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Consider the incompressible Navier–Stokes equations

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
+

∂p

∂xi
= µ

∂2ui

∂xj∂xj
(1)

where
∂ui

∂xi
= 0 (2)

In large eddy simulation (LES) the solution is filtered to remove the small scales. Typically one sets

ūi(x) =
∫

G(x− x′)u(x′)dx′

where the kernel G is concentrated in a band defined by the filter width. Then the filtered equations contain
the extra virtual stress

τij = uiuj − ūiūj (3)

because the filtered value of a product is not equal to the product of the filtered values. This stress has to be
modeled

A filter which completely cuts off the small scales or the high frequency components is not invertible. The
use, on the other hand, of an invertible filter would allow equation (1) to be directly expressed in terms of the
filtered quantities. Thus one can identify desirable properties of a filter as

1. attenuation of small scales

2. commutativity with the differential operator ∂
∂xi

3. invertibility

Suppose the filter has the form
ūi = Pui (4)

which can be inverted as
Qūi = ui (5)

where Q = P−1. Moreover Q should be coercive, so that

||Qu|| > c||u|| (6)

for some positive constant c. Note that if Q commutes with ∂
∂xi

then so does Q−1, since for any quantity f
which is sufficiently differentiable

∂

∂xi
(Q−1f) = Q−1Q

∂

∂xi
(Q−1f)

= Q−1 ∂

∂xi
(QQ−1f)

= Q−1 ∂

∂xi
f
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Also since Q commutes with ∂
∂xi

,
∂ū

∂xi
= 0 (7)

As an example P can be the inverse Helmholtz operator, so that one can write

Qūi =
(

1− α2 ∂2

∂xk∂xk

)
ūi = ui (8)

where α is a length scale proportional to the largest scales to be retained. One may also introduce a filtered
pressure p, satisfying the equation

Qp̄ =
(

1− α2 ∂2

∂xk∂xk

)
p̄ = p (9)

Now one can substitute equation (8) and (9) for ui and p in equation (1) to get

ρ
∂

∂t

(
1− α2 ∂2

∂xk∂xk

)
ūi + ρ

(
1− α2 ∂2

∂xk∂xk

)
ūj

∂

∂xj

(
1− α2 ∂2

∂xl∂xl

)
ūi +

∂

∂xi

(
1− α2 ∂2

∂xk∂xk

)
p̄

= µ
∂2

∂xj∂xj

(
1− α2 ∂2

∂xk∂xk

)
ūi

Because the order of the differentiations can be interchanged and the Helmholtz operator satisfies condition (6),
it can be removed. The product term can be written as

ρ
∂

∂xj

{(
1− α2 ∂2

∂xk∂xk

)
ūi

(
1− α2 ∂2

∂xl∂xl

)
ūj

}

= ρ
∂

∂xj

{
ūiūj − α2ūi

∂2ūj

∂xk∂xk
− α2ūj

∂2ūi

∂xk∂xk
+ α4 ∂2ūi

∂xk∂xk

∂2ūj

∂xl∂xl

}

= ρ
∂

∂xj

{
ūiūj − α2 ∂2

∂xk∂xk
(ūiūj) + 2α2 ∂ūi

∂xk

∂ūj

∂xk
+ α4 ∂2ūi

∂xk∂xk

∂2ūj

∂xl∂xl

}

= ρQ
∂

∂xj

{
ūiūj + α2Q−1

(
2

∂ūi

∂xk

∂ūj

∂xk
+ α2 ∂2ūi

∂xk∂xk

∂2ūj

∂xl∂xl

)}

According to condition (6), if Qf = 0 for any sufficiently differentiable quantity f , then f = 0. Thus the filtered
equation finally reduces to

ρ
∂ūi

∂t
+ ρ

∂

∂xj
(ūiūj) +

∂p̄

∂xi
= µ

∂2ūi

∂xk∂xk
− ρ

∂

∂xj
τij (10)

with the virtual stress

τij = α2Q−1

(
2

∂ūi

∂xk

∂ūj

∂xk
+ α2 ∂2ūi

∂xk∂xk

∂2ūj

∂xl∂xl

)
(11)
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The virtual stress may be calculated by solving
(

1− α2 ∂2

∂xk∂xk

)
τij = α2

(
2

∂ūi

∂xk

∂ūj

∂xk
+ α2 ∂2ūi

∂xk∂xk

∂2ūj

∂xl∂xl

)
(12)

Taking the divergence of equation (10), it also follows that p̄ satisfies the Poisson equation

∂2p̄

∂xi∂xi
+ ρ

∂

∂xi

∂

∂xj
(ūiūj) + ρ

∂2

∂xi∂xj
τij = 0 (13)

With appropriate boundary conditions, equations (7) and (10)–(13) are closed, if possibly intractable. In a
discrete solution scales smaller than the mesh width would not be resolved, amounting to an implicit cut off.
There is the possibility of introducing an explicit cut off in τij . Also one could use equation (8) to restore an
estimate of the unfiltered velocity.

2



In order to avoid solving the Helmholtz equation (12), the inverse Helmholtz operator could be expanded
formally as (

1− α2∆
)−1

= 1 + α2∆ + α4∆2 + . . .

where ∆ denotes the Laplacian ∂2

∂xk∂xk
. Now retaining terms up to the fourth power of α, the approximate

virtual stress tensor assumes the form

τij = 2α2 ∂ūi

∂xk

∂ūj

∂xk
+ α4

[
2∆

(
∂ūi

∂xk

∂ūj

∂xk

)
+ ∆ūi∆ūj

]
(14)

One may regard the forms (11) or (14) as prototypes for subgrid scale (SGS) models.
The inverse Helmholtz operator cuts off the smaller scales quite gradually. One could design filters with a

sharper cut off by shaping their frequency response. Denote the Fourier transform of f as

f̂ = Ff

where (in one space dimension)

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx

f(x) =
1√
2π

∫ ∞

−∞
f̂(k)eikxdk

Then the general form of an invertible filter is

FP̂f = S(k)f̂(k)

FQ̂f =
1

S(k)
f̂(k)

where S(k) should decrease rapidly beyond a cut off wave number inversely proportional to a length scale α.
Since

∂̂f

∂x
= ikf̂

it can easily be verified that filters of this form commute with ∂
∂x . In the case of a general filter with inverse Q,

the virtual stress follows from the relation

Quiuj = uiuj = QūiQūj

Then

τij = uiuj − ūiūj

= Q−1 (QūiQūj −Q(ūiūj))

This formula provides the form for a family of subgrid-scale models.
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