are known only for the short
term future. In dealing with long term variation of systems, there are at present two extreme
options. The first is to assume a time invariant system and design a controller robust against
time varying perturbations, which usually leads to very conservative controller design. The
other is to design fully for time varying systems. In the case of both linear quadratic and H∞
controllers, this requires the backwards integration from infinity of a Riccati equation (see for
example (Tadmor 1993, Ravi, Nagpal & Khargonekar 1991)), and somewhat optimistically
assumes knowledge of the system throughout future time. The moving horizon method can
be viewed as a compromise between these two methods.

The aim of this present paper is to extend the work of Tadmor (Tadmor 1992), in which a
receding horizon controller is formulated with each finite horizon optimisation based upon an
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H∞ optimisation. It is hoped that the practical advantages of receding horizon control might
be combined with the robustness advantages of H∞ control. Tadmor proved that that this
controller was stable and satisfied an infinite horizon norm bound. Although derived using
different approaches to the H∞ problem, the controller described in this paper is essentially
the same in the state feedback case, differing only in the terminal constraint used.

In the observation feedback case, however, it is difficult to produce a natural formulation
of the H∞ receding horizon control problem. For the finite horizon problem, typically the
assumptions made are that the initial state at the beginning of each optimization interval
is completely known, or is completely unknown. In the latter case it is treated as part of
the disturbance and subject to a quadratic weighting (Uchida & Fujita 1992) (Khargonekar,
Nagpal & Poolla 1991). In the receding horizon problem, though, we have observations from
before the optimization interval. We attempt to make use of prior observations using the
theory of risk sensitive control, as developed by Whittle (Whittle 1990), which has been
shown to be equivalent to H∞ control in many situations.

2 Preliminaries

We consider the system

ẋ(t) = A(t)x(t) +B1(t)w(t) +B2(t)u(t) (1)

z(t) = C1(t)x(t) +D12(t)u(t)

y(t) = C2(t)x(t) +D21(t)w(t)

where the coefficient matrices are bounded matrix valued functions of time. We use the
following assumptions

D′12C1 = 0 D′12D12 = I D21B
′
1 = 0 D21D

′
21 = I (2)

which can be removed by suitable changes in variables, see for example (Doyle, Glover,
Khargonekar & Francis 1989, Ravi et al. 1991, Tadmor 1993). Further, we shall assume
there exists ε > 0 such that

B1(t)B1(t)′ ≥ εI for all t > 0

C1(t)′C1(t) ≥ εI for all t > 0 (3)

These assumptions can be removed by assuming uniform complete controllability and ob-
servability of the system, and slightly modifying the following arguments.

Let Lm2 [ti, tf ] be the Hilbert space of square integrable functions on [ti, tf ] ⊂ R taking val-
ues in Rm, and write R+ = [0,∞). Denote the usual norm on L2 by ‖·‖2, and if F :L2 → L2

then denote by ‖·‖∞ the norm on F induced by ‖·‖2 Then x:R+ → Rn, u ∈ Lm1
2 [ti, tf ]

,w ∈ Lm2
2 [ti, tf ], y:R+ → Rp. The signal w represents all external inputs including distur-

bances, sensor noise, and commands, z represents the error signal, y is the measured variable
and u is the control input. We shall omit the space dimensions of signals in the sequel.
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3 State feedback

3.1 Finite horizon H∞ control

Define the cost function

Jγ(u, w) =
∫ tf

ti

{
z(t)′z(t)− γ2w(t)′w(t)

}
dt

We can regard Jγ as a function of either L2 signals or feedback strategies. Let M =
{µ: [ti, tf ]×Rn → Rm1 } and N = { ν: [ti, tf ]×Rn → Rm2 }. These spaces are the strategy
spaces, and we shall write strategies as µ, ν to distinguish them from signals u, w. With the
control u(t) = µ(t, x(t)) in place, the operator Tzw maps w to z. If x(ti) = 0, then we can
define

‖Tzw‖∞ = sup
w∈L2[ti,tf ]

‖Tzww‖2/‖w‖2

The finite interval H∞ problem is to find a linear causal control µ such that ‖Tzw‖∞ < γ for
a given γ > 0. ‖Tzw‖∞ < γ if and only if there exists ε > 0 such that

Jγ(u, w) ≤ −ε‖w‖2
2 ∀w ∈ L2[ti, tf ] (4)

We formulate the finite time differential game

inf
µ∈M

sup
ν∈N

Jγ(µ, ν) (5)

which is a zero sum game, where u is the minimizing player and w is the maximizing player.
The designer chooses u(t) = µ(t, x(t)) such that even if nature is malicious and chooses the
worst case w, then equation (4) is satisfied.

If the extremizing operators in equation (5) are interchangeable, then we call the optimal
u and worst case w saddle point strategies. Theorem 1 gives sufficient conditions for the
existence of a saddle point solution. A saddle point solution u(t) = µ∗(t, x(t)), w(t) =
ν∗(t, x(t)) will satisfy

Jγ(µ
∗, w) ≤ Jγ(µ

∗, ν∗) ≤ Jγ(u, ν
∗) ∀u, w ∈ L2[ti, tf ].

Theorem 1 (Basar & Olsder 1982, Limebeer, Anderson, Khargonekar & Green
1992)
Let

Jγ(u, w) =
∫ tf

ti

{
z(t)′z(t)− γ2w(t)′w(t)

}
dt+ x(tf )′Fx(tf )

where F > 0 is some weighting matrix. If

− Ṗ = PA+ A′P + C ′1C1 − P (B2B
′
2 − γ−2B1B

′
1)P, P (tf) = F (6)

has a unique symmetric bounded solution on t ∈ [ti, tf ], then

Jγ(u, w) = x(ti)
′P (ti)x(ti) +

∫ tf

ti
|u(τ) +B2(τ)′P (τ)x(τ)|2dτ

−
∫ tf

ti
γ2|w(τ)− γ−2B1(τ)′P (τ)x(τ)|2dτ
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Further, with full state information available to u(t) = µ∗(t, x(t)) and w(t) = ν∗(t, x(t)),
there exists a unique feedback saddle point solution given by

µ∗(t, x(t)) = −B2(t)′P (t)x(t)

ν∗(t, x(t)) = γ−2B1(t)′P (t)x(t)

and the saddle point value of the game is given by

Jγ(µ
∗, ν∗) = x(ti)

′P (ti)x(ti).

2

3.2 The moving horizon differential game

We now try to find u(t) = µ∗(t, x(t)) at time t, where µ∗ is the saddle point strategy for
player u for

inf
µ∈Mt

sup
ν∈Nt

{∫ t+T

t

{
z(s)′z(s)− γ2w(s)′w(s)

}
ds+ x(t + T )′F (t+ T )x(t+ T )

}

where Mt = {µ: [t, t + T ] × Rn → Rm1 }, Nt = { ν: [t, t + T ] × Rn → Rm2 }, and w(t) =
ν∗(t, x(t)).

The idea behind this is to try to gain both the robustness benefits of the H∞ formulation
and the practical control of time varying systems associated with receding horizon control.
At each time t we try to solve the finite horizon H∞ problem on the optimisation interval
[t, t+ T ] to find a feedback strategy u(t) = µ(t, x(t)).

In practice, this would be implemented for a finite time δ > 0, after which a new calcu-
lation on the interval [t + δ, t + δ + T ] would be performed. In this paper we idealise this
situation and assume that the controller is updated continuously.

For each separate H∞ optimisation, the initial state may not be zero. Therfore, an
induced norm interpretation on each finite horizon is not possible, since zero input u gives a
nonzero output z on the interval [ti, tf ], and thus the induced norm is undefined.

We also have a penalty on the terminal state, F (t) > 0. This is often incorporated into
finite horizon problems to allow for compromises between the norm of z and the size of x(tf ).
In the moving horizon case, we shall show that a sufficiently large F will cause the closed
loop to be stable.

In order to find u(t) for the moving horizon problem we must integrate equation (6)
backwards from the boundary condition at t+ T to time t. We can rewrite this as a partial
differential equation as follows

− ∂P (τ, σ)

∂τ
= P (τ, σ)A(τ) + A(τ)′P (τ, σ)−

P (τ, σ)(B2(τ)B2(τ)′ − γ−2B1(τ)B1(τ)′)P (τ, σ) + C1(τ)′C1(τ)

P (t, t) = F (t) for all t

The moving horizon saddle point controller is given by

u(t) = −B2(t)′P (t, t+ T )x(t)
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In the case when all system matrices A,B1, B2, C1, D12 are time invariant, then P (t, t + T )
is independent of t also.

3.3 Stability

Tadmor (Tadmor 1992) proves stability for the above controller when F =∞. In this case,
we can consider the Riccati equation for P−1 and the interpretation on the finite horizon is
that the controller is subject to the constraint x(t+ T ) = 0.

The linear quadratic problem with a similar terminal weight was considered by Kwon,
Bruckstein and Kailath (Kwon et al. 1983). We use a modified form of their methods to
handle the terminal weight.

Before the stability proof, we need the following lemmas, in which we will write P (τ, σ, F )
for the solution of the Riccati equation with boundary condition P (τ, σ, F ) = F for τ = σ,
with σ fixed. The following results are derived in a slightly different way in (Kwon et al.
1983), and various similar results can be found in (Anderson & Moore 1989, Reid 1970, Bucy
1967, Ran & Vreugdenhil 1988, Basar & Bernhard 1991).

Lemma 2 Let P satisfy the following Riccati equation on [ti, tf ], with F ≥ 0 and Q ≥ 0.

−Ṗ = PA+ A′P − P (B2B
′
2 − γ−2B1B

′
1)P +Q P (tf) = F

then if P exists, and either F > 0 or Q > 0, then P (t) > 0 ∀t ∈ [ti, tf ].

Lemma 3 Suppose

Ḟ + A′F + FA− F (B2B
′
2 − γ−2B1B

′
1)F + C ′1C1 ≤ 0, F (t) > 0, t > 0 (7)

and P satisfies
−Ṗ = A′P + PA− P (B2B

′
2 − γ−2B1B

′
1)P + C ′1C1

then, if both sides exist,

P (τ, σ1, F (σ1)) ≥ P (τ, σ2, F (σ2)), τ ≤ σ1 ≤ σ2

Proof We know (see (Basar & Bernhard 1991))

x(ti)
′P (ti, tf , F (tf))x(ti) = (8)

min
u

max
w

{∫ tf

ti
(x(s)′C1(t)′C1(t)x(s) + u(s)′u(s)− γ2w(s)′w(s)) ds+ x(tf )′F (tf)x(tf )

}

then

(i) If C̃1(t)′C̃1(t) ≥ C1(t)′C1(t) ∀t ∈ [ti, tf ], then replacing C1 by C̃1 results in a new
solution, P̃ satisfying P̃ (t) ≥ P (t) ∀t ∈ [ti, tf ].

(ii) Similarly, if F̃ (t) ≥ F (t) ∀t ∈ [ti, tf ], then P̃ (t) ≥ P (t) ∀t ∈ [ti, tf ].
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With either of these changes, equation(8) becomes

x(ti)
′P̃ (ti, tf , F (tf))x(ti) =

min
u

max
w

{∫ tf

ti
(x(s)′C1(s)′C1(s)x(s) + u(s)′u(s)− γ2w(s)′w(s)) ds+ x(tf )′F (tf)x(tf )

+ h(u, w)

}

and h(u, w) > 0 ∀u, w ∈ L2.
We can write equation(7) as

−Ḟ = A′F + FA− F (B2B
′
2 − B1B

′
1)F + (C ′1C1 + ∆),

where ∆ ≥ 0. By definition,
P (σ2, σ2, F (σ2)) = F (σ2)

so, since the Riccati equation for P and F are equal at t = σ2, and that for F has a bigger
constant term,

F (t) ≥ P (t, σ2, F (σ2)) for all t ≤ σ2

We can rewrite this as
P (σ1, σ2, F (σ2)) ≤ P (σ1, σ1, F (σ1))

so, when t = σ1, the LHS is smaller than the RHS. We can take this point as a boundary
condition, and, using (ii) above,

P (t, σ2, F (σ2)) ≤ P (t, σ1, F (σ1)) for all t ≤ σ1 ≤ σ2

2

Theorem 4 For the system described by equations (1-3), if at each time t the saddle point
solution to the differential game on [t, t + T ] exists, then if

Ḟ + A′F + FA− F (B2B
′
2 − γ−2B1B

′
1)F + C ′1C1 ≤ 0, F (t) > 0, t > 0

and if there exists constants α1 > 0 and α2 > 0 such that

α1I ≤ P (t, t+ T, F (t+ T )) ≤ α2I

then the control u(t) = −B2(t)′P (t, t+ T, F (t+ T ))x(t) is stabilising.

Proof Let Λ(t) = A(t) − B2(t)B2(t)′P (t, t + T, F ). Then, with the controller in place,
ẋ = Λ(t)x(t) +B1(t)w(t). Let V (t) = x(t)′P (t, t+ T, F (t+ T ))x(t). Then

V̇ = x′
(
−P ′B2B

′
2P − γ−2PB1B

′
1P − C ′1C1 +

∂

∂σ
P (t, σ, F (σ))

∣∣∣∣∣
σ=t+T

)
x

Using Lemma 3,
∂

∂σ
P (t, σ, F (σ))

∣∣∣∣∣
σ=t+T

≤ 0

6



Since C ′1C1 > εI, V̇ (t) < −εx(t)′x(t). Then, since by assumption P is bounded, it is a
Lyapunov function for the closed loop system, hence the system is globally exponentially
stable. 2

If we can prove boundedness of P (t, t + T, F (t + T ), then we shall have a sufficient
condition for the controller to be stable. Tadmor (Tadmor 1992) proves that P (t, t+ T,∞)
is bounded above and below. Slight modification of his proof shows:

Theorem 5 Let Gi(t0, t1) =
∫ t1
t0

Φ(t0, t)Bi(t)Bi(t)
′Φ(t0, t)

′ dt. If (A,B2) is uniformly con-
trollable and G2(t0, t1)−1G1(t0, t1) is uniformly bounded for all t1 − t0 ≤ T , then there exists
γ > 0 such that P (t, t+ T, F (t+ T )) is bounded above for all t > 0.

3.4 Infinite horizon norm bounds

Following (Tadmor 1992), with the controller u(t) = −B2(t)′P (t, t + T, F (t + T ))x(t) and
w ∈ L2[t0,∞] we know

∫ ∞

t0

d

dt

{
x(t)′P (t, t+ T, F (t+ T ))x(t)

}
dt =

∫ ∞

t0

{
−z′z + 2w′B′1Px− γ−2x′PB1B

′
1Px+ x′

(
∂

∂σ
P (t, σ, F (σ))

∣∣∣∣∣
σ=t+T

)
x

}
dt

If the closed loop is stable, then
∫ ∞

t0

d

dt
{x(t)′P (t, t+ T, F (t+ T ))x(t)} dt = −x(t0)′P (t0, t0 + T, F (t0 + T ))x(t0)

Let ŵ(t) = w(t)− γ−2B′2(t)P (t, t+ T, F (t+ T ))x(t). Then, if x(t0) = 0 ,

‖z‖2
2 − γ2‖w‖2

2 = −γ2‖ŵ‖2
2 +

∫ ∞

t0
x′
(
∂

∂σ
P (t, σ, F (σ))

∣∣∣∣∣
σ=t+T

)
x dt

Using Lemma 3,
‖z‖2

2 − γ2‖w‖2
2 ≤ 0

Hence ‖Tzw‖∞ ≤ γ.

4 Calculation of P (τ, σ, F (σ))

In order to implement the moving horizon controller, we need to calculate the value of
P (t, t+T, F (t+T )) for all t > 0. This requires the solution of a Riccati differential equation
over the interval [t, t+ T ] for each time t, given boundary conditions P (t, t+ T, F (t+ T )) =
F (t+T ) for all t > 0. Kwon, Bruckstein and Kailath (Kwon et al. 1983) applied results from
scattering theory in their solution to the quadratic problem, to give a forwards differential
equation for P (t, t+ T, F (t+ T )). Here we state the same solution for the indefinite Riccati
equation. See (Verghese, Friedlander & Kailath 1980) for details on the derivation of these
formulae. In this section, P (τ, σ) is used to mean P (τ, σ, 0). Define for convenience

N(τ) = B2(τ)B2(τ)′ − γ−2B1(τ)B1(τ)′
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Let

S(τ, σ) =

(
Φ(τ, σ) L(τ, σ)
P (τ, σ) Ψ(τ, σ)

)

Consider the system of equations

∂

∂τ
Φ(τ, σ) = Φ(τ, σ)[N(τ)P (τ, σ)− A(τ)] (9)

∂

∂τ
Ψ(τ, σ) = [P (τ, σ)N(τ)− A′(τ)]Ψ(τ, σ) (10)

∂

∂τ
L(τ, σ) = Φ(τ, σ)N(τ)Ψ(τ, σ) (11)

∂

∂τ
P (τ, σ) = A′(τ)P (τ, σ) + P (τ, σ)A(τ)− P (τ, σ)N(τ)P (τ, σ) + C1(τ)′C1(τ) (12)

with boundary conditions

S(σ, σ) =

(
I 0
0 I

)

The following equations

∂

∂σ
Φ(τ, σ) = [A(σ) + L(τ, σ)C1(σ)′C1(σ)]Φ(τ, σ) (13)

∂

∂σ
Ψ(τ, σ) = Ψ(τ, σ)[A′(σ) + C1(σ)′C1(σ)L(τ, σ)] (14)

∂

∂σ
L(τ, σ) = A(σ)L(τ, σ) + L(τ, σ)A′(σ) + L(τ, σ)C1(σ)′C1(σ)L(τ, σ)−N(σ) (15)

∂

∂σ
P (τ, σ) = Ψ(τ, σ)C1(σ)′C1(σ)Φ(τ, σ) (16)

give the partial derivatives with respect to σ.
It is straightforward to verify this by taking both sets of second partial derivatives, and

showing that they are equal, and verifying that along the boundary the total derivative

d

dt
S(t, t) =

∂S(τ, t)

∂τ

∣∣∣∣∣
τ=t

+
∂S(t, σ)

∂σ

∣∣∣∣∣
σ=t

is zero, since Ψ,Φ, L, P are constant along the boundary. We can find a differential equation
for P (t, t+ T ) in terms of t since

d

dt
S(t, t+ T ) =

∂S(τ, t + T )

∂τ

∣∣∣∣∣
τ=t

+
∂S(t, σ)

∂σ

∣∣∣∣∣
σ=t+T

Hence

dΦ

dt
= Φ[N(t)P − A(t)] + [A(t+ T ) + LC1(t+ T )′C1(t+ T )]Φ (17)

dΨ

dt
= [PN(t)− A′(t)]Ψ + Ψ[A′(t+ T ) + C1(t+ T )′C1(t+ T )L] (18)

dL

dt
= ΦN(t)Ψ + A(t+ T )L + LA′(t + T ) + LC1(t+ T )′C1(t+ T )L−N(t+ T ) (19)

dP

dt
= A′(t)P + PA(t)− PN(t)P + C1(t)′C1(t) + ΨC1(t+ T )′C1(t+ T )Φ (20)
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where Φ = Φ(t, t+ T ) etc. This gives a differential equation for P (t, t+ t, 0). The boundary
conditions for equations (17–20) are given by solving equations (9–12) backwards in time
from τ = σ = T to τ = 0, σ = T . This backwards solution has to be performed only once,
when t = 0.

We now make use of the following identity.

P (τ, σ, F (σ)) = P (τ, σ) + Ψ(τ, σ)F (σ)[I − L(τ, σ)F (σ)]−1Φ(τ, σ)

This can be verified in a straightforward manner. Then

P (t, t+ T, F (t+ T )) = P + ΨF (t+ T )[I − LF (t+ T )]−1Φ

These equations are simpler than they appear, since Φ = Ψ′. They give us a quadratic
differential equation in matrices of size 2n, which is integrated forwards to give the controller.

5 State estimation and output feedback

In this section we consider the problem of optimally estimating the state. Let

J(ti, tf) =
∫ tf

ti

{
z(t)′z(t)− γ2w(t)′w(t)

}
dt

Let u[0,ti] = { u(t); 0 ≤ t ≤ ti }. Let t ∈ [ti, tf ] be the current time. We then wish to find
the feedback saddle point strategy for the u player given information u[0,t] and y[0,t]. For the
moving horizon controller we only need to know this strategy at time t = ti.

In recent years H∞ theory has been furnished with a certainty equivalence principle in
several different formulations (Doyle et al. 1989, Whittle 1990, Basar & Bernhard 1991).

For the finite horizon time varying H∞ problem Basar and Bernhard (Basar & Bernhard
1991, p. 119) give a derivation of the optimal estimator for output feedback. Stated in simple
terms, their result indicates that one should look, at each instant of time t, for the worst
possible disturbance w[ti,t] compatible with information available at that time about u[ti,t]

and y[ti,t]. This generates a corresponding worst possible state trajectory, which should be
used by the feedback law as if it were the actual state.

The worst case approach to our problem is to extend the maximisation problem into the
past, and maximise the cost function with respect to unobservables before ti, back to time
t = 0. This would require us to assume that, for times 0 < t < ti, w was trying to maximize
the cost function on [ti, tf ]. However, if we do this then w can make Jγ infinite, since there is
no disincentive on the size of w outside [ti, tf ]. This means that we cannot use this principle
to estimate the state without further assumptions.

In fact, given the values of past observables, we can only draw conclusions about the
current value of the state if we know some information about w (since we have the non-
degeneracy assumption that D21D

′
21 = I). In the finite horizon problem, we assume that in

the past player w was trying to maximize the cost function over the entire finite interval.
One possible alternative approach is to assume that w is trying to maximize J(0, tf),

while u is trying to minimize J(ti, tf ). For u, in fact this is equivalent to playing a moving
horizon game in which only the endpoint moves.
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Alternatively, it is possible to consider a stochastic formulation. In this case we should
like to assume that outside the optimisation interval, w is accurately modelled by white
noise. In order to do this, we need a stochastic model for H∞ control.

5.1 Risk sensitive control

There is a strong connection between the formulation of risk sensitive control developed
by Whittle (Whittle 1990) and H∞ control. This is specified in (Glover & Doyle 1988).
We consider here the system described by equations (1 – 3). However, we now change our
assumptions so that w is white noise with covariance function δ(t)I, the identity matrix
multiplied by a delta function. Define the cost function

C =
∫ tf

ti
z(t)′z(t) dt + x(tf )′F (tf)x(tf )

where x(ti) is normally distributed with mean x̂0 and covariance matrix V , and F (t) > 0.
Let

Lγ = 2γ2 log(Eµ(exp(γ2C/2)))

where in this case µ(t, y(t)) is a policy, and Eµ indicates the expectation when the input is
u(t) = µ(t, y(t)). The risk sensitive control problem is

min
µ∈M

Lγ

where M is the space of all policy functions µ. Glover and Doyle (Glover & Doyle 1988)
show that this is equivalent to anH∞ problem. However, in this case, a sufficient statistic for
the initial conditions are the mean and variance of the initial state. If the system has been
running previous to the implementation of a risk sensitive controller, these can be provided
by a Kalman filter.

The solution to the risk sensitive control problem is given by Whittle (Whittle 1990):

Theorem 6 If there exists an X∞ ≥ 0 satisfying

−Ẋ∞ = A′X∞ +X∞A−X∞(B′2B2 − γ−2B1B
′
1)X∞ + C ′1C1 X∞(tf) = F (tf)

and Y∞ satisfying

Ẏ∞ = AY∞ + Y∞A
′ − Y∞(C ′2C2 − γ−2C ′1C1)Y∞ +B1B

′
1 Y∞(ti) = V

such that Y∞(t)−1 − γ−2X∞(t) > 0, then let

˙̂x = Ax̂ +B2u+ Y∞C
′
2(y − C2x̂) + γ−2Y∞C

′
1C1x̂ x̂(ti) = x̂0

and
x̌ = (I − γ−2Y∞X∞)−1x̂

Then the optimal risk sensitive feedback control law is given by

u = −B′2X∞x̌

10



This has exactly the form of an H∞ controller (see, for example, Basar and Bernhard (Basar
& Bernhard 1991, pp. 124-126)) with unknown weighted initial state. However, it is impor-
tant to note that the assumptions are very different, and that w is white noise.

In the moving horizon case, we only need u(t) at t = ti. At this time, x̂(ti) and Y∞(ti)
are the mean and variance of the state. Note that the moving horizon objective at time
ti is the expectation of  Lγ over the current state variability and future disturbances. The
information required, that is the mean and variance of the current state, is precisely that
provided by a Kalman filter, as follows.

Theorem 7 Suppose x(0) has mean x̂0 and covariance matrix V . Let Y2 > 0 be the solution
to

Ẏ2 = AY2 + Y2A
′ − Y2(C ′2C2)Y2 +B1B

′
1 Y2(ti) = V

and let x̂ satisfy
˙̂x = Ax̂ +B2u+ Y2C

′
2(y − C2x̂) x̂(ti) = x̂0

then x̂(t) is the mean of x and Y2(t) is the variance of x at time t.

Hence we propose a moving horizon controller of the form

Ẏ2 = AY2 + Y2A
′ − Y2(C ′2C2)Y2 +B1B

′
1 Y2(ti) = V

˙̂x = Ax̂ +B2u+ Y2C
′
2(y − C2x̂) x̂(ti) = x̂0

− ∂X∞(τ, σ)

∂τ
= X∞(τ, σ)A(τ) + A(τ)′X∞(τ, σ)−

X∞(τ, σ)(B2(τ)B2(τ)′ − γ−2B1(τ)B1(τ)′)X∞(τ, σ) + C(τ)′C(τ)

X∞(t, t) = F (t) for all t

Then the controller is given by

u(t) = −B2(t)′X∞(t, t + T )(I − γ−2Y2(t)X∞(t, t+ T ))−1x̂(t)

Let Z2∞(t) = (I − γ−2Y2(t)X∞(t, t+ T ))−1Y2(t) Then we can rewrite equations (5.1–5.1) as

˙̌x = (A− (B2B
′
2 − γ−2B1B

′
1)X∞)x̌− Z2∞(C ′2C2 + γ−2R)x̌ + Z2∞C

′
2y

u(t) = −B′2X∞(t, t+ T )x̌(t)

where

R(t) = C1(t)′C1(t)− ∂X∞(t, σ)

∂σ

∣∣∣∣∣
σ=t+T

Theorem 8 If X∞ and Z2∞ satisfy

α1I ≤ X∞(t, t + T ) ≤ α2I

α1I ≤ Z2∞(t) ≤ α2I

for fixed α1, α2 for all t > 0, then the above controller is globally exponentially stable.
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Proof Let e = x− x̌. Then
d

dt

(
x
e

)
= F

(
x
e

)

where

F =

[
A− B2B

′
2X∞ B2B

′
2X∞

−γ−2B1B
′
1X∞ + γ−2Z2∞R A− Z2∞(C ′2C2 + γ−2R) + γ−2B1B

′
1X∞

]

Let

Ω =

[
X∞ 0

0 γ2Z−1
2∞

]

Let G = F ′Ω + ΩF + Ω̇. Then

d

dt

((
x
e

)′
Ω
(
x
e

))
=
(
x
e

)′
G
(
x
e

)

Using

dZ−1
2∞
dt

= −Z−1
2∞A− A′Z−1

2∞ + γ−2R + C ′2C2 − Y −1
2 B1B

′
1Y
−1

2 − γ−2X∞(B2B
′
2 − γ−2B1B

′
1)X∞

some algebra reveals

G =




−X∞B2B
′
2X∞ − γ−2X∞B1B

′
1X∞ − R X∞B2B

′
2X∞ −X∞B1B

′
1Z
−1
2∞ +R

X∞B2B
′
2X∞ − Z−1

2∞B1B
′
1X∞ +R

−X∞B2B
′
2X∞ − γ2Z−1

2∞B1B
′
1Z
−1
2∞

−γ−2(C ′2C2 + γ−2R)




hence
d

dt

[(
x
e

)′
Ω
(
x
e

)]
= −

(
x
e

)′
Ĝ
(
x
e

)
− |B′2X∞x̌|2 − γ2|C2e|2 − x̌′Rx̌

where

Ĝ = −γ−2

[
X∞
γ2Z−1

2∞

]
B1B

′
1

[
X∞
γ2Z−1

2∞

]′

We know that x̌ = 0 if and only if x = e, and in this case

−
(
x
e

)′
Ĝ
(
x
e

)
= −γ2|B′1Y −1

2 x|2 < δ|x|2 for some δ > 0

since by assumption B1B
′
1 > εI for some ε > 0. Using lemma 3, if F satisfies equation (7),

then R > 0, since by assumption C ′1C1 > 0. 2

If we have a bound for X∞, then in order to bound Z2∞ we need only bound Y2. Bounds
for Y2 are given by Kalman (Kalman 1960). Therefore stability is again conditional on the
existence of a bound for X∞, of which we are assured in the case when F =∞.
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6 Conclusions

With the terminal constraint x(t + T ) = 0, the moving horizon state feedback problem is
known to be stable and to result in a global norm bound for the closed loop system, under
the assumptions of Theorem 5. Several interesting problems remain. It is possible within the
current formulation to use a time varying γ, which might allow both for attempts to improve
performance if the system becomes easier to control with time, and to reduce performance
demands if the system becomes more difficult to control.

It is also feasible to extend the above approach for the observation feedback case so that
the horizon becomes [t − T1, t + T2]. In this case, we might expect a more conservative
controller.

One motivation for this control methodology has been that it is possible to implement
it knowing only details of the system up to time t + T ahead. In this formulation that
knowledge is discreet; we assume that up to time t+T we know exactly the system matrices,
after that we know nothing about them. This seems unnatural, since we might hope that an
online identification process would give us a description of the future system with gradually
increasing uncertainty in time. The linking of the present controller with a mathematical
model for such uncertainty might produce a more realistic control system.
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