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Let p,u;, p, E, B; and p denote the density, velocity components, pres-
sure, energy, magnetic field components and permeability. Using the con-
vention that a repeated index ¢ denotes summation over 7 = 1 to 3, the eight
wave MHD equations proposed by Powell [1] and also studied by Roe [2,3]

can be written as
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Here Z and P are the total energy and pressure allowing for the magnetic
field.
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while for a perfect gas,
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p=0-DpE-7), F=2" 3)

where v is the ratio of specific heats and ¢ is the speed of sound.

The source terms on the right are proportional to Div B and should be
zero in a true solution. In terms of the conservative variables w, the MHD
equations can be written as
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In smooth regions they can be expressed in quasi-linear form as
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The source terms can be written as
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Thus the quasi-linear form is
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where the Jacobian matrices are
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Under a transformation to the primitive variables
W = [p, u1,u2,us, p, By, Ba, Bs|"

the equations become
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The primitive equations in full are
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where ¥

pc?, the Jacobian matrices can be written as
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In a finite volume scheme the flux across a face with normal vector n
and area S is F' = n;F;S. The corresponding Jacobian matrices for the
conservative and primitive forms area

where

A=M"1T1AM, A=MAM™
Define the normal components of u and B as
u, =u-n, B,=B-n

and the magnitudes of u and B as
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The Jacobian matrix for the primitive variables can now be written as

A can be partitioned as
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where D and DT can be written in dyadic form as

D=nB-B,I, D" =Bn-B,I
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The Jacobian matrix can now be reduced to symmetric form by a fur-
ther transformation to the symmetrizing variables, which can be written in
differential form as
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Here the fifth variable corresponds to entropy and all the variables are scaled
so that they have the dimensions of velocity. The transformation matrices
are
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where the magnetic field is represented by the scaled variables

which have the dimensions of velocity so that all entries in A have this di-
mension. It is also useful to introduce the component B | of B perpendicular
to n.
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The transformation between the conservative and symmetrizing variables
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where H is the total enthalpy
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where 5 = %.
If the symmetrizing variables are multiplied by a scale factor «, then all
entries of M are divided by a and all entries of M ! are multiplied by c.

With a = £ the symmetrizing variables have the dimension of density,
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Correspondingly
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where 7 = 1=. With this scaling all entries in the first 5 x 5 partition of
M or its inverse depend only on the speeds u; and c.
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It is convenient to write the symmetrized Jacobian A in partitioned form

as
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and D can be expressed in dyadic form as
D =nB - B,I

The eigenvalues of A are wuy,, Uy, Un + By, Uy — Bp, tpn + CfyUp — CfyUp +
Cs, U —Cs. The first pair correspond to advection. The second pair represent
Alfven waves. The third and four pairs represent the fast and slow magneto
acoustic waves where the acoustic speeds ¢y and ¢, satisfy
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Both c} and ¢2 are roots of the equation
ot —a?(? + B?) + ?B,> =0

The eigenvectors of A corresponding to distinct eigenvalues are orthog-
onal because A is symmetric. It is easily checked that

r1 = [0,0,0,0,1,0,0,0]
and
ro = [0,0,0,0,0,nl,ng,ng]

are eigenvectors corresponding to the advection speed u,,. Moreover r; and
ro are orthogonal to each other and of unit length. Thus it is possible to
find a complete set of orthonormal eigenvectors as long as the other wave
speeds are distinct.

Let 1 be a vector orthogonal to both n and B, and thus orthogonal to
the plane containing n and B if they are not parallel. Then
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It can now be easily verified that
r3 =[0,11,12,13,0, 11, —lp, —13]"

and
r4 = [07 llv l27 l37 07 ll? l27 l3]T

are eigenvectors satisfying
14_17“3 = (un + B_n)T‘g

and
Ary = (up, — B_n)m

They are of unit length if I3 + 13 + 13 = 1/2.
If n and B are not parallel one can take

l=(nxB)/a
where the scale factor « satisfies
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The eigenvectors corresponding to the magneto-acoustic speeds can be ex-
pressed in terms of the vectors
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and the scale factors ay and oy may be chosen to scale the eigenvectors to
unit length.

af =l +mi+ctal=0E+mi+c

The verification of these eigenvectors requires some algebraic manipula-
tion. The first entry of Ars is

qnc+cn-ncy = (qu + ¢f)c

because n - B| = 0. For the same reason the last three entries of r5 com-
prising the vector mg yield
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where the last term vanishes because s

The second to the fifth entries of r5 comprising the vector l¢ yield
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2 is a root of the bracketed quadratic

expression. The verification of rg, 7 and rg is similar.

Now the eigenvector matrix R with the eigenvectors rj as its columns

satisfies

RTR=RRT =1

and

R"AR=A, A=RAR"

where the diagonal matrix A has the eigenvalues as its elements.

A = diag {tn, Un, Un + Bpytun — By, ty + Cpy Uy — Cfy Uy + Csy Un — Cs }

Finally A can be expressed as

A= MAM™' = MRART M~
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