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According to Bowers (2009), the finding that there are neurons with highly selective responses to
familiar stimuli supports theories positing localist representations over approaches positing the type
of distributed representations typically found in parallel distributed processing (PDP) models.
However, his conclusions derive from an overly narrow view of the range of possible distributed
representations and of the role that PDP models can play in exploring their properties. Although it
is true that current distributed theories face challenges in accounting for both neural and behavioral
data, the proposed localist account—to the extent that it is articulated at all—runs into more
fundamental difficulties. Central to these difficulties is the problem of specifying the set of entities
a localist unit represents.
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For many years, neuroscientists and psychologists have consid-
ered how best to think about how entities such as words, faces,
objects, and concepts are represented in the brain. In their chapter
“Distributed Representations,” Hinton, McClelland, and Rumel-
hart (1986) distinguished two broad alternatives.

Given a network of simple computing elements and some entities to be
represented, the most straightforward scheme is to use one computing
element for each entity. This is called a local representation. . . . This
chapter describes one type of representation that is less familiar and
harder to think about than local representations. Each entity is repre-
sented by a pattern of activity distributed over many computing
elements, and each computing element is involved in representing
many different entities. (p. 77)

In other words, in a localist representation, the relationship of
entities to units (e.g., neurons) is one-to-one, whereas in a distrib-
uted representation, it is many-to-many. On the basis of a broad
range of arguments and evidence, many neuroscientists and psy-
chologists since Barlow (1972) have rejected the notion that indi-
vidual neurons would correspond to entities as complicated as
one’s grandmother and instead accept that the brain uses some
form of distributed representation (see Gross, 2002, for a historical
consideration of the grandmother cell hypothesis).

In a provocative recent article, Bowers (2009) attempted to turn
these views on their head, presenting a number of arguments and
findings that he believes establishes the biological plausibility of
localist representations and calls into question the presumed sup-

port for distributed representations. For proper evaluation these
claims, however, it is necessary to clarify what exactly counts as
evidence for different types of representation, and certain aspects
of Bowers’s definitions and terminology are problematic in this
regard. Moreover, although current distributed theories certainly
face challenges in accounting for both neural and behavioral data,
the proposed localist account—to the extent that it is articulated at
all—runs into fundamental difficulties. Perhaps the most difficult
challenge is the one we consider last: the delineation of what
counts as an entity to which a localist representation would be
assigned.

What Is a Localist Representation?

The interactive activation (IA) model of letter and word perception
(McClelland & Rumelhart, 1981) may provide a useful context for
clarifying the nature of localist and distributed representations and
Bowers’s claims about them. The model consists of three layers of
interacting units: letter feature units at the bottom (various strokes
at each of four positions), letter units in the middle (one per letter
at each position; e.g., t, i, m, and e), and word units at the top (one
per word; e.g., time). The IA model is usually thought of as a
localist model because it contains single units that stand in one-
to-one correspondence with words, but the current context de-
mands more careful terminology. As the earlier quote from Hinton
et al. (1986) makes clear, a representation is localist or distributed
only relative to a specific set of entities. Thus, the word level of the
IA model is localist relative to words, and the letter level is localist
relative to (position-specific) letters. However, at the letter level,
the presentation of a word results in the activation of multiple units
(corresponding to its letters), and each of these units is activated by
multiple words (i.e., words containing that letter in that position).
Thus, according to the standard definitions, the letter level in the
IA model is localist relative to letters but distributed relative to
words.
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As it turns out, however, it can be difficult to distinguish localist
representations from distributed representations on the basis of
activity because localist units often become active not only for the
entity to which they correspond but also for entities that are similar
to it. Bowers (2009) illustrated this property in the IA model, in
which the input for blur activates its word unit strongly but also
partially activates the word unit for blue (Figure 4, p. 226). Indeed,
Hinton et al. (1986) emphasized that this off-item activation can be
difficult to distinguish from the patterns that comprise distributed
representations.

Moreover, in most localist theories it is assumed that there are
multiple redundant copies of each dedicated unit. Thus, at a very
general level, in both localist and distributed representations, mul-
tiple units become active in processing a given entity, and each
unit will become at least partially active for multiple entities. This
raises the question of the basis on which one might interpret neural
activity as being consistent or inconsistent with one or the other of
these possibilities.

One problem with evaluating Bowers’s (2009) claims about
representation is that his use of this term conflates two distinct
aspects of a neural system. According to Bowers (2009), “the
critical question is not whether a given neuron responds to more
than one object, person, or word but rather whether the neuron
codes for more than one thing” (p. 225). Presumably “responds to”
refers to whether a neuron becomes active when certain stimuli are
presented, but Bowers never defined what he means by “codes for”
(nor “one thing”—more on that later). A plausible interpretation,
however, is that he is referring to the knowledge that the system
has about a particular entity. That is, one can distinguish whether
knowledge about an entity is encoded in the connections coming
into or out of a particular unit or whether it is distributed across the
connections of many units. This distinction is important for un-
derstanding the operation of the system, but it is different from the
question of the type of neural activity that is evoked by a given
stimulus, which is the issue that frames the standard definitions of
localist representations versus distributed representations (cited
earlier).

For example, Bowers (2009) stated that “a key claim of [the
PDP] approach is that . . . knowledge is coded as a pattern of
activation across many processing units, with each unit contribut-
ing to many different representations” (p. 220). Actually, on the
parallel distributed processing (PDP) approach, knowledge is en-
coded not in patterns of activity but in patterns of weighted
connections between units. A pattern of activation (often over
multiple participating brain areas) corresponds to the internal
representation or interpretation of a given input, but the knowledge
in the system that determines what activations will occur is to be
found in the strengths of the connection weights. Distributed
activity can be caused by either localist or distributed knowledge
representation.

By interpreting Bowers’s (2009) claims to be about locality of
knowledge rather than activity, we can make sense of otherwise
problematic assertions. For instance, he denied that words have
distributed representations at the letter level in the IA model,
stating that if this were the case, “the pattern of activation across
a set of letters at layer n �1 should support the same (or at least
similar) functions as the corresponding localist representations [of
words] at layer n” (p. 223). In terms of activation, this claim is
clearly false—there is no reason why the pattern of activity pro-

duced by a given stimulus at every level of the system should
support the same functions.

For example, the retina is certainly necessary for recognizing a
viewed object and contains all the relevant information, but it
cannot support object recognition alone; rather, the information
must be rerepresented by a hierarchy of visual areas before it can
effectively engage object knowledge. On the other hand, viewed in
terms of knowledge rather than activity, Bowers’s (2009) claim
makes perfect sense. Within the IA model, the lexical knowledge
that the letter string time is a word is coded only in the connections
between the corresponding word unit and its letters; remove that
single unit, and time is no longer a word to the model.

One implication of recognizing that Bowers’s (2009) claims
about localist and distributed representations are actually about the
degree of locality of knowledge rather than activity is that his
terminology is inconsistent with most other researchers, who in-
terpret claims about representation to refer to patterns of activity
(see Hinton et al., 1986; Page, 2000). But perhaps more important,
it forces a reconsideration of what type of data on neural activity
would provide evidence for the locality of knowledge of words,
objects, and faces.

All of the evidence that Bowers (2009) took to support localist
over distributed knowledge consists of observations in which
individual neurons show various types of highly selective, inter-
pretable responses. Given that Bowers (2009) stated quite clearly
that the grandmother cell hypothesis concerns the visual recogni-
tion of faces, words, and objects, many of the findings he cited
(e.g., responses in simple organisms, sensory thresholds, cells in
human hippocampus that respond strongly to a single individual
among those tested), although intriguing in their own right, do not
directly bear on the hypothesis. Regarding face selectivity, a
typical reported finding is that of Young and Yamane (1992), who
found one temporal-lobe neuron among 850 that responded
strongly to one face and weakly to another out of 27 faces. But
without a thorough exploration of the response of the cell to
systematic variations of the selective face, it is difficult to know
whether the cell is responding to the entire face or to some aspect
of it that is distinctive within this set but shared by other faces.
Moreover, the fact that only one cell out of 850 showed such a
selective response raises the question of what the other cells are
coding for. The natural reply on a localist account would be that
they code for faces other than those that were presented during
training. The problem is that the same is true of the apparently
selective cell—it might also have responded to other faces if they
had been presented. In fact, it is not possible to establish defini-
tively that a neuron responds to “one thing” without testing it on all
possible things; the best that can be done is to estimate a degree of
sparsity in the neural response within the sampled subset of stim-
uli. It is interesting to note that Quian Quiroga, Kreiman, Koch,
and Fried (2008) have done just this in their analysis of response
properties of single neurons in human hippocampus. On the basis
of the pattern of response that they saw, they estimated that each
familiar pattern may activate about two out of every 1,000 neurons
in the hippocampus and other areas in the medial temporal lobe
(MTL). Although this seems a small number, they note that with
about 1 billion neurons in the MTL, this means that around 2
million neurons participate in the pattern associated with every
object. From this and further considerations, they concluded that
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each MTL neuron may respond to 50–150 different objects.1 It
may be noted that the hippocampus is thought to use very sparse
representations compared with other regions of the brain. Thus, it
seems likely that most neurons participate in representing at least
hundreds of objects.

In summary, physiological evidence does not appear to help the
case in favor of the localist representation scheme that Bowers
(2009) defended. Let us now consider his contention that aspects
of the neurophysiological data are incompatible with the distrib-
uted alternative. Although his arguments here may seem compel-
ling at first glance, Bowers’s (2009) claims concerning the prop-
erties of distributed representations require closer scrutiny before
reaching a conclusion.

Distributed Representations and the PDP Approach

Bowers (2009) distinguished three types of distributed representa-
tions based on how many units participate in the representation and on
whether the multiple things to which a given unit responds are similar
or unrelated: dense coding (many units, each responding to unre-
lated things), coarse coding (many units, each responding to sim-
ilar things), and sparse coding (few units, each responding to
unrelated things). Bowers treated these as distinct alternatives,
arguing that on a distributed account, sparse coding applies only
within the hippocampus and coarse coding applies, if at all, within
the dorsal pathway and motor system. In contrast, he asserted that
distributed accounts assume that the ventral pathway uses what he
called dense representations.

There is room for improvement in Bowers’s (2009) terminol-
ogy, since it partially conflates the sparsity of the representation
with the relatedness of the things to which a neuron responds. It
may be helpful instead to distinguish two dimensions: sparsity,
defined as to the fraction of neurons in a population that are
activated by something,2 and perplexity, defined as the degree to
which the things a neuron responds to are unrelated. We say that
a neuron’s response is multiplex if it responds to a number of
apparently unrelated entities. It is noteworthy that a sparse repre-
sentation can be quite multiplex. For example, in the rodent
hippocampus, the very same neuron can have completely nonover-
lapping place fields even in two highly similar environments
(Leutgeb & Leutgeb, 2007).

Most of Bowers’s (2009) criticism was directed against dense,
multiplex coding, which he largely equates with the type of inter-
nal representations learned by PDP networks. However, he recog-
nized that the two issues are separable.

Many researchers consider dense distributed representations a core
theoretical claim of the PDP approach (e.g., Bowers, 2002; Elman,
1995; Hummel, 2000; Page, 2000; Smolensky, 1988; Thorpe, 1989).
If it turns out that many current PDP models of memory, language,
and perception do learn sparse, coarse, or local codes (contrary to the
widespread assumption), or if these models are modified so that they
learn these types of representations (in order to be consistent with
biology), it would amount to a falsification of this theoretical assump-
tion. At minimum, the neuroscience makes it necessary to think about
the PDP approach in a fundamentally different way. (Bowers, 2009, p.
238)

Bowers’s characterization of dense multiplex coding as a core
theoretical claim of the PDP approach is incorrect.3 In fact, the

approach takes no specific stance on the number of units that
should be active in representing a given entity or in the degree
of similarity of the entities to which a given unit responds.
Rather, one of the main tenets of the approach is to discover
rather than stipulate representations (Plaut & McClelland,
2000). Internal representations are learned under the pressure of
various demands, and the degree to which they exhibit dense or
sparse activation or have units that respond to similar or unre-
lated things is a consequence of the basic network mechanisms,
the learning procedure, and the structure of the tasks to be
learned. In general, systematic tasks—in which similar inputs
map to similar outputs—yield denser activation (to support
generalization), whereas unsystematic tasks (e.g., word and
face recognition) give rise to sparser activation (to avoid inter-
ference). Moreover, if a unit responds to one pattern, it will tend
to respond to other similar patterns because its input is a linear
sum of the contributions of incoming connections, although this
tendency is weaker in unsystematic tasks because weights must
grow larger to override the effects of similarity (for discussion,
see McClelland, McNaughton, & O’Reilly, 1995; Plaut,
McClelland, Seidenberg, & Patterson, 1996).

Thus, it is a mistake to treat different points in the two-
dimensional space of sparsity and perplexity as distinct alterna-
tives. Both the number of active units and the degree of similarity
among the things to which they each respond are dimensions that
can vary between the extremes that Bowers (2009) considered, and
all of the intermediate combinations can be understood as para-
metric variations within the space of distributed representations. In
fact, one of the theoretical strengths of the PDP approach is that it
provides a computational framework in which to explore the
implications of representations throughout this space to discover
which types are most effective in which contexts.

To be clear, we are not claiming that the response properties of
units in any particular PDP model adequately capture the relevant
neurophysiological observations in the corresponding domain. In-
deed, most such models (including those critiqued by Bowers,
2009) are directed at accounting for behavioral rather than neural
findings. The computational principles that underlie the PDP ap-

1 Bowers (2009, p. 245) claims that the analyses of Waydo, Kraskov,
Quian Quiroga, Fried, and Koch (2006, cited by Quian Quiroga et al.,
2008) are consistent with the possibility that the 50–150 stimuli to which
a given neuron is estimated to respond might all be the same person. This
is incorrect. Waydo et al.’s (2006) analysis derived a measure a defined to
be the proportion of distinct stimuli to which a given neuron responds,
which they estimate to be between .2%–1% for the MTL. For Bowers’s
claim to hold, a � 1/U (where U is the universe of possible stimuli) so
there could only be at most U � 1/.002 � 500 possible stimuli, which is
far too few.

2 Since neurons’ activation is not strictly all or none, a more sophisti-
cated definition is generally required, but this definition is a useful first
approximation.

3 It is, perhaps, telling that the majority of researchers cited by Bowers
(2009) as considering dense coding to be a core claim of the PDP approach
are advocates of localist representations (Bowers, Hummel, Page, Thorpe)
and that the remaining researchers (Elman, Smolensky) do not claim that
a lack of interpretability is a critical property of PDP systems but rather
claim that the interpretability of internal representations is irrelevant to the
theoretical approach.
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proach are intended to capture how brain areas learn to represent
and process information as patterns of activity over large groups of
neurons rather than the detailed operation of the individual neurons
themselves. The fact that such models have been reasonably suc-
cessful at accounting for behavioral phenomena across a broad
range of domains suggests that the computational principles are
capturing something important about neural computation.

Even so, there are clearly many aspects of the standard PDP
framework that do not emulate known aspects of neurophysiology:
the lack of separate excitatory and inhibitory cell populations, the
purely linear integration of inputs with no consideration of den-
dritic geometry, the use of a real-valued symmetric activation
function, no consideration of metabolic constraints, and the prop-
agation of error signals back through forward-going connections,
to mention only a few. However, as has repeatedly been empha-
sized, PDP models are generally not intended to emulate all
aspects of the underlying neural substrate: The models are in-
tended to abstract away from many details. This is not to say that
physiology cannot inform the PDP framework: Some of the be-
havioral consequences of the framework would no doubt be im-
proved if it were brought into closer correspondence with neuro-
physiological findings. Given these points, we agree with Bowers
(2009) that a careful consideration of findings from neuroscience
motivates modifications and elaborations of the PDP approach that
will ultimately enable it to provide better accounts of both neural
and behavioral phenomena. Yet, it is essential to avoid the belief
that the only valid model at the behavioral level is one that can
capture all of the detail at the physiological level. Simplification is
of the essence in successful modeling (see McClelland, 2009);
what is essential is identifying the appropriate simplifications, and
determining which details matter.

To us, it seems most important that the representations used in
our models capture the same similarity structure that is captured by
neural representations in the brain and not that the individual
neurons participating in these representations have individually
interpretable (i.e., low perplexity) responses. In this light, we are
heartened by recent results from an extensive neurophysiological
investigation of the patterns of activation produced in monkey
inferotemporal cortex in response to a wide range of different
pictures of natural and man-made objects (Kiani, Esteky, Mirpour,
& Tanaka, 2007). These patterns appear to capture the same sort of
cluster structure seen in learned distributed representations (e.g.,
Elman, 1990; Rogers et al., 2004). It may be instructive to analyze
this data set to understand better whether the individual neurons
involved in these representations have interpretable response pro-
files in response to the stimuli used, but this may not change the
essential functional characteristic of these representations.

Problems With the Notion That a Neuron Could
Represent “One Thing”

Bowers’s (2009) main goal was “to show that the current
findings in neuroscience are compatible with localist models in
psychology” (p. 221), but he never fully specified the underlying
assumptions of such models beyond the proposal that there is a
dedicated unit (or set of units) for each familiar thing, among
which he included words, faces, and objects. To us, a key prob-
lematic aspect of this becomes clear if we focus attention on the

question of just exactly what set of (experiences with) entities in
the world ought to be treated as “the same thing.”

For the sake of discussion, let us begin with the concept of a
grandmother cell. When one speaks of “person X’s grandmother,” it
seems clear that one is speaking of a single entity—a certain specific
person, such as Mrs. Ethyl Watts Shaffer (Jay McClelland’s maternal
grandmother). From an ontological point of view, this seems among
the least problematic of cases. Other cases of specific objects include,
for example, David Plaut’s 2001 Volkswagen Jetta, one of the tulips
in the vase on Jay McClelland’s dining room table, and (one may
imagine) the piece of toast Jeffrey Bowers had as part of his breakfast
on the morning of February 28, 2009. Does it make sense to assert
that people have single neurons (or groups of neurons) dedicated to
each of these objects? To continue the last example, since the
specific piece of toast was only ever encountered once, Bowers’s
recognition of it (as a piece of toast) cannot be attributed to
previous experience with that particular object but must depend on
previous experiences with other objects—other pieces of toast he
presumably has encountered at other times and places.

Given that so many of the objects one encounters are encoun-
tered exactly once (e.g., cars passed on the road, dogs seen in the
park), it seems necessary to build a theory of recognition that
encompasses not only familiar entities that one encounters repeat-
edly, such as grandmothers and automobiles but also those entities
that one generally encounters as not repeated but related instances,
including tulips and pieces of toast.

A localist theory can, in fact, be extended to the latter sort of
entity—indeed, the use of word units in the IA Model is an
example. The localist unit for the word time is not a unit for a
single entity like one’s grandmother, but rather a unit for a class of
objects generally taken to be tokens of the word time. A similar
approach might be taken to other classes of objects, including
tulips, pieces of toast, cars, dogs, and so on. In general, it would
appear that for a localist theory to be of interest, the things localist
units should represent should be thought of as including classes of
objects in addition to specific instances.

But the use of localist representations for many of the classes of
objects one encounters immediately becomes deeply problematic.
To see this, consider that there are a huge number of different
kinds of tulips and different kinds of pieces of toast. There are
different kinds of bread that may be toasted, differences in the
details of the manner of toasting, and differences in the way the
bread might have been baked, sliced, or complemented with butter,
jam, or (perhaps) Marmite. A localist theorist would likely claim
that only some of these distinctions should be reified by assigning
a localist unit to each of the alternative subvarieties, but wherever
the localist stops (whether manually or on the basis of a vigilance
parameter; Grossberg, 1987), a problem will remain: There will be
some further distinctions that are important in some contexts but
that are represented identically by the same localist unit.

A final move a localist theorist might make (and this is indeed
a common approach in many areas of psycholinguistics and cog-
nitive science) is to assert that each token is assigned its own
distinct localist unit and that recognition of the next distinct token
involves contributions from an ensemble of these units. For many
researchers this approach has been appealing (e.g., Johnson, 1997;
Pierrehumbert, 2001), and it may seem at first glance to be an
escape for the localist approach. However, if this approach is
adopted, it amounts to accepting that the knowledge that subserves
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the recognition of an object is not stored in the connections of a
single localist unit or even in a dedicated set of units corresponding
to that single object but is, instead, stored in connections involving
a large number of contributing units. The piece of toast Jeffrey
Bowers eats every morning will depend on the contributions of all
of the instances, not of the same piece of toast but of other pieces
of toast Jeff has previously encountered—and this, surely, is not a
localist representation.

By contrast, these problems are immediately solved by assum-
ing instead that distinctions among different instances of a larger
class depend on differences in (learned, experience-dependent)
distributed representations. In such representations, similarity is
captured by pattern overlap, whereas differences can be captured
by the extent to which patterns do not overlap. Experience, includ-
ing experience with the degree to which particular distinctions
matter and the context in which they matter, will affect the degree
of overlap in the distributed representations.

In short, we see little prospect for a coherent theory of localist
representation. The representations the brain uses may be different
from those that emerge from learning in some PDP models, but
they are unlikely to be localist in nature.

Conclusions

Bowers (2009) reviewed a range of neurophysiological data
indicating that although very rare, some neurons exhibit surpris-
ingly selective responses to familiar entities, such as faces or
objects. He interpreted the findings as supportive of theories in
which the knowledge of such entities is localized to specific,
dedicated units and as problematic for theories in which knowl-
edge of multiple entities is distributed and overlapping. The find-
ings themselves are certainly provocative and challenge certain
types of distributed models. However, Bowers took an overly
narrow view of the possible range of distributed representations
and their properties and underestimated the value of PDP models
in exploring these properties. Moreover, the localist theory he
espoused runs into difficulty when confronting how people learn
and generalize their knowledge. Distributed models need to make
greater contact with neurophysiological data but should not be
abandoned for localist ones.
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