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Several studies have shown that the analysis us-
ing marker haplotypes provides higher power and 
precision in quantitative trait loci (QTL) mapping 
than that using single markers (Akey et al., 2001, 
de Bakker et al., 2005). In the single marker analy-
sis, even when the tested marker locus is in strong 
linkage disequilibrium (LD) with QTL, power can 
be quite low if the frequencies of the marker and 
QTL alleles are different (Kaplan and Morris, 2001). 
This problem is resolved using haplotype-based 
association methods since they fully exploit LD 

information from multiple markers. Both simula-
tions (Akey et al., 2001; Zaykin et al., 2002) and 
empirical studies support this statement (Liu et 
al., 2008). Conflicting reports, however, are avail-
able (Zhao et al., 2007). The discrepancies in the 
results of these studies could be due to several fac-
tors influencing the LD between markers and the 
LD between markers and QTLs: marker density, 
effective population size, generations of random 
mating, QTL allele frequency, QTL position rela-
tive to observed marker positions, and if one of the 
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markers is a causative mutation that affects gene 
products (Cargill et al., 1999; Zhao et al., 2007; Pei 
et al., 2009). Furthermore, imprecise modeling of 
the genetic relation within the study sample may 
cause spurious associations, i.e. when using a sire 
model a rare haplotype may be present in only one 
or a few families (Kent et al., 2007). Finally, an ac-
curate constructing of haplotypes  can also be dif-
ficult and this may reduce the power of a haplotype 
approach in real data (Barzuza et al., 2005; Andrés 
et al., 2007). 

Most of the model comparisons in genome-wide 
association studies that used simulated or real 
data investigated the power and precision of QTL 
findings (e.g. Akey et al., 2001; Grapes et al., 2004; 
Grapes et al., 2006). These studies considered hap-
lotype a fixed effect in the model. In such a model, 
increase in haplotype length leads to an increase 
in the number of effects that must be estimated. 
Because the frequency of some haplotypes can be 
very low, this could result in low accuracy of the 
estimates and would eliminate the benefit achieved 
from the improved modeling obtainable with haplo-
types (Becker and Herold, 2009). Calus et al. (2008) 
studied the effects of haplotype length and observed 
that a model with 10-marker haplotypes and iden-
tity-by-descent (IBD) relationships between them 
yielded ~ 25 to 500 times as many effects that need 
to be estimated compared to a model based on a 
single marker. Several studies (e.g. Zhao et al., 2007; 
Becker and Herold, 2009; Calus et al., 2009) com-
pared power of haplotype-based models for QTL 
mapping, but did not compare type I errors. Sahana 
et al. (2010) observed a very high type I error rate 
using haplotype as a fixed effect in the model. We 
hypothesize that loss of power and increase in type 
I error may be addressed by fitting haplotype as a 
random effect in the model. Using a random hap-
lotype effect in association mapping has not been 
investigated so far in the literature. In this study, 
we had the two objectives: (1) to compare fixed and 
random haplotype models for association mapping 
in terms of power and type I error, and (2) to find the 
optimum haplotype length to maximize power and 
at the same time not to inflate type I error. We used 
a simulated dataset which resembles a population 
with complex pedigree relationship with a limited 
(historical) effective population size, in which most 
LD is generated by a random drift. Such populations 
are common for domestic animals but also include 
some isolated human populations (e.g. Icelandic 
population) and plants.

MATERIAL AND METHODS

Simulation of data

Pedigree. The data used in the study were simu-
lated by Sahana et al. (2010) by combining a histori-
cal pedigree with the real Danish Holstein cattle 
pedigree. The historical pedigree was simulated 
from a founder population of 150 animals (75 males 
and 75 females), assumed to be 50 generations back 
in time. For each of the subsequent 50 generations, 
75 males and 75 females were produced by ran-
domly sampled parents with replacement from the 
previous generation and without selection. The real 
Danish Holstein pedigree (real pedigree) included 
8500 progeny-tested bulls and was aligned with the 
historical pedigree as follows. The latest generation 
of the real pedigree was considered as generation 
50 + 1. The unknown parent(s) of the animals in 
the real pedigree were randomly drawn from the 
animals of the historical pedigree generation. From 
the real pedigree, 2000 bulls and their sires were 
sampled at random with the restriction that at least 
10 sons were sampled from each half-sib family. The 
final dataset consisted of 2069 bulls from 212 half-
sib families, varying in size from 10 to 33 sons per 
family. Genotypes and phenotypes for these bulls 
were saved for the final analysis.

Marker and quantitative trait locus alleles. 
Marker alleles were sampled for 5000 biallelic loci 
distributed on five chromosomes (1000 mark-
ers on each chromosome) with 0.1 cM between 
each locus. The two alleles of each marker locus 
in the founder animals were sampled with equal 
probabilities. A total of 15 QTL were simulated 
on four of the chromosomes and one chromo-
some had no QTL. All QTL alleles in the founder 
animals were unique. Marker and QTL alleles 
were transmitted from parents to offspring for 
50 generations. Recombinations were sampled ac-
cording to Haldane’s mapping function. Linkage 
disequilibrium was created by a random genetic 
drift. Haplotypes were known without error and 
no genotypes were missing. 

For each QTL, one allele with a frequency be-
tween 0.10 and 0.20 was sampled at random from 
the QTL alleles  still  present in the 50th genera-
tion. This was treated as the mutant allele, while 
all other alleles were combined to constitute the 
wild type allele. The allele substitution effects of 
the 15 QTL were standardized based on their allele 
frequencies in the last generation of the historical 
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pedigree, so that each QTL explained a pre-defined 
percentage of the genetic variance. We simulated 
one “big-QTL” explaining 10% of genetic variance, 
four “medium-QTL” explaining 5%, and ten “small-
QTL” explaining 2% of it. The intervals between 
QTL pairs located on the same chromosome ranged 
from 1 to 45 cM. The QTL locations and their effect 
on the phenotype are presented by Sahana et al. 
(2010). No QTL were simulated on chromosome 5 
(null chromosome).

Phenotypes. The phenotypes were obtained as 
the sum of the effects of the 15 QTL, a residual 
polygenic effect, and a random residual. First, the 
effects from the 15 QTL were summed. Then the 
QTL effect was standardized to a mean of zero and 
a variance of one. The QTL and polygenes consti-
tuted half of the total genetic variance. The residual 
polygenic effect was generated in two steps. First, 
polygenic values for the founder generation animals 
were sampled from a standard normal distribution. 
The residual polygenic values for the animals of the 
subsequent generations were derived by summing 
half of the sire and dam residual polygenic values 
and a Mendelian sampling term. The genetic value 
of an animal was the total sum of the QTL effects 
and the polygenic effect. The residual variance 
was sampled to achieve a heritability of 0.977 for 
bulls, corresponding to a heritability of 0.30 in in-
dividual records when the bulls had 100 daughters 
each with a phenotypic record. So the phenotypes 
were an accurate indicator of genetic merit. Half of 
the total heritability was explained by the 15 QTL 
and the remaining by the polygenes. Contrary to 
25 datasets analysed by Sahana et al. (2010), just 
24 replicate datasets were analysed in the present 
study  because of general convergence problems of 
one dataset for both types of the models.

Statistical analyses

Haplotypes were constructed using windows of 
2, 4, 6, 10 and 20 neighbouring single-nucleotide 
polymorphisms (SNPs), and for a given window size 
the subsequent windows were overlapping. Each 
animal had two haplotypes, paternal (hp) and  ma-
ternal (hm) in origin. 

Random haplotype model (RHM). We used a lin-
ear mixed effect model with random polygenic effect 
and random effect of haplotypes. The model was:

yj = µ + uj + qhmj
 + qhpj

 + ej	 (1)

where:
yj 	 = 	 phenotype of bull j
µ 	 = 	 population mean
uj 	 = 	 random individual polygenic effect
qhmj

, qhpj
 	 =	 random effects of the maternal and paternal 

haplotype of the animal j
ej	 = 	 random residual effect

Individual polygenic effects were assumed to have 
covariances according to pedigree relationships, 
i.e., u = {uj} is normally distributed N (0, sg

2   A), 
where sg

2   is the polygenic genetic variance and A is 
the additive relationship matrix derived from the 
pedigree. The other two random effects (q and e) 
were assumed to be normally distributed with mean 
zero and variances shI and seI, respectively, where I 
is the identity matrix. Note that the haplotype ef-
fects were the same regardless of whether they had 
the paternal or maternal origin, corresponding to 
the assumption that fathers and mothers originated 
from the same population. The significance of the 
haplotype substitution effect was assessed with a 
likelihood ratio test comparing the RHM model 
with a null-model containing mean, polygenic ef-
fect and random error terms but no haplotype ef-
fects. The analysis was performed using the DMU 
software package (Madsen and Jensen, 2008).

Fixed haplotype model (FHM). The data were 
reanalysed using the same linear mixed model de-
scribed as in equation (1) but with the difference 
that haplotype was modeled as a fixed effect. The 
haplotype effect was assumed to be the same re-
gardless of haplotype paternal or maternal origin.
The model was specified as follows:

qhmj
 + qhpj

 = xj q

where:
xj = 	 vector containing the counts of the specific haplo-

type [taking values 0 = not present, 1 = present in 
one copy (heterozygote) and 2 = homozygote for this 
haplotype]

q = 	 vector of haplotype effects

Note that this is different from the model with 
maternal and paternal haplotype effects. The sig-
nificance of the haplotype effect was assessed by 
the Wald test using the DMU software package 
(Madsen and Jensen, 2008).

Significance. Haplotype effects were declared 
significant at a p-value of 0.05 after the Bonferroni 
correction, i.e. the significance threshold was cho-
sen according to a p-value found by dividing 0.05 
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by the total number of tests carried out on the four 
chromosomes with simulated QTL. The midpoint 
of the haplotype was taken as the putative QTL 
position.

Comparison of the methods

Power. For model comparison, QTL was declared 
to be correctly identified if a significant haplotype 
with putative QTL position within ± 2 cM of the 
true QTL position was found. The power is the 
proportion of QTL correctly identified per dataset, 
averaged across replicates.

False positives. The fifth chromosome had no 
simulated QTL. Therefore, any significant haplo-
type on this null-chromosome represented a false 
positive. On this chromosome, haplotype effects 
were declared significant at a p-value of 0.05 af-
ter the Bonferroni correction, i.e. the significance 
threshold chosen according to a p-value found by 
dividing 0.05 by the total number of tests carried 
out on this chromosome in one dataset. For ex-
ample, in case of 10-marker haplotype, a total of 
991 haplotypes were tested on the null-chomosome 
for one dataset, so the multiple testing correct p-
value at 5% level was 0.05/991 = 5.045e-05. The 
methods were compared for type I error rate based 
on false positive results on the null-chromosome 
for each of the 24 datasets. 

Mapping precision. The precision of a detected 
position was quantified as the absolute deviation 
of the putative QTL position compared to the true 
position of the simulated QTL. However, if more 
than one significant haplotype with a putative QTL 
position was found less than 2 cM from the true 
QTL position, precision was computed using the 

position of the most significant haplotype. This was 
done because in a real life situation the most signifi-
cant marker/haplotype would be the starting point 
for a candidate gene search. Mean absolute errors 
between the true and putative positions were used 
to compare the models. These were also computed 
separately for the three categories of QTL effects. 
In addition, the models were also compared for 
percentage of identified QTL with mean absolute 
errors of position within the intervals of 0.5, 1.0 and 
2.0 cM, separately for the three categories of QTL 
effects. 

RESULTS

For simplicity of presentation we abbreviated the 
random and fixed haplotype models as RHM and 
FHM respectively, and with haplotype length as 
suffix. For example, RHM2 means it is the random 
haplotype effect model with haplotype length of 
two markers.

Average numbers of haplotypes. The aver-
age numbers of haplotypes at a marker position 
for different haplotype lengths are presented in 
Table 1. The number of haplotypes at a particu-
lar position increases steeply with the increase in 
haplotype length. The average number of haplo-
types increases from 3.97 for 2-marker haplotype 
to 128.86 for 20-marker haplotype. That means, 
while only 4 haplotype effects needed to be esti-
mated for 2-marker haplotype in a fixed haplotype 
model, there were on average 129 effects needed to 
be estimated for 20-marker haplotype. In addition, 
the proportion of rare haplotypes is also very high 
for larger haplotypes. For example, about 95% and 
85% of the haplotypes have frequency lower than 

Table 1. Total number of haplotypes, their ranges and proportion of rare haplotypes at a marker position for vari-
ous haplotype lengths

Haplo-
type 
length

Total number of haplotypes  
at a marker position

Proportion of haplotypes with 
frequency < 0.05

Proportion of haplotypes with 
frequency < 0.01

mean min. max. mean min. max. mean min. max.

2 3.97 2 4 0.08 0.00 0.75 0.02 0.00 0.50

4 12.56 5 16 0.50 0.00 0.86 0.27 0.00 0.73

6 26.03 10 61 0.73 0.10 0.96 0.51 0.00 0.79

10 55.65 25 236 0.88 0.69 1.00 0.72 0.42 0.89

20 128.86 73 567 0.95 0.89 1.00 0.85 0.75 0.98
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0.05 and 0.01, respectively, for 20-marker haplo-
type. 

Power. The RHM detected all the “big” or “me-
dium” QTL and the FHM identified all the “big-
QTL” for all the datasets irrespective of haplotype 
length. However, for the FHM the power to detect 
the “medium-QTL” decreased with the increase 
in haplotype lengths (Figure 1), decreasing from 
100% for FHM2 to 91% for FHM20. The differ-
ences in power between the RHM and FHM were 
even more distinct for detection of “small-QTL” 
(Figure 1). The power for the RHM increased 
from 80% for RHM2 to 88–89% for RHM4, RHM6, 
RHM10 and RHM20. In contrast, for the FHM 
there was a gradual loss of power with increase in 
haplotype length and the loss in power was much 
more pronounced for larger haplotypes (FHM10 
vs. FHM20). For the FHM the power to detect 
the “small-QTL” varied from 79% (FHM2) to 54% 
(FHM20). 

False positives. The numbers of significant hap-
lotypes on the null-chromosome (false positives) by 
the RHM and FHM are presented in Table 2. The 
RHM was able to keep type I rates below expected 
rates of 5% after the Bonferroni correction. Among 
the total of 24 datasets analysed, only one dataset 
for RHM2, RHM10 and RHM20, two datasets for 
RHM6 and four datasets for RHM4 had significant 
haplotypes on the null-chromosome. Looking at 

each dataset separately, the numbers of significant 
haplotypes on the null-chromosome (false posi-
tives) were very small (0 to 3) for the RHM, except 
for one dataset, RHM20, that had 11 false positives. 
To the contrary, for all haplotype lengths the FHM 
had significant haplotypes on the null-chromosome 
for most of the datasets analysed. For some data-
sets, the FHM had also an extremely high number 
of false positives, e.g. FHM6 had 111 false positives 
for a specific dataset. 

Precision of methods. The precision of the 
detected positions quantified as the mean abso-
lute error compared to true position, are given 
in Figure 2. For all haplotype lengths the RHM 
methods had relatively smaller absolute errors in 
QTL location estimates than the FHM methods, 
in particular for the “big-QTL”. For the RHM, the 
precision improved with an increase in haplotype 
length up to 6, but beyond that haplotype length 
the absolute error in estimating the QTL locations 
increased again. A similar but less pronounced 
pattern was observed in the FHM. Similarly, the 
RHM performed better than the FHM in locating 
QTL within a narrow interval (0.5cM) of its true 
position (details not presented). The difference 
was most pronounced for the “big-QTL”. For ex-
ample, 79% of the “big-QTL” was located within 
0.5 cM by RHM6 while the corresponding value 
for FHM6 was 54%.

Figure 1. Power to identify QTL that explain 2% (small) and 5% (medium) of total genetic variance for random haplotype 
model (RHM) and fixed haplotype model (FHM) with haplotype lengths 2, 4, 6, 10, and 20

30

40

50

60

70

80

90

100

RH
M
2

RH
M
2

RH
M
6

RH
M
10

RH
M
20

FH
M
2

FH
M
4

FH
M
6

FH
M
10

FH
M
20

Pe
rc
en

t "medium-QTL"

"small-QTL"



6

Original Paper Czech J. Anim. Sci., 57, 2012 (1): 1–9

DISCUSSION

We have shown that a linear mixed model with a 
random haplotype effect performed better both in 

terms of power and false positive rate compared to 
a fixed haplotype model. To our knowledge, earlier 
studies have all considered haplotype a fixed effect in 
the model (e.g. Zhao et al., 2007; Pryce et al., 2010).

Table 2. Comparison of type I error between random and fixed haplotype models based on the chromosome with-
out true QTL

Random haplotype model (RHM) Fixed haplotype model (FHM)

Haplotype length 2 4 6 10 20 2 4 6 10 20

Total number  
of haplotypes 
tested on null-
chromosome

23 976 23 928 23 880 23 784 23 544 23 976 23 928 23 880 23 784 23 544

Total number  
of FP in the  
24 datasets

1 4 4 3 11 311 668 795 763 578

Number of data-
sets with FP out 
of the  24 datasets

1 4 2 1 1 23 24 24 24 23

Range of FP  
in one dataset

0–1 0–1 0–3 0–3 0–11 0–32 3–78 2–111 2–109 0–84

FP = false positives, declared using P < 0.05 after the Bonferroni correction for multiple tests per a dataset
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Figure 2. Average errors in estimating QTL position for the RHM and FHM models with five haplotype lengths for three 
categories of QTL explaining 10% (big), 5% (medium) and 2% (small) of the total genetic variance
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There were two significant modeling differences 
in this study compared to Sahana et al. (2010) who 
used nearly the same datasets to compare several 
associations of mapping methods and models: 
(1) fitting haplotype effects as random in the model, 
and (2) modeling genetic relationship within study 
samples. Sahana et al. (2010) observed very high 
type I error when considered the half-sib fami-
ly structure in the fixed haplotype based models 
(0.28–0.64 for various haplotype lengths). In the 
present study we have also observed that in spite of 
considering full relationship across all the animals, 
the fixed haplotype model resulted in Type I errors 
well above the nominal level. 

The power of the RHM method increased up 
to the haplotype size of 4. This result on optimal 
haplotype length for QTL detection power is con-
sistent with that of Grapes et al. (2006) and Zhao 
et al. (2007). The power of the RHM method ap-
pears to be amenable to improvement only up to 
a certain haplotype length, and further increases 
in haplotype length do not affect the power. This 
may be due to a decrease in LD between distant 
SNPs, which therefore add no new information. 
The number of parameters to be estimated in the 
RHM does not change with the increase in the 
haplotypes number. That may be the reason for 
not losing the power with the increase in haplo-
type length for the RHM, as the effect of less fre-
quent haplotypes would be shrunk towards zero. 
An alternative to the RHM would be to cluster 
the haplotypes on the basis of their origin. The 
clustering could be based on IBD probabilities 
where haplotypes with very high IBD probability 
are clustered together (Blott et al., 2003; Sahana 
et al., 2008; Calus et al., 2009) or it could be based 
on genealogy (tree-based) (Pan et al., 2009). Such 
clustering may also be used in combination with 
the RHM. Further studies are needed to compare 
performance of the RHM with and without hap-
lotype clustering. 

Multiple SNP haplotypes in the vicinity of QTL 
are commonly expected to yield significant results 
in the association analysis. This is because sets of 
SNPs that are physically close to the causal factor 
tend to be in linkage disequilibrium. This effect 
declines with genetic distance and also depends 
on minor allele frequencies. Hence, an isolated 
significant SNP will often represent a spurious as-
sociation or a wrongly mapped SNP. The false posi-
tives observed with the RHM were either a single 
significant haplotype or a few significant ones. In 

real studies this type of false positives will not be 
selected for further follow up study. However, the 
FHM had several significant haplotypes on the null 
chromosome (as many as 111), and some of them 
were clustered together. Such false positive results 
may potentially mislead an investigator as concerns 
the searching area of the candidate gene or candi-
date polymorphism.

In this study, the pedigree was known (recorded), 
no genotypes were missing, the haplotypes were 
known with certainty and, above all, the pheno-
types were an accurate indicator of genetic merit. 
However, for real data some genotypes will be 
missing and haplotype construction will be inex-
act compared to the simulated datasets. Mistakes 
might also exist in the pedigree records for real 
data. These facts would lower the power of the 
proposed QTL detection method in practice, com-
pared to what is observed in the simulated datasets. 
In addition, recombination rate, historical LD and 
density of markers may vary across the genome, 
and constructing haplotypes by using the nearest 
fixed number of SNPs is not optimal. An alternative 
would be optimal subsets of SNPs (Halldórsen et 
al. 2004). Finally, we note that the Bonferroni cor-
rection for multiple testing used in this paper is 
too conservative, and more sophisticated methods 
(Mathias et al., 2006; Huang et al., 2007) could be 
used instead.

CONCLUSION

Strategies for haplotype-based association stud-
ies were compared. We observed that models with 
random haplotype effects performed better in com-
parison to models with fixed haplotype effect in 
terms of power, controlling type I error and preci-
sion. We may state that a haplotype length of 4 to 
6 was optimal for the marker density considered 
in this study. 
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