Eigenvalues, Eigenvectors and Symmetrization of the Magneto-Hydrodynamic (MHD) Equations

Antony Jameson

June 30, 2006

Presented at AFOSR Grantees and Contractors Meeting, August 7, 2006, Atlanta, GA.

Let ρ, u_{i}, p, E, B_{i} and μ denote the density, velocity components, pressure, energy, magnetic field components and permeability. Using the convention that a repeated index i denotes summation over $i=1$ to 3 , the eight wave MHD equations proposed by Powell [1] and also studied by Roe [2,3] can be written as

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho u_{j}\right) & =0 \tag{1}\\
\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho u_{i} u_{j}-\frac{B_{i} B_{j}}{\mu}\right)+\frac{\partial P}{\partial x_{i}} & =-\frac{B_{i}}{\mu} \frac{\partial B_{j}}{\partial x_{j}} \\
\frac{\partial}{\partial t}(\rho Z)+\frac{\partial}{\partial x_{j}}\left((\rho Z+p) u_{j}-u_{i} \frac{B_{i} B_{j}}{\mu}\right) & =-\frac{u_{i} B_{i}}{\mu} \frac{\partial B_{j}}{\partial x_{j}} \\
\frac{\partial B_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(u_{j} B_{i}-u_{i} B_{j}\right) & =-u_{i} \frac{\partial B_{j}}{\partial x_{j}}
\end{align*}
$$

Here Z and P are the total energy and pressure allowing for the magnetic field.

$$
\begin{align*}
Z & =E+\frac{B_{i}^{2}}{2 \rho \mu} \tag{2}\\
P & =p+\frac{B_{i}^{2}}{2 \mu}
\end{align*}
$$

while for a perfect gas,

$$
\begin{equation*}
p=(\gamma-1) \rho\left(E-\frac{u^{2}}{2}\right), c^{2}=\frac{\gamma p}{\rho} \tag{3}
\end{equation*}
$$

where γ is the ratio of specific heats and c is the speed of sound.
The source terms on the right are proportional to Div \mathbf{B} and should be zero in a true solution. In terms of the conservative variables w, the MHD equations can be written as

$$
\frac{\partial w}{\partial t}+\frac{\partial}{\partial x_{i}} F_{i}(w)+S(w)=0
$$

where

$$
w=\left[\begin{array}{c}
\rho \tag{4}\\
\rho u_{1} \\
\rho u_{2} \\
\rho u_{3} \\
\rho Z \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right], \quad F_{i}=\left[\begin{array}{c}
\rho u_{i} \\
\rho u_{i} u_{1}+P \delta_{i 1}-\frac{B_{i} B_{1}}{\mu} \\
\rho u_{i} u_{2}+P \delta_{i 2}-\frac{B_{i} B_{2}}{\mu} \\
\rho u_{i} u_{3}+P \delta_{i 3}-\frac{B_{i} B_{3}}{\mu} \\
\rho u_{i}(Z+P / \rho)-u_{j} \frac{B_{i} B_{j}}{\mu} \\
u_{i} B_{1}-B_{i} u_{1} \\
u_{i} B_{2}-B_{i} u_{2} \\
u_{i} B_{3}-B_{i} u_{3}
\end{array}\right], \quad S=\frac{\partial B_{j}}{\partial x_{j}}\left[\begin{array}{c}
0 \\
\frac{B_{1}}{\mu} \\
\frac{B_{2}}{\mu} \\
\frac{B_{3}}{\mu} \\
\frac{u_{j} B_{j}}{\mu} \\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

In smooth regions they can be expressed in quasi-linear form as

$$
\frac{\partial w}{\partial t}+\frac{\partial F_{i}}{\partial w} \frac{\partial w}{\partial x_{i}}+S=0
$$

The source terms can be written as

$$
S=S_{i} \frac{\partial w}{\partial x_{i}}
$$

where

$$
\left.\begin{array}{rl}
S_{i} & =b a_{i}^{T} \tag{5}\\
a_{1}^{T} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
a_{2}^{T} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
a_{3}^{T} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
b^{T} & =\left[0, \frac{B_{1}}{\mu}, \frac{B_{2}}{\mu}, \frac{B_{3}}{\mu}, \frac{u_{i} B_{i}}{\mu}, u_{1}, u_{2}, u_{3}\right.
\end{array}\right]
$$

Thus the quasi-linear form is

$$
\frac{\partial w}{\partial t}+A_{i} \frac{\partial w}{\partial x_{i}}=0
$$

where the Jacobian matrices are

$$
A_{i}=\frac{\partial F_{i}}{\partial w}+S_{i}
$$

Under a transformation to the primitive variables

$$
\tilde{w}=\left[\rho, u_{1}, u_{2}, u_{3}, p, B_{1}, B_{2}, B_{3}\right]^{T}
$$

the equations become

$$
\begin{equation*}
\frac{\partial w}{\partial \tilde{w}} \frac{\partial \tilde{w}}{\partial t}+A_{i} \frac{\partial w}{\partial \tilde{w}} \frac{\partial \tilde{w}}{\partial x_{i}}=0 \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial \tilde{w}}{\partial t}+\tilde{A}_{i} \frac{\partial \tilde{w}}{\partial x_{i}}=0 \tag{7}
\end{equation*}
$$

where

$$
\tilde{A}_{i}=\tilde{M}^{-1} A_{i} \tilde{M}, \quad A_{i}=\tilde{M}_{i} \tilde{A}_{i} \tilde{M}^{-1}
$$

and

$$
\tilde{M}=\frac{\partial w}{\partial \tilde{w}}, \quad \tilde{M}^{-1}=\frac{\partial \tilde{w}}{\partial w}
$$

The primitive equations in full are

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+u_{j} \frac{\partial \rho}{\partial x_{j}}+\rho \frac{\partial u_{j}}{\partial x_{j}} & =0 \tag{8}\\
\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}+\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\frac{B_{j}}{\rho \mu}\left(\frac{\partial B_{j}}{\partial x_{i}}-\frac{\partial B_{i}}{\partial x_{j}}\right) & =0 \\
\frac{\partial p}{\partial t}+u_{j} \frac{\partial p}{\partial x_{j}}+\gamma p \frac{\partial u_{j}}{\partial x_{j}} & =0 \\
\frac{\partial B_{i}}{\partial t}+u_{j} \frac{\partial B_{i}}{\partial x_{j}}+B_{i} \frac{\partial u_{j}}{\partial x_{j}}-B_{j} \frac{\partial u_{i}}{\partial x_{j}} & =0
\end{align*}
$$

Also,

$$
\tilde{M}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{9}\\
u_{1} & \rho & 0 & 0 & 0 & 0 & 0 & 0 \\
u_{2} & 0 & \rho & 0 & 0 & 0 & 0 & 0 \\
u_{3} & 0 & 0 & \rho & 0 & 0 & 0 & 0 \\
\frac{u^{2}}{2} & \rho u_{1} & \rho u_{2} & \rho u_{3} & \frac{1}{\gamma-1} & \frac{B_{1}}{\mu} & \frac{B_{2}}{\mu} & \frac{B_{3}}{\mu} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and,

$$
\tilde{M}^{-1}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{10}\\
-\frac{u_{1}}{\rho} & \frac{1}{\rho} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{2}}{\rho} & 0 & \frac{1}{\rho} & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{3}}{\rho} & 0 & 0 & \frac{1}{\rho} & 0 & 0 & 0 & 0 \\
\bar{\gamma} \frac{u^{2}}{2} & -\bar{\gamma} u_{1} & \bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} & -\bar{\gamma} \frac{B_{1}}{\mu} & -\bar{\gamma} \frac{B_{2}}{\mu} & -\bar{\gamma} \frac{B_{3}}{\mu} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

where $\bar{\gamma}=(\gamma-1)$
Since $\gamma p=\rho c^{2}$, the Jacobian matrices can be written as

$$
\tilde{A}_{1}=\left[\begin{array}{cccccccc}
u_{1} & \rho & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & u_{1} & 0 & 0 & \frac{1}{\rho} & 0 & \frac{B_{2}}{\rho \mu} & \frac{B_{3}}{\rho \mu} \\
0 & 0 & u_{1} & 0 & 0 & 0 & -\frac{B_{1}}{\rho \mu} & 0 \\
0 & 0 & 0 & u_{1} & 0 & 0 & 0 & -\frac{B_{1}}{\rho \mu} \\
0 & \rho c^{2} & 0 & 0 & u_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & u_{1} & 0 & 0 \\
0 & B_{2} & -B_{1} & 0 & 0 & 0 & u_{1} & 0 \\
0 & B_{3} & 0 & -B_{1} & 0 & 0 & 0 & u_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& \tilde{A}_{2}=\left[\begin{array}{cccccccc}
u_{2} & 0 & \rho & 0 & 0 & 0 & 0 & 0 \\
0 & u_{2} & 0 & 0 & 0 & -\frac{B_{2}}{\rho_{1}} & 0 & 0 \\
0 & 0 & u_{2} & 0 & \frac{1}{\rho} & \frac{B_{1}}{\rho \mu} & 0 & \frac{B_{3}}{\rho \mu} \\
0 & 0 & 0 & u_{2} & 0 & 0 & 0 & -\frac{B_{2}}{\rho \mu} \\
0 & 0 & \rho c^{2} & 0 & u_{2} & 0 & 0 & 0 \\
0 & -B_{2} & B_{1} & 0 & 0 & u_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & u_{2} & 0 \\
0 & 0 & B_{3} & -B_{2} & 0 & 0 & 0 & u_{2} \\
\\
\tilde{A}_{3} & =\left[\begin{array}{cccccccc}
u_{3} & 0 & 0 & \rho & 0 & 0 & 0 & 0 \\
0 & u_{3} & 0 & 0 & 0 & -\frac{B_{3}}{\rho \mu} & 0 & 0 \\
0 & 0 & u_{3} & 0 & 0 & 0 & -\frac{B_{3}}{B_{\mu}} & 0 \\
0 & 0 & 0 & u_{3} & \frac{1}{\rho} & \frac{B_{1}}{\rho \mu} & \frac{B 2}{\rho \mu} & \\
0 & 0 & 0 & \rho c^{2} & u_{3} & 0 & 0 & 0 \\
0 & -B_{3} & 0 & B_{1} & 0 & u_{3} & 0 & 0 \\
0 & 0 & -B_{3} & B_{2} & 0 & 0 & u_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & u_{3} \\
0 & & & & & &
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

In a finite volume scheme the flux across a face with normal vector \mathbf{n} and area S is $F=n_{i} F_{i} S$. The corresponding Jacobian matrices for the conservative and primitive forms area

$$
A=n_{i} A_{i}, \quad \tilde{A}=n_{i} \tilde{A}_{i}
$$

where

$$
\tilde{A}=\tilde{M}^{-1} A \tilde{M}, \quad A=\tilde{M} \tilde{A} \tilde{M}^{-1}
$$

Define the normal components of \mathbf{u} and \mathbf{B} as

$$
u_{n}=\mathbf{u} \cdot \mathbf{n}, \quad B_{n}=\mathbf{B} \cdot \mathbf{n}
$$

and the magnitudes of \mathbf{u} and \mathbf{B} as

$$
u=\sqrt{u_{i}^{2}}, \quad B=\sqrt{B_{i}^{2}}
$$

The Jacobian matrix for the primitive variables can now be written as

$$
\tilde{A}=\left[\begin{array}{cccccccc}
u_{n} & n_{1} \rho & n_{2} \rho & n_{3} \rho & 0 & 0 & 0 & 0 \\
0 & u_{n} & 0 & 0 & \frac{n_{1}}{\rho} & \frac{n_{1} B_{1}-B_{n}}{\rho} & \frac{n_{1} B_{2}}{\rho} & \frac{n_{1} B_{3}}{\rho} \\
0 & 0 & u_{n} & 0 & \frac{n_{2}}{\rho} & \frac{n_{2} B_{1}}{\rho \mu} & \frac{n_{2} B_{2}-B_{n}}{\rho \mu} & \frac{n_{2} B_{3}}{\rho \mu} \\
0 & 0 & 0 & u_{n} & \frac{n_{3}}{\rho} & \frac{n_{3} B_{1}}{\rho \mu} & \frac{n_{3} B_{2}}{\rho \mu} & \frac{n_{3} B_{3}-B_{n}}{\rho \mu} \\
0 & n_{1} \rho c^{2} & n_{2} \rho c^{2} & n_{3} \rho c^{2} & u_{n} & 0 & 0 & 0 \\
0 & \left(n_{1} B_{1}-B_{n}\right) & n_{2} B_{1} & n_{3} B_{1} & 0 & u_{n} & 0 & 0 \\
0 & n_{1} B_{2} & \left(n_{2} B_{2}-B_{n}\right) & n_{3} B_{2} & 0 & 0 & u_{n} & 0 \\
0 & n_{1} B_{3} & n_{2} B_{3} & \left(n_{3} B_{3}-B_{n}\right) & 0 & 0 & 0 & u_{n}
\end{array}\right]
$$

\tilde{A} can be partitioned as

where \tilde{D} and \tilde{D}^{T} can be written in dyadic form as

$$
\tilde{D}=\mathbf{n B}-B_{n} I, \quad \tilde{D}^{T}=\mathbf{B n}-B_{n} I
$$

The Jacobian matrix can now be reduced to symmetric form by a further transformation to the symmetrizing variables, which can be written in differential form as

$$
d \tilde{w}=\left[\frac{d p}{\rho c}, d u_{1}, d u_{2}, d u_{3}, \frac{d p-c^{2} d \rho}{\rho c}, \frac{d B_{1}}{\sqrt{\rho \mu}}, \frac{d B_{2}}{\sqrt{\rho \mu}}, \frac{d B_{3}}{\sqrt{\rho \mu}}\right]^{T}
$$

Here the fifth variable corresponds to entropy and all the variables are scaled so that they have the dimensions of velocity. The transformation matrices are

$$
\frac{\partial \bar{w}}{\partial \tilde{w}}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \frac{1}{\rho c} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-\frac{c}{\rho} & 0 & 0 & 0 & \frac{1}{\rho c} & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\mu \rho}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\mu \rho}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\mu \rho}}
\end{array}\right]
$$

and

$$
\frac{\partial \tilde{w}}{\partial \bar{w}}=\left[\begin{array}{cccccccc}
\frac{\rho}{c} & 0 & 0 & 0 & -\frac{\rho}{c} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
c \rho & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & \sqrt{\mu \rho} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sqrt{\mu \rho} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{\mu \rho}
\end{array}\right]
$$

Then

$$
\bar{A}=\frac{\partial \bar{w}}{\partial \tilde{w}} \tilde{A} \frac{\partial \tilde{w}}{\partial \bar{w}}
$$

where

$$
\frac{\partial \bar{w}}{\partial \tilde{w}} \tilde{A}=\left[\begin{array}{cccccccc}
0 & n_{1} c & n_{2} c & n_{3} c & \frac{u_{n}}{\rho c} & 0 & 0 & 0 \\
0 & u_{n} & 0 & 0 & \frac{n_{1}}{\rho} & \frac{n_{1} B_{1}-B_{n}}{\rho \mu} & \frac{n_{1} B_{2}}{\rho \mu} & \frac{n_{1} B_{3}}{\rho \mu} \\
0 & 0 & u_{n} & 0 & \frac{n_{2}}{\rho} & \frac{n_{2} B_{1}}{\rho \mu} & \frac{n_{2} B_{2}-B_{n}}{\rho \mu} & \frac{n_{2} B_{3}}{\rho \mu} \\
0 & 0 & 0 & u_{n} & \frac{n_{3}}{\rho} & \frac{n_{3} B_{1}}{\rho \mu} & \frac{n_{3} B_{2}}{\rho \mu} & \frac{n_{3} B_{3}-B_{n}}{\rho \mu} \\
-\frac{c}{\rho} u_{n} & 0 & 0 & 0 & \frac{u_{n}}{\rho c} & 0 & 0 & 0 \\
0 & \frac{n_{1} B_{1}-B_{n}}{\sqrt{\rho \mu}} & \frac{n_{2} B_{1}}{\sqrt{\rho \mu}} & \frac{n_{3} B_{1}}{\sqrt{\rho \mu}} & 0 & \frac{u_{n}}{\sqrt{\rho \mu}} & 0 & 0 \\
0 & \frac{n_{1} B_{2}}{\sqrt{\rho \mu}} & \frac{n_{2} B_{2}-B_{n}}{\sqrt{\rho \mu}} & \frac{n_{3} B_{2}}{\sqrt{\rho \mu}} & 0 & 0 & \frac{u_{n}}{\sqrt{\rho \mu}} & 0 \\
0 & \frac{n_{1} B_{3}}{\sqrt{\rho \mu}} & \frac{n_{2} B_{3}}{\sqrt{\rho \mu}} & \frac{n_{3} B_{3}-B_{n}}{\sqrt{\rho \mu}} & 0 & 0 & 0 & \frac{u_{n}}{\sqrt{\rho \mu}} \\
& & & & & & &
\end{array}\right]
$$

and finally

$$
\bar{A}=\left[\begin{array}{cccccccc}
u_{n} & n_{1} c & n_{2} c & n_{3} c & 0 & 0 & 0 & 0 \\
n_{1} c & u_{n} & 0 & 0 & 0 & n_{1} \bar{B}_{1}-\bar{B}_{n} & n_{1} \bar{B}_{2} & n_{1} \bar{B}_{3} \\
n_{2} c & 0 & u_{n} & 0 & 0 & n_{2} \bar{B}_{1} & n_{2} \overline{B_{2}}-\bar{B}_{n} & n_{2} \bar{B}_{3} \\
n_{3} c & 0 & 0 & u_{n} & 0 & n_{3} \bar{B}_{1} & n_{3} \bar{B}_{2} & n_{3} \bar{B}_{3}-\bar{B}_{3} \\
0 & 0 & 0 & 0 & u_{n} & 0 & 0 & 0 \\
0 & n_{1} \overline{B_{1}}-\bar{B}_{n} & n_{2} \bar{B}_{1} & n_{3} \bar{B}_{1} & 0 & u_{n} & 0 & 0 \\
0 & n_{1} \bar{B}_{2} & n_{2} \bar{B}_{2}-\bar{B}_{n} & n_{3} \bar{B}_{2} & 0 & 0 & u_{n} & 0 \\
0 & n_{1} \bar{B}_{3} & n_{2} \bar{B}_{3} & n_{3} \bar{B}_{3}-\bar{B}_{n} & 0 & 0 & 0 & u_{n}
\end{array}\right]
$$

where the magnetic field is represented by the scaled variables

$$
\bar{B}_{i}=\frac{B_{i}}{\sqrt{\rho \mu}}, \quad \bar{B}_{n}=\frac{B_{n}}{\sqrt{\rho \mu}}
$$

which have the dimensions of velocity so that all entries in \bar{A} have this dimension. It is also useful to introduce the component $\overline{\mathbf{B}}_{\perp}$ of $\overline{\mathbf{B}}$ perpendicular to \mathbf{n}.

$$
\overline{\mathbf{B}_{\perp}}=\overline{\mathbf{B}}-\bar{B}_{n} \mathbf{n}
$$

The transformation between the conservative and symmetrizing variables is

$$
\bar{M}=\frac{\partial w}{\partial \tilde{w}} \frac{\partial \tilde{w}}{\partial \bar{w}}=\left[\begin{array}{cccccccc}
\frac{\rho}{c} & 0 & 0 & 0 & -\frac{\rho}{c} & 0 & 0 & 0 \\
\frac{\rho}{c} u_{1} & \rho & 0 & 0 & -\frac{\rho}{c} u_{1} & 0 & 0 & 0 \\
\frac{\rho}{c} u_{2} & 0 & \rho & 0 & -\frac{\rho}{c} u_{2} & 0 & 0 & 0 \\
\frac{\rho}{c} u_{3} & 0 & 0 & \rho & -\frac{\rho}{c} u_{3} & 0 & 0 & 0 \\
\frac{\rho}{c} H & \rho u_{1} & \rho u_{2} & \rho u_{3} & -\frac{\rho}{c} \frac{u^{2}}{2} & \sqrt{\frac{\rho}{\mu}} B_{1} & \sqrt{\frac{\rho}{\mu}} B_{2} & \sqrt{\frac{\rho}{\mu}} B_{3} \\
0 & 0 & 0 & 0 & 0 & \sqrt{\rho \mu} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sqrt{\rho \mu} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{\rho \mu} \\
& & & & & & &
\end{array}\right]
$$

where H is the total enthalpy

$$
H=\frac{c^{2}}{\gamma-1}+\frac{u^{2}}{2}
$$

The reverse transformation is

$$
\bar{M}^{-1}=\frac{\partial \bar{w}}{\partial \tilde{w}} \frac{\partial \tilde{w}}{\partial w}=\left[\begin{array}{cccccccc}
\bar{\gamma} \frac{u^{2}}{c} & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} & -\bar{\gamma} \frac{B_{1}}{\mu} & -\bar{\gamma} \frac{B_{2}}{\mu} & -\bar{\gamma} \frac{B_{3}}{\mu} \\
-\frac{u_{1}}{\rho} & \frac{1}{\rho} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{2}}{\rho} & 0 & \frac{1}{\rho} & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{3}}{\rho} & 0 & 0 & \frac{1}{\rho} & 0 & 0 & 0 & 0 \\
\bar{\gamma}\left(u^{2}-H\right) & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} & -\bar{\gamma} \frac{B_{1}}{\mu} & -\bar{\gamma} \frac{B_{2}}{\mu} & -\bar{\gamma} \frac{B_{3}}{\mu} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\rho \mu}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\rho \mu}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{\rho \mu}}
\end{array}\right]
$$

where $\bar{\gamma}=\frac{\gamma-1}{\rho c}$.
If the symmetrizing variables are multiplied by a scale factor α, then all entries of \bar{M} are divided by α and all entries of \bar{M}^{-1} are multiplied by α. With $\alpha=\frac{\rho}{c}$ the symmetrizing variables have the dimension of density,
$d \bar{w}=\left[\begin{array}{lllll}\frac{d p}{c^{2}}\end{array}, \frac{\rho}{c} d u_{1}, \quad \frac{\rho}{c} d u_{2}, \quad \frac{\rho}{c} d u_{3}, \quad \frac{d p}{c^{2}}-d \rho, \quad \sqrt{\frac{\rho}{\mu}} \frac{d \bar{B}_{1}}{c}, \quad \sqrt{\frac{\rho}{\mu}} \frac{d \bar{B}_{2}}{c}, \quad \sqrt{\frac{\rho}{\mu}} \frac{d \bar{B}_{3}}{c}\right]^{T}$

Correspondingly

$$
\bar{M}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
u_{1} & c & 0 & 0 & -u_{1} & 0 & 0 & 0 \\
u_{2} & 0 & c & 0 & -u_{2} & 0 & 0 & 0 \\
u_{3} & 0 & 0 & c & -u_{3} & 0 & 0 & 0 \\
H & c u_{1} & c u_{2} & c u_{3} & -\frac{u^{2}}{2} & \frac{c \bar{B}_{1}}{\sqrt{\rho \mu}} & \frac{c \bar{B}_{2}}{\sqrt{\rho \mu}} & \frac{c \bar{B}_{3}}{\sqrt{\rho \mu}} \\
0 & 0 & 0 & 0 & 0 & c \sqrt{\frac{\mu}{\rho}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & c \sqrt{\frac{\mu}{\rho}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & c \sqrt{\frac{\mu}{\rho}}
\end{array}\right]
$$

Also,

$$
\bar{M}^{-1}=\left[\begin{array}{cccccccc}
\bar{\gamma} \frac{u^{2}}{2} & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} & -\bar{\gamma} \frac{\bar{B}_{1}}{\mu} & -\bar{\gamma} \frac{\bar{B}_{2}}{\mu} & -\bar{\gamma} \frac{\bar{B}_{3}}{\mu} \\
-\frac{u_{1}}{c} & \frac{1}{c} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{2}}{c} & 0 & \frac{1}{c} & 0 & 0 & 0 & 0 & 0 \\
-\frac{u_{3}}{c} & 0 & 0 & \frac{1}{c} & 0 & 0 & 0 & 0 \\
\bar{\gamma}\left(u^{2}-H\right) & -\bar{\gamma} u_{1} & -\bar{\gamma} u_{2} & -\bar{\gamma} u_{3} & \bar{\gamma} & -\bar{\gamma} \frac{\bar{B}_{1}}{\mu} & -\bar{\gamma} \frac{\bar{B}_{2}}{\mu} & -\bar{\gamma} \frac{\bar{B}_{3}}{\mu} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{c} \sqrt{\frac{\rho}{\mu}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{c} \sqrt{\frac{\rho}{\mu}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{c} \sqrt{\frac{\rho}{\mu}}
\end{array}\right]
$$

where $\bar{\gamma}=\frac{\gamma-1}{c^{2}}$. With this scaling all entries in the first 5×5 partition of \bar{M} or its inverse depend only on the speeds u_{i} and c.

It is convenient to write the symmetrized Jacobian \bar{A} in partitioned form as

where

$$
\bar{C}=\left[\begin{array}{ccccc}
u_{n} & n_{1} c & n_{2} c & n_{3} c & 0 \\
n_{1} c & u_{n} & 0 & 0 & 0 \\
n_{2} c & 0 & u_{n} & 0 & 0 \\
n_{3} c & 0 & 0 & u_{n} & 0 \\
0 & 0 & 0 & 0 & u_{n}
\end{array}\right]
$$

and \bar{D} can be expressed in dyadic form as

$$
\bar{D}=\mathbf{n} \overline{\mathbf{B}}-\bar{B}_{n} I
$$

The eigenvalues of \bar{A} are $u_{n}, u_{n}, u_{n}+\bar{B}_{n}, u_{n}-\bar{B}_{n}, u_{n}+c_{f}, u_{n}-c_{f}, u_{n}+$ $c_{s}, u_{n}-c_{s}$. The first pair correspond to advection. The second pair represent Alfven waves. The third and four pairs represent the fast and slow magneto acoustic waves where the acoustic speeds c_{f} and c_{s} satisfy

$$
\begin{aligned}
& c_{f}^{2}=\frac{1}{2}\left\{\left(c^{2}+\bar{B}^{2}\right)+\sqrt{\left(c^{2}+\bar{B}^{2}\right)^{2}-4 c^{2}{\overline{B_{n}}}^{2}}\right\} \\
& c_{s}^{2}=\frac{1}{2}\left\{\left(c^{2}+\bar{B}^{2}\right)-\sqrt{\left(c^{2}+\bar{B}^{2}\right)^{2}-4 c^{2}{\overline{B_{n}}}^{2}}\right\}
\end{aligned}
$$

Both c_{f}^{2} and c_{s}^{2} are roots of the equation

$$
\alpha^{4}-\alpha^{2}\left(c^{2}+\bar{B}^{2}\right)+c^{2}{\overline{B_{n}}}^{2}=0
$$

The eigenvectors of \bar{A} corresponding to distinct eigenvalues are orthogonal because \bar{A} is symmetric. It is easily checked that

$$
r_{1}=[0,0,0,0,1,0,0,0]
$$

and

$$
r_{2}=\left[0,0,0,0,0, n_{1}, n_{2}, n_{3}\right]
$$

are eigenvectors corresponding to the advection speed u_{n}. Moreover r_{1} and r_{2} are orthogonal to each other and of unit length. Thus it is possible to find a complete set of orthonormal eigenvectors as long as the other wave speeds are distinct.

Let \mathbf{l} be a vector orthogonal to both \mathbf{n} and $\overline{\mathbf{B}}$, and thus orthogonal to the plane containing \mathbf{n} and $\overline{\mathbf{B}}$ if they are not parallel. Then

$$
\bar{D} \mathbf{l}=\bar{D}^{T} \mathbf{l}=\overline{B_{n}} \mathbf{l}
$$

since

$$
\mathbf{n} \overline{\mathbf{B}} \cdot \mathbf{l}=\mathbf{0}, \quad \overline{\mathbf{B}} \mathbf{n} \cdot \mathbf{l}=\mathbf{0}, \quad \mathbf{n} \cdot \mathbf{l}=\mathbf{0}
$$

It can now be easily verified that

$$
r_{3}=\left[0, l_{1}, l_{2}, l_{3}, 0,-l_{1},-l_{2},-l_{3}\right]^{T}
$$

and

$$
r_{4}=\left[0, l_{1}, l_{2}, l_{3}, 0, l_{1}, l_{2}, l_{3}\right]^{T}
$$

are eigenvectors satisfying

$$
\bar{A} r_{3}=\left(u_{n}+\bar{B}_{n}\right) r_{3}
$$

and

$$
\bar{A} r_{4}=\left(u_{n}-\bar{B}_{n}\right) r_{4}
$$

They are of unit length if $l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=1 / 2$. If \mathbf{n} and $\overline{\mathbf{B}}$ are not parallel one can take

$$
\mathbf{l}=(\mathbf{n} \times \overline{\mathbf{B}}) / \alpha
$$

where the scale factor α satisfies

$$
\alpha^{2}=|\mathbf{n} \times \overline{\mathbf{B}}|^{2}=\bar{B}^{2}-\bar{B}_{n}^{2}
$$

The eigenvectors corresponding to the magneto-acoustic speeds can be expressed in terms of the vectors

$$
\begin{aligned}
& \mathbf{l}_{\mathbf{f}}=c_{f}\left(\mathbf{n}-\frac{\bar{B}_{n}}{c_{f}^{2}-{\overline{B_{n}}}^{2}} \overline{\mathbf{B}}_{\perp}\right), \mathbf{m}_{\mathbf{f}}=\left(\frac{c_{f}^{2}}{c_{f}^{2}-{\overline{B_{n}}}^{2}} \bar{B}_{\perp}\right) \\
& \mathbf{l}_{\mathbf{s}}=c_{s}\left(\mathbf{n}-\frac{\left.{\overline{B_{n}}}_{c_{s}^{2}-{\overline{B_{n}}}^{2}}^{\mathbf{B}_{\perp}}\right), \mathbf{m}_{\mathbf{f}}=\left(\frac{c_{s}^{2}}{c_{s}^{2}-{\overline{B_{n}}}^{2}} \bar{B}_{\perp}\right)}{} .\left\{\begin{array}{l}
\end{array}\right)\right.
\end{aligned}
$$

Then it may be verified that

$$
\begin{aligned}
& \bar{A} r_{5}=\left(u_{n}+c_{f}\right) r_{5}, \bar{A} r_{6}=\left(u_{n}-c_{f}\right) r_{6} \\
& \bar{A} r_{7}=\left(u_{n}+c_{s}\right) r_{7}, \bar{A} r_{8}=\left(u_{n}-c_{s}\right) r_{8}
\end{aligned}
$$

where

$$
\begin{align*}
r_{5} & =\frac{1}{\alpha_{f}}\left[c, l_{f_{1}}, l_{f_{2}}, l_{f_{3}}, 0, m_{f_{1}}, m_{f_{2}}, m_{f_{3}}\right]^{T} \tag{11}\\
r_{6} & =\frac{1}{\alpha_{f}}\left[-c, l_{f_{1}}, l_{f_{2}}, l_{f_{3}}, 0,-m_{f_{1}},-m_{f_{2}},-m_{f_{3}}\right]^{T} \\
r_{7} & =\frac{1}{\alpha_{s}}\left[c, l_{s_{1}}, l_{s_{2}}, l_{s_{3}}, 0, m_{s_{1}}, m_{s_{2}}, m_{s_{3}}\right]^{T} \\
r_{8} & =\frac{1}{\alpha_{s}}\left[-c, l_{s_{1}}, l_{s_{2}}, l_{s_{3}}, 0,-m_{s_{1}},-m_{s_{2}},-m_{s_{3}}\right]^{T}
\end{align*}
$$

and the scale factors α_{f} and α_{s} may be chosen to scale the eigenvectors to unit length.

$$
\alpha_{f}^{2}=l_{f}^{2}+m_{f}^{2}+c^{2}, \alpha_{s}^{2}=l_{s}^{2}+m_{s}^{2}+c^{2}
$$

The verification of these eigenvectors requires some algebraic manipulation. The first entry of $\bar{A} r_{5}$ is

$$
q_{n} c+c \mathbf{n} \cdot \mathbf{n} c_{f}=\left(q_{n}+c_{f}\right) c
$$

because $\mathbf{n} \cdot \mathbf{B}_{\perp}=0$. For the same reason the last three entries of r_{5} comprising the vector $\mathbf{m}_{\mathbf{f}}$ yield

$$
\left(\overline{\mathbf{B}} \mathbf{n} \cdot \mathbf{n}-\bar{B}_{n} \mathbf{n}\right) c_{f}+\bar{B}_{n}^{2} \frac{c_{f}}{c_{f}^{2}-\bar{B}_{n}^{2}} \overline{\mathbf{B}}_{\perp}+q_{n} \frac{c_{f}^{2}}{c_{f}^{2}-\bar{B}_{n}^{2}} \overline{\mathbf{B}}_{\perp}=\left(q_{n}+c_{f}\right) \mathbf{m}_{\mathbf{f}}
$$

The second to the fifth entries of r_{5} comprising the vector $\mathbf{l}_{\mathbf{f}}$ yield

$$
\begin{gather*}
c^{2} \mathbf{n}+q_{n} c_{f} \mathbf{n}-q_{n} \bar{B}_{n} \overline{\mathbf{B}}_{\perp} \frac{c_{f}}{c_{f}^{2}-\bar{B}_{n}^{2}}+\left(\mathbf{n} \overline{\mathbf{B}} \cdot \overline{\mathbf{B}}_{\perp}-\bar{B}_{n} \overline{\mathbf{B}}_{\perp}\right) \frac{c_{f}^{2}}{c_{f}^{2}-\bar{B}_{n}^{2}} \\
=\left(q_{n}+c_{f}\right)\left(c_{f} \mathbf{n}-\bar{B}_{n} \overline{\mathbf{B}}_{\perp} \frac{c_{f}}{c_{f}^{2}-\bar{B}_{n}^{2}}\right)+\bar{B}_{n} \mathbf{B}_{\perp} \frac{c_{f}^{2}}{c_{f}^{2}-\bar{B}_{n}^{2}}+\left(c^{2}-c_{f}^{2}\right) \mathbf{n}+ \tag{12}\\
\mathbf{n} \overline{\mathbf{B}} \cdot\left(\overline{\mathbf{B}}-\bar{B}_{n} \mathbf{n}\right) \frac{c_{f}^{2}}{c_{f}^{2}-\bar{B}_{n}^{2}}-\bar{B}_{n} \overline{\mathbf{B}}_{\perp} \frac{c_{f}^{2}}{c_{f}^{2}-\bar{B}_{n}^{2}} \\
\left.=\left(q_{n}+c_{f}\right) \mathbf{l}_{\mathbf{f}}+\left\{\left(c^{2}-c_{f}^{2}\right)\left(c_{f}^{2}-\bar{B}_{n}^{2}\right)+\bar{B}^{2}-\bar{B}_{n}^{2}\right) c_{f}^{2}\right\} \frac{\mathbf{n}}{c_{f}^{2}-\bar{B}_{n}^{2}} \tag{13}\\
=\left(q_{n}+c_{f}\right) \mathbf{l}_{\mathbf{f}}-\left\{c_{f}^{4}-\left(c^{2}+\bar{B}^{2}\right) c_{f}^{2}+c^{2} \bar{B}_{n}^{2}\right\} \frac{\mathbf{n}}{c_{f}^{2}-\bar{B}_{n}^{2}} \tag{14}
\end{gather*}
$$

where the last term vanishes because c_{f}^{2} is a root of the bracketed quadratic expression. The verification of r_{6}, r_{7} and r_{8} is similar.

Now the eigenvector matrix R with the eigenvectors r_{k} as its columns satisfies

$$
R^{T} R=R R^{T}=I
$$

and

$$
R^{T} \bar{A} R=\Lambda, \quad \bar{A}=R \Lambda R^{T}
$$

where the diagonal matrix Λ has the eigenvalues as its elements.

$$
\Lambda=\operatorname{diag}\left\{u_{n}, u_{n}, u_{n}+\bar{B}_{n}, u_{n}-\bar{B}_{n}, u_{n}+c_{f}, u_{n}-c_{f}, u_{n}+c_{s}, u_{n}-c_{s}\right\}
$$

Finally A can be expressed as

$$
A=\bar{M} \bar{A} \bar{M}^{-1}=\bar{M} R \Lambda R^{T} \bar{M}^{-1}
$$

References

1. Kenneth G. Powell, An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More than One Dimension), NASA CR194902, ICASE Report No. 94-24, April 1994.
2. Kenneth G. Powell, P.L. Roe, R.S. Myong, T. Gombosi and D. De Zeenw, An Upwind Scheme for Magnetohydrodynamics, AIAA-95-1704-CP.
3. P.L. Roe and D.S. Balsara, Notes on the EigenSystem of Magnetohydrodynamics, SIAM Journal of Applied Mathematics, Vol. 56, No. 1., pp. 57-67, Feb. 1996.
