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Abstract

This report presents development of a two-dimensional solver for compressible viscous

�ow using Spectral Di�erence (SD) method and its applications on simulating laminar

�ow past two cylinders. The high-order spectral di�erence solver is based on unstructured

quadrilateral grids. High-order curved wall boundary representation is developed for

cylinders. Two cylinders are aligned in side-by-side arrangements normal to freestream

�ow with di�erent spacings (center-to-center distance/diameter s=2, 2.5, 3, 3.4 and 4).

The simulation results are compared to experimental results (Williamson (1985); Zhou

et al. (2001)) and other numerical results (Chang and Song (1990); Meneghini et al.

(2001); Kang (2003); Ding et al. (2007)). As s increases, asymmetric, anti-symmetric and

symmetric wake patterns are predicted. Force coe�cients and Strouhal numbers are then

correlated with wake patterns and compared to other published results.
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Chapter 1

Introduction

1.1 Flow past two side-by-side cylinders

Investigations of the �uid �ow and vertex dynamics about simple con�gurations of two

cylinders help our understanding of the �ows around more complex and larger-scale struc-

tures, for instance the �ow around tube banks employed in process industries (Liang and

Papadakis (2007)) and especially in the power generation and oil industry as well as �ow

around neighboring buildings and river �ow vegetation, etc. Other applications such as

hollow �ber arrays with many applications in absorption, extraction and ultra-�ltration

(Li et al. (2005)) or paper machine forming fabrics (Huang et al. (2006)). In the latter

examples, the �ows are laminar with Reynolds number in the order of 150-200.

Zdravkovich (1977, 1987) has reviewed the problem of mutual interference between

pairs of cylinders in a steady �ow. A lot attention is paid to the side-by-side and inline

arrangements of the cylinder pair. Williamson (1985) suggested that the spacing between

two side-by-side cylinders centers/diameter (2 ≤ s ≤ 6) are such as to produce vortex-

shedding synchronization and the resulting wake con�guration will be either two parallel

streets in antiphase or a binary-vortex street which is a street being composed of pairs

of like-signed vortices rotating around one another with Reynolds number in the order of

100-200. The experimental results obtained Zhou et al. (2001) at relatively low Reynolds

numbers (150-450) also suggested that the �ow pattern is very much independent of

Reynolds number of this range. At s=3, they observed the anti-phase �ow patterns for

all Reynolds numbers using more advanced �ow visualization methods. Chang and Song
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(1990) made an early investigation of laminar �ow past two side-by-side cylinders using

a blending technique of Finite-Element method and Finite-Di�erence method. Recently,

numerical simulations have been performed for incompressible laminar �ow past two side-

by-side cylinders by Meneghini et al. (2001) using �nite-element unstructured method,

Kang (2003) using �nite-volume structured method with immersed boundary technique

and Ding et al. (2007) using mesh-free �nite-di�erence method.

The above studies mentioned are all about incompressible �ows. The simulation codes

commonly attained at best second-order accuracy in space. Furthermore, all the above

discussed numerical simulations employed only piecewise linear wall boundary conditions

or some kind of interpolation schemes to satisfy no-slip condition for immersed boundary

method. The present simulation uses a recently developed Spectral Di�erence high-order

unstructured method to simulate a low-Mach number compressible laminar �ow past two

side-by-side cylinders. A cubic spline curve �tting routine is programmed into our solver

and it allows an automatic construction of a cubic curved wall boundary condition for

each cylinder.

On the other hand, despite the small dependence on Reynolds number regarding the

laminar wake �ow pattern past the cylinder pair, near some critical spacing, the Reynolds

number e�ect may prevail. As the above studies have reported either anti-symmetric or

symmetric �ow patterns for s=3 and Reynolds numbers 100, 150 and 200, this paper will

make e�ort to clarify this aspect.

1.2 Spectral Di�erence method

Until recently, compressible �ow computations on unstructured meshes have generally

been dominated by schemes restricted to second order accuracy. However, the need for

highly accurate methods in applications such as large eddy simulation, direct numerical

simulation, computational aero-acoustics etc., has seen the development of higher or-

der schemes for unstructured meshes such as the Discontinuous Galerkin (DG) Method

(Cockburn and Shu (1989, 1998); Bassi and Rebay (1997)), Spectral Volume (SV) method

(Wang (2002); Liu et al. (2006b); Wang and Liu (2006)) and Spectral Di�erence (SD)

Method (Liu et al. (2006a); Wang et al. (2007); Liang et al. (2008)). The SD method

2



is a newly developed e�cient high-order approach based on di�erential form of the gov-

erning equation. It was originally proposed by Liu et al. (2006a) and developed for wave

equations in their paper on triangular grids. Wang et al. (2007) extended it to 2D Eu-

ler equations on triangular grids and Liang et al. (2008) improved the convergence of

the method using implicit LU-SGS and p-multigrid schemes. Recently, Sun et al. (2007)

further developed it for three-dimensional Navier-Stokes equations on hexahedral unstruc-

tured meshes. The SD method combines elements from �nite-volume and �nite-di�erence

techniques. Similar to the discontinuous Galerkin (DG) and spectral volume (SV) meth-

ods, the SD scheme achieves high-order accuracy by locally approximating the solutions

as a high degree polynomial inside each cell. However, being based on the di�erential form

of the equations, its formulation is simpler than that of the DG and SV methods as no

test function or surface integral is involved. Conservation properties are still maintained

by a judicious placement of the nodes at quadrature points of the chosen simplex.

The paper is organized as follows. Chapter 2 describes the numerical approach and

solution methods. In order to validate the spatial accuracy of the code, chapter 3 presents

two cases with analytical solutions and simulation results obtained by SD method in

addition to a simulation of �ow past an isolated cylinder with detailed comparisons to

other results. Chapter 4 reports the simulation results obtained for laminar viscous �ows

past two side-by-side cylinders. Finally, chapter 5 summarizes the main �ndings of this

work.

3



Chapter 2

Numerical formulation

The formulation of the equations is similiar to the formulation of Sun et al. (2007) for

unstructured hexahedral grids.

Consider the unsteady compressible 2D Navier Stokes equations in conservative form

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (2.1)

where Q is the vector of conserved variables; F and G are the total �uxes including both

inviscid and viscous �ux vectors. To achieve an e�cient implementation, all elements in

the physical domain (x, y) are transformed into a standard square element (0 ≤ ξ ≤ 1,

0 ≤ η ≤ 1) as shown in �gure 2.1. The transformation can be written as:

 x

y


 =

K∑
i=1

Mi (ξ, η)


 xi

yi


 (2.2)

where K is the number of points used to de�ne the physical element, (xi, yi) are the

cartesian coordinates of those points, and Mi (ξ, η) are the shape functions. The metrics

and the Jacobian of the transformation can be computed. The governing equations in the

physical domain are then transferred into the computational domain, and the transformed

equations take the following form:

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
= 0 (2.3)

where Q̄ = |J | ·Q and

 F̄

Ḡ


 = |J |


 ξx ξy

ηx ηy





 F

G


 (2.4)
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Solution points

ξ

η

Flux points

Figure 2.1: Distribution of �ux and solution points for the third order SD scheme

In the standard element, two sets of points are de�ned, namely the solution points

and the �ux points, illustrated in �gure 2.1.

In order to construct a degree (N−1) polynomial in each coordinate direction, solution

at N points are required. The solution points in 1D are chosen to be the Gauss points

de�ned by:

Xs =
1

2

[
1− cos

(
2s− 1

2N
· π

)]
, s = 1, 2, · · · , N. (2.5)

The �ux points are selected to be the Gauss-Lobatto points given by

Xs+1/2 =
1

2

[
1− cos

( s

N
· π

)]
, s = 0, 1, · · · , N. (2.6)

Using the solutions at N solution points, a degree (N − 1) polynomial can be built using

the following Lagrange basis de�ned as:

hi (X) =
N∏

s=0,s 6=i

(
X −Xs

Xi −Xs

)
(2.7)

Similarly, using the �uxes at (N + 1) �ux points, a degree N polynomial can be built

for the �ux using a similar Lagrange basis de�ned as:

li+1/2 (X) =
N∏

s=0,s 6=i

(
X −Xs+1/2

Xi+1/2 −Xs+1/2

)
(2.8)

The reconstructed solution for the conserved variables in the standard element is just the

tensor products of the two one-dimensional polynomials,

Q (ξ, η) =
N∑

j=1

N∑
i=1

Q̃i,j

|Ji,j|hi (ξ) · hj (η) (2.9)
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Similarly, the reconstructed �ux polynomials take the following form:

F̃ (ξ, η) =
N∑

j=1

N∑
i=0

F̃i+1/2,jli+1/2 (ξ) · hj (η),

G̃ (ξ, η) =
N∑

j=0

N∑
i=1

G̃i,j+1/2hi (ξ) · lj+1/2 (η) (2.10)

The reconstructed �uxes are only element-wise continuous, but discontinuous across cell

interfaces. For the inviscid �ux, a Riemann solver is employed to compute a common �ux

at interfaces to ensure conservation and stability. In our case, we have used the Rusanov

solver Rusanov (1961) to compute the interface �uxes.

In summary, the algorithm to compute the inviscid �ux derivatives consists of the

following steps:

1. Given the conservative variables at the solution points, the conservative variables

are computed at the �ux points

2. The inviscid �uxes at the interior �ux points are computed using the solutions

computed at Step (1)

3. The inviscid �uxes at the element interfaces are computed using the Rusanov solver.

Given the normal direction of the interface n, and the averaged normal velocity

component Vn and the sound speed c, the inviscid �ux on the interface can be

determined.

4. The derivatives of the �uxes are computed at the solution points using the deriva-

tives of Lagrange operators l

(
∂F̃

∂ξ

)

i,j

=
N∑

r=0

F̃r+1/2,j · l′r+1/2 (ξi),

(
∂G̃

∂η

)

i,j

=
N∑

r=0

G̃i,r+1/2 · l′r+1/2 (ηj) (2.11)

We consider two-dimensional Navier-Stokes equations written in conservation form as

the one described in Sun et al. (2006)

∂Q

∂t
+∇Fe(Q)−∇Fv(Q,∇Q) = 0 (2.12)
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where the conservative variables Q and Cartesian components fe(Q) and ge(Q) of the

inviscid �ux vector Fe(Q) are given by

Q =





ρ

ρu

ρv

E





, fe(Q) =





ρu

ρu2 + p

ρuv

u(E + p)





, ge(Q) =





ρv

ρuv

ρv2 + p

v(E + p)





(2.13)

Here ρ is the density, u and v are the velocity components in x and y directions, p stands

for pressure and E is the total energy. The pressure is related to the total energy by

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (2.14)

with a constant ratio of speci�c heat γ. For all test cases in the present study, γ is going

to be 1.4 for air.

The Cartesian components fv(Q,∇Q) and gv(Q,∇Q) of viscous �ux vector Fv(Q,∇Q)

are given by

fv(Q,∇Q) = µ





0

2ux + λ(ux + vy)

vx + uy

u[2ux + λ(ux + vy)] + v(vx + uy) + Cp

Pr
Tx





,

gv(Q,∇Q) = µ





0

vx + uy

2vy + λ(ux + vy)

v[2vy + λ(ux + vy)] + u(vx + uy) + Cp

Pr
Ty





(2.15)

where µ is the dynamic viscosity, Cp is the speci�c heat and Pr stands for Prandtl number.

T is temperature which can be derived from the perfect gas assumption. λ is set to −2/3

according to the Stokes hypothesis.

The solution procedures to get viscous �uxes can be described as the following steps.

� reconstruct Qk,i at the �ux points from the conservative variables at the solution

points using equation 2.9.
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� average the �eld of Qk,i on the element interfaces as Qf = 1
2
(QL

k,i+QR
k,i). Meanwhile,

boundary conditions shall be applied for u, v and T.

� ∇u, ∇v and ∇T can be evaluated from Qf using equation 2.11 where ∇Q =



Qx

Qy



 and Qx = ∂Q

∂ξ
ξx + ∂Q

∂η
ηx, etc.

� reconstruct ∇u, ∇v and ∇T from equation 2.9 and average them on the element

interfaces as ∇Qf = 1
2
(∇QL

k,i +∇QR
k,i)

� with Qf and ∇Qf , we are ready to compute viscous �ux vectors described in equa-

tion 2.15 at the element interfaces.

Flows with either steady or unsteady solutions are considered in this paper. In order

to solve the �ow to a steady state from a nearly arbitrary initial guess, a relaxation scheme

is needed. Therefore, the time derivative term is kept for all cases. All computations in

this paper are advanced in time using a fourth-order strong-stability-preserving �ve-stage

Runge-Kutta scheme (Spiteri and Ruuth (2002)).
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Chapter 3

Accuracy validation

In the following, an inviscid �ow case and a viscous �ow case with analytical solutions are

selected in order to demonstrate the order of accuracy of the implemented SD method for

both �ux vectors in equation 2.12. It is followed by a classical testing case about laminar

�ow past an isolated cylinder at Re=100.

3.1 Validation using supersonic vortex �ow

The supersonic vortex �ow problem is one of the few non-trivial problems of the com-

pressible 2D Euler equations for which a smooth analytical solution is known. The in-

viscid, isentropic, supersonic �ow of a compressible �uid between concentric circular arcs

presents a �ow where the velocity varies inversely with radius. The expression for density

as a function of radius r is given by:

ρ (r) = ρi

{
1 +

γ − 1

2
M2

i

[
1−

(ri

r

)2
]} 1

γ−1

(3.1)

where Mi and ri are the Mach number and the radius at the inner arc. In the present

calculation, the Mach number, density and pressure at the inner radius ri are speci�ed

to be 2.25, 1 and 1/γ respectively. The inner and outer radii are 1 and 1.384. The

outer arc and bottom boundaries are �xed with analytical solutions. The zero-gradient

extrapolation boundary is employed for the exit. In the following, the numerical solution

to this problem are computed for 2nd, 3rd and 4th order SD method on successively

re�ned grids. All the computations are initialized using constant density and pressure.

The L2 error of the density is evaluated.
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Figure 3.1: Supersonic vortex �ow obtained using grid of 6× 15

The four meshes used in the computation were of sizes 10 × 4, 15 × 6, 30 × 12, and

60 × 24. A sample 15 × 6 mesh is shown in �gure 3.1 (a). Figure 3.1 (b) shows the

pressure contours in the �ow �eld obtained by 3rd order SD method. The details of the

order calculation and veri�cation are shown in Table 3.1. The tables clearly indicate that

the SD method applied to the steady compressible Euler equations exhibits a full order of

convergence on smooth solutions. It provides the details of the spatial accuracy of the SD

method for di�erent orders for this numerical experiment. One can also see the L2-error

of the SD method at di�erent order SD method against the number of degrees of freedom.

One can also clearly see that a higher order SD method requires a less number of degrees

of freedom than a lower order SD method to achieve the same accuracy.

3.2 Validation using compressible Couette �ow

The numerical order of accuracy is validated using compressible Couette �ow with an-

alytical solution. A grid with 4 × 2 cells is shown in �gure 3.2. A periodic boundary

condition is used in the stream-wise direction. A moving wall no-slip boundary with

constant temperature and a speci�ed external pressure is used for the top surface. A

stationary no-slip wall with constant temperature is used for the bottom surface. We

obtained desired numerical order L2 accuracy as shown in table 3.2.

Having validated the order of spatial accuracy using testing problems with steady �ow
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No. of elements No. of DOFs L2-error Order

2nd order SD

40 160 4.7249E-03 -

90 360 1.9881E-03 2.135

360 1440 4.4721E-04 2.152

1440 5760 1.0196E-04 2.133

3rd order SD

40 360 3.3393E-04 -

90 810 9.8833E-05 3.003

360 3240 1.2242E-05 3.013

1440 12960 1.5230E-06 3.007

4th order SD

40 640 1.9238E-05 -

90 1440 3.7883E-06 4.008

360 5760 2.3651E-07 4.002

1440 23040 1.4743E-08 4.004

Table 3.1: L2 errors and orders of accuracy of inviscid supersonic vertex �ow

solutions, we simulate the unsteady �ow past an isolated cylinder at Re=100 and compare

to other results in detail.

3.3 Viscous �ow past one cylinder

Figure 3.4 shows the computational grid for the unsteady �ow past a single cylinder.

There are 32 cells around the circumference of the cylinder. The �rst cell near to the

cylinder wall has a spacing around 11% cylinder radius in the normal direction. The level

of grid resolution is very close to the one used in Meneghini et al. (2001) who employed 128

points around the cylinder wall and the �rst node had a distance about 1% of cylinder

radius for an isolated cylinder case. The computation for this case is performed using

�fth-order SD method and a cubic curved wall boundary condition is employed for the

cylinder surface. Dirichlet boundary condition is used for the inlet and �xed-pressure is
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Figure 3.2: Grid 4× 2 for Couette Flow and boundary conditions
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Figure 3.3: Compressible Couette �ow grid and its solution for density �eld.
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No. of elements No. of DOFs L2-error Order

2nd order SD

2 8 1.4180E-02 -

8 32 3.3520E-03 2.081

32 128 9.1210E-04 1.878

128 512 2.4350E-04 1.905

3rd order SD

2 18 1.4783E-03 -

8 72 1.5199E-04 3.282

32 288 1.6525E-05 3.201

128 1152 1.7991E-06 3.199

4th order SD

2 32 1.9784E-04 -

8 128 1.1827E-05 4.064

32 512 7.9780E-07 3.890

128 2048 4.7330E-08 4.075

Table 3.2: L2 errors and orders of accuracy of viscous Couette �ow

adopted for the outlet boundary condition. Invisicd symmetry boundary conditions are

applied on the two lateral sides.

One snapshot of pressure contour and velocity streamlines are illustrated in �gure 3.5.

The vortex formed by the �uid from the bottom of the cylinder is associated with a region

of low pressure. At this time instant, the unsteady lift coe�cient attains its minimum. SD

method o�ers great �exibility in grid-independence study. The only parameter to tune in

our solver is the polynomial degree N. The di�erences of coe�cients C
′
l and C

′
d predicted

by 4th-order (total DOFs 21,376) and �fth-order SD methods (total DOFs 33,400) are

both less than 2%. In the following for an isolated cylinder case, we only present the

results obtained by �fth-order SD method.

Table 3.3 reports the comparison between present computation of compressible viscous

�ow at Mach number 0.2 to other numerical and experimental studies for incompressible
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(a) (b)

Figure 3.4: Computational grid for unsteady �ow past a cylinder

(a) pressure contour (b) streamlines

Figure 3.5: Instantaneous �ow �eld computed for �ow past a cylinder
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Investigator Present Sharman 05 Mene- 01 Kang (2003) Ding 07

Re no. 100 100 100 100 100

nodes 1,336 14,441 13,696 62,127 23,033

blockage 0.0312 0.02 0.047 - -

C
′
l 0.232 0.23 - 0.32 0.287

Cd 1.365 1.33 1.37 1.33 1.356

C
′
d 0.0086 0.0064 - - 0.01

St. no. 0.164 0.164 0.165 0.165 0.166

Table 3.3: Comparison of present results against other results for �ow over a cylinder at

Reynolds number 100

viscous �ow at the same Reynolds number 100. The Strouhal number predicted by present

SD method on a mesh with degree-of-freedom 33,400 is identical to the one predicted by

Sharman et al. (2005) and the measured value by Williamson (1989). There is a separate

compressible �ow simulation which is not included in the table. Mittal and Tezduyar

(1998) also predicted 0.164 using a �nite-element compressible �ow solver at Re=100 and

Mach number 0.2. The �uctuating lift coe�cient is identical to the one predicted by the

incompressible solver of Sharman et al. (2005). Kang (2003); Ding et al. (2007) predicted

higher C
′
l probably due to insu�cient near wall grid resolution and lower-order spatial

piecewise schemes which are unable to resolve the wall curvature. The mean and rms

drag coe�cients are slightly higher than the ones predicted by Sharman et al. (2005).

However, the presently predicted Cd 1.365 is close to 1.37 predicted by Meneghini et al.

(2001) and 1.356 predicted by Ding et al. (2007). The low compressibility of the present

�ow condition may also slightly a�ect mean drag coe�cient but its impact is certainly not

noticeably strong. Mittal and Tezduyar (1998) also predicted the mean Cd around the

level of 1.4 as can be seen from �gure 7 in their paper for Mach 0.2 and Re=100. Overall,

this validation proves that our 2D spectral di�erence method produces the correct physics

for �ow past a cylinder.
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Chapter 4

Flow past two side-by-side cylinders

4.1 Computational condition

In the following, we report simulations of �ow past two side-by-side cylinders using either

third-order or 4th-order accurate SD methods. Iso-thermal wall boundary condition is

employed for temperature �eld. Dirichlet boundary condition is applied for the left inlet

boundary. The top and bottom boundaries use symmetrical slip condition. For the right

boundary, �xed pressure is speci�ed and other values are extrapolated. If not emphasized

elsewhere, the time step size for all computations ∆tU∞
D

= 8× 10−4.

Simulations have been carried out with two cylinders in a side-by-side arrangement

for gaps/diameter in the range 2 ≤ s ≤ 4. The point with coordinate (0,0) is located

at the middle distance between the cylinders. The free-stream Mach number is 0.2 and

Reynolds number is 100 or 200. As shown in �gure 4.1, the typical computational grid for

s=3 case has cell number 5,106 (total DOFs are 45,954 and 81,696 for 3rd-order and 4th-

order SD methods respectively). There is only 60 cells around the periphery of a cylinder

surface but this number is already nearly double of the one used for the isolated cylinder

testing case. The �rst cell near the cylinder wall is located at a distance of about 2.8%

of the cylinder radius. However, considering third-order SD method and a cubic curved

boundary condition applied for the wall, the present simulation has a �ner resolution than

Meneghini et al. (2001) who employed 128 points around the cylinder wall and the �rst

node had a distance about 1% of cylinder radius. The present near wall grid resolution is

even �ner than the one used by Kang (2003) with immersed boundary method.
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(a) complete domain (b) details around the cylinder

Figure 4.1: Computational grid for unsteady �ow past two side-by-side cylinders

4.2 Wake dynamics

When s ≤ 2, it is known that the near wake of the cylinder pair is asymmetric and the gap

�ow becomes biased. Figure 4.2 (a) and (b) shows the upward and downward biased gap

�ows respectively. The individual vortex street does not exist any longer but the merged

vortices establish a single wake as if they had originated from a single body. When the

gap �ow is de�ected downwards, the lower cylinder has a bigger Cd and higher shedding

frequency than the upper one since the lower cylinder is relatively in suction pressure (see

�gure 4.3). This is in a good agreement with the experimental observation of Bearmann

and Wadcock (1973). The lift coe�cient shown in �gure 4.3 also indicates that the higher-

drag cylinder is having a higher shedding frequency. Two Strouhal numbers 0.175 and

0.225 are identi�ed through Fourier transformation. The former one is close to the one

predicted by Kang (2003).

Figures 4.4 and 4.5 demonstrate the transition of vortex shedding wake pattern from

symmetric anti-phase regime to anti-symmetric in-phase regime at Reynolds number 100.

The cylinder spacings are s=2.5 and s=3 respectively. Initially, the lift coe�cients for both

cylinders are in antiphase (of 180°phase di�erence) and gradually the di�erence reduces

and converges to in-phase (0°phase di�erence). Chang and Song (1990) also observed

from the time history of Cl that the vortex drifts with time from the anti-phase regime

to in-phase regime.

Figure 4.6 de�nes four-phase snapshots for an in-phase vortex shedding period for

s=2.5 and Re=100 case using the time history of Cl. Figure 4.7 visualizes the streamlines
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(a) streamlines (a) vorticity

(b) streamlines (b) vorticity

Figure 4.2: Streamlines and vorticity for s=2 when the gap �ow is upward or downward

biased

(a) lift coef (b) drag coef

Figure 4.3: Force coe�cients at the time instant when the gap �ow is de�ected downwards

for s=2

18



Figure 4.4: Transition from anti-phase regime to in-phase regime for �ow past two cylin-

ders s=2.5 and Re=100

and vorticity contour for four di�erent phases de�ned in �gure 4.6. At phase a, the �uid

which �ows from the bottom side of the cylinders forms a pair of vortices with identical

size as shown in the streamlines. At this time instant, both cylinders are having negative

lift force. Further downstream when 5 ≤ x, vortices from upper and bottom merge across

the centerline to form elongated single vortex and simultaneously two vortex streets merge

to a single wide vortex street. Similarly, at phase b, the �uid which �ows from the top

side of cylinders start to form vortices in proximity of top corners of cylinder pair. These

vortices grew bigger and lead to two positive lift forces for both cylinders at time instant

of phase c. As the two big vortices convecting away, Cl decreases as shown for phase d.

A dramatic feature of these phases is that upper and lower cylinders are having nearly

identical �ow structures in their near wakes at any time instant. At this spacing, vortex

shedding patterns from two cylinders are strongly synchronized to form an exactly anti-

symmetrical wake pattern.

Figure 4.8 shows the Mach number distribution of the asymmetric in-phase vortex

shedding at Re=100 and s=3d. The gap high-Mach region (0 ≤ x ≤ 4) starts to �uctuate

in the transverse direction. In the further downstream along the center line, there is
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Figure 4.5: Transition from anti-phase regime to in-phase regime for �ow past two cylin-

ders s=3 and Re=100

Figure 4.6: De�nition of four-phase snopshots for an in-phase vortex shedding �ow period

of �ow past two cylinders with s=2.5 and Re=100
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(a) streamlines at phase a (b) vorticity at phase a

(c) streamlines at phase b (d) vorticity at phase b

(e) streamlines at phase c (f) vorticity at phase c

(g) streamlines at phase d (h) vorticity at phase d

Figure 4.7: Streamlines and vorticity for s=2.5
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a continuous low-Mach number distribution. Figure 4.9 shows the spanwise vorticity

distribution of the asymmetric in-phase vortex shedding at Re=100 and s=3d. In between

x=6 and x=13, there is no longer symmetric pairs of opposite-sign vortices as they are

merged into elongated single vortices in the transverse direction. Further downstream

(x ≤ 13), the central line region is associated with a low-magnitude vorticity. Figure 4.10

presents the streamlines of the antisymmetric in-phase vortex shedding at Re=100 and

s=3d. The vertex rows merge through a combination of vortices of the same sign with a

�uctuating middle stream line, as Williamson (1985) has shown using �ow visualization

methods. In the downstream region, the merged vortex rows form a single vertex street

as already observed in the vorticity contour.

There is a phase di�erence of 180°for the case of s=3.4 and Re=100 as shown in the

�gure 4.11. Phase b corresponds to a minimum and a maximum Cl time instant for lower

and upper cylinders respectively. Figure 4.12 visualizes the streamlines and vorticity

contour for three di�erent phases de�ned in �gure 4.11. The anti-phase vortex shedding

pattern is very stable and maintains a long time period as the upper cylinder wake does

not seem to interact with the one of the lower cylinder.

Despite the di�erence predicted for the transitional regime at s=3 by di�erent nu-

merical methods in published literatures, it is generally agreed that s=4 has a symmetric

anti-phase synchronized vortex shedding by all the previous numerical studies (Chang

and Song (1990); Meneghini et al. (2001); Kang (2003); Ding et al. (2007)). SD method

also predicts a very stable symmetric vortex shedding as shown in �gure 4.13. The wake

patterns of streamlines and vorticity are very close to the ones of s = 3.4.

4.3 Flow statistics

Having observed the di�erent �ow patterns for di�erent spacings s at Reynolds number

100, attention is now turned to study the impact of s on the statistical force coe�cients

and Strouhal number.

Figure 4.14 (a) shows the mean Cl for all di�erent spacings. The present results overlap

with the data obtained from Ding et al. (2007). The value of mean Cl monotonically

decreases towards zero which is the case of an isolated cylinder. There are noticeable

22



Figure 4.8: Instantaneous Mach number contour computed for �ow past two cylinders

s=3 and Re=100

Figure 4.9: Instantaneous vorticity contour computed for �ow past two cylinders s=3 and

Re=100
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Figure 4.10: Instantaneous streamlines computed for �ow past two cylinders s=3 and

Re=100

Figure 4.11: De�nition of three-phase snopshots for an anti-phase vortex shedding �ow

period of �ow past two cylinders with s=3.4 and Re=100
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(a) streamlines at phase a (b) vorticity at phase a

(c) streamlines at phase b (d) vorticity at phase b

(e) streamlines at phase c (f) vorticity at phase c

Figure 4.12: Streamlines and vorticity for s=3.4
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(a) streamlines (b) vorticity

Figure 4.13: Streamlines and vorticity for s=4

di�erences among the published numerical results for mean Cd as shown in �gure 4.14

(b) despite all the values predicted are higher than the one of an isolated cylinder (1.33).

As we already discussed, s=2.5 and 3 are associated with in-phase antisymmetric wake

pattern, it also induce a mean Cd as low as the �ip-�opping asymmetric vortex shedding

of s=2. The wake pattern of s=3.4 becomes symmetric and anti-phase synchronized. The

values of Kang (2003) show a pro�le with a maximum at s=3. It deviates a little from our

results which project out a peak mean Cd at around s=3.4 which is clearly bigger than

the other spacings in �gure 4.14 (b).

It is seen from 4.14 (c) that the rms Cl of s=2.5 and 3 (around 0.2) are smaller

than those of the other spacings. A sudden increase occurs between s=3 and 3.4 as a

result of the change from anti-symmetric to symmetric vortex shedding pattern. It starts

decreasing as s increases from 3 to 4 because of the weaker mutual repulsive interaction

between two wakes. The rms Cd of �gure 4.14 (d) has a sudden decrease from s = 2

to 2.5 as a result of upward or downward biased de�ections shown in �gure 4.2. As s

further increases from 2.5, its value reduces slowly. There is generally very much short

of published data on rms Cd for side-by-side cylinders. Our present results are in a fair

agreement with the ones reported in Ding et al. (2007).

The Strouhal number is also plotted against s in the �gure 4.14 (e). Its trend has

some similarity to the one for rms Cl. The highest Strouhal number is obtained for

s=2 although our predicted value is not as high as the one reported in Kang (2003) as

aforementioned. It shows that in-phase synchronized vortex shedding patterns for s=2.5
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and 3 are associated with a smaller Strouhal number. A sudden increase happens between

s = 3 and 3.4 due to the switch of vortex shedding regime and further increase of s to 4

will decrease Strouhal smaller until it approaches the value of an isolated cylinder.

Overall, the predictions of force coe�cients and Strouhal numbers re�ect correctly the

�ow physics mode change. They have a strong dependence on spacing s.

4.4 Reynolds number dependence

Having predicted the anti-symmetric �ow pattern for Re=100 at s=3 and having noted

that Zhou et al. (2001) instead observed symmetric �ow pattern for Re=150, we performed

two-dimensional simulations of the same �ow (s=3) at Reynolds numbers 150 and 200.

The synchronization for vortex shedding can be observed from the time history of drag

coe�cients shown in �gure 4.15. This is in a good agreement with the symmetric wake

pattern visualized by Zhou et al. (2001). The upper and lower cylinders are having nearly

the same Cd both in phase and magnitude.

Figure 4.16 shows the di�erence of mean Cl, Cd and r.m.s. Cl, Cd as well as the

Strouhal number of the upper cylinder for Reynolds numbers 100, 150 and 200. As the

Reynolds number increases, the mean Cl decreases but all other values increase. It is also

noted that the rms values of force coe�cients are generally smaller than those predicted by

other simulations (using low-order accurate schemes). The Strouhal number distribution

has a fair agreement with other numerical studies. It has big jump between Re 100 and

150 and then increases slowly between 150 and 200. One can also compare them to the

experimental values for single cylinder presented byWilliamson (1989, 1991). The cylinder

pair only has a little higher Strouhal numbers compared to the isolated cylinders at Re

100 and 200 respectively. The present predicted Strouhal number lies just in between the

ones predicted by Meneghini et al. (2001) and Ding et al. (2007) for Re 200.

Figure 4.17 shows the Mach number distribution of the symmetric anti-phase vortex

shedding at Re=200 and s=3. Along the central line, high and low values of Mach

number are alternatively distributed. In particular, these high-Mach zones are surrounded

completed in all directions by low-Mach regions. They do not �uctuate in the transverse

direction and they are indeed di�erent from the �uctuating ones in �gure 4.8. Figure 4.18
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(a) mean Cl (b) mean Cd

(c) rms Cl (d) rms Cd

(c) Strouhal no.

Figure 4.14: Spacing dependence for force statistics and Strouhal number
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Figure 4.15: Drag coe�cient for the case with Re=150 and s=3

shows the spanwise vorticity distribution of the symmetric anti-phase vortex shedding at

Re=200 and s=3d. The central line separate more than 10 pairs of symmetric opposite-

sign vortices in the region of 0 ≤ x ≤ 20. In the near wake (2 ≤ x ≤ 15), adjacent vortices

aligned in a straight horizontal line and neighboring vortices are also having opposite

signs. Further downstream (15 ≤ x), in a same streamwise location, there are two pairs

of opposite-sign vortices in the transverse direction. In contrast to �gure 4.10, �gure

4.19 presents the streamlines of the symmetric anti-phase vortex shedding at Re=200 and

s=3d. The vertex rows do not merge across the middle straight line.
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(a) mean Cl (b) mean Cd

(c) rms Cl (d) rms Cd

(c) Strouhal no.

Figure 4.16: Reynolds number dependence for force statistics and Strouhal number at

s=3
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Figure 4.17: Instantaneous Mach number contour computed for �ow past two cylinders

s=3 and Re=200

Figure 4.18: Instantaneous vorticity contour computed for �ow past two cylinders s=3

and Re=200
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Figure 4.19: Instantaneous streamlines computed for �ow past two cylinders s=3 and

Re=200
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Chapter 5

Conclusion

We have developed a spectral di�erence solver for inviscid and viscous �ows. We veri�ed

that our presently developed two-dimensional solver on quadrilateral grids could achieve

the desired numerical order on both inviscid and viscous �ows. The SD method is then

applied to simulate �ow past two side-by-side cylinders. At s=2, we predicted an asym-

metric �ow pattern for �ow past the cylinder pair. The anti-symmetric in-phase �ow

patterns are predicted for arrangements with s=2.5 and 3 at Reynolds number 100. The

Reynolds number e�ect is found signi�cant at s=3 as the unsteady �ow still maintain a

stable symmetric anti-phase shedding pattern for Reynolds numbers 150 and 200. Further

increasing of the distance between two cylinders (s=3.4 and 4), the symmetric anti-phase

�ow patterns are predicted at Reynolds number 100. Some �ow parameters such as the

Strouhal number, mean and rms of lift and drag coe�cients, which quantitatively char-

acterize the �ow �elds are produced. They compare well with those of previous studies

and re�ect the importance of wake pattern �ow regime change.
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