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ABSTRACT 
 
The advent of dual frequency Satellite Based 
Augmentation Systems (SBAS) will allow the aviation 
community to address some of the shortcomings of the 
current SBAS Minimum Operational Performance 
Standards (MOPS), in particular of the Vertical Protection 
Level (VPL), and also to adapt it to threats for a dual 
frequency user.  First, satellite faults will become the 
dominant source of error – because the ionospheric delay 
threat is canceled.  Second, it was discovered that there 
are nominal biases that cannot be corrected by the ground 
and that cause the current VPL to be inflated.  Finally, 
actual data collected in support of system performance 
has shown that the statistics exhibit non-gaussian 
behavior.  A Vertical Protection Level equation that 
addresses these points was proposed in [1].  This equation 
accounts explicitly for possible nominal biases and for the 
fact that the position error bound is dominated by one 
possible fault at a given time.  The equation was 
evaluated using a Service Volume analysis tool and it was 
shown that it could provide significant benefits over the 
current equation.  These simulations computed user 
coefficients (the coefficients that project the pseudorange 
onto the user position) based on a Least Squares (LS) 
approach.  The LS approach is not optimal for the 
proposed VPL equation. 
 
In this paper we show that choosing optimally the 
coefficients that project the pseudoranges onto the 
position domain could significantly increase the 
performance of an SBAS based on the equation described 
in [1].  To this purpose, we will describe an algorithm that 
minimizes the Vertical Protection Level.  Then, we will 
evaluate the availability benefits that can be obtained 
using the optimal algorithm using a Service Volume 
Analysis tool. 
 
 
INTRODUCTION 
 
The addition of a new civil signal in L5 [2], [3], [4] will 
greatly expand the capabilities of Satellite Based 
Augmentation Systems (SBAS), because the largest 
source of uncertainty, the ionospheric delay, will be 
removed by the receivers.  Also, there will be an 
opportunity to adopt a different approach to providing 
corrections in L5.  A new approach should integrate both 

the new dual frequency situation and the lessons learned 
from single frequency SBAS [1].  Taking this into 
account, a new Vertical Protection Level (VPL) equation 
was proposed and evaluated in [1].  This paper is a 
continuation of [1], where a more detailed justification of 
the proposed VPL equation is given.  The goal here is to 
evaluate the potential of this equation, since, as was 
suggested in the conclusion of [1], it is possible to lower 
the VPL by choosing the set of coefficients that project 
the ranges onto the position to minimize the VPL. 
 
In the first part of the paper, we will recall the expression 
of the VPL equation.  Then, we will show that is possible 
to find the minimum of the expression by casting the 
problem under a canonical form, which can be solved 
efficiently.  Once the methodology is explained, we will 
evaluate the improvement with respect to the baseline.  
Finally, we will discuss the effects that the optimization 
has on the position accuracy, and how accuracy 
constraints can be enforced within the optimization 
program. 
 
 
PROTECTION LEVEL EQUATION 
 
The VPL equation proposed in [1] covers a nominal fault-
free situation, and a separate faulted condition.  This 
approach is similar to that taken by the Ground-Based 
Augmentation System (GBAS) [5] and recently proposed 
Advanced Receiver Autonomous Integrity Monitoring 
(ARAIM) equations [6] [7].  The un-faulted term takes 
the form of: 
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The VPL under the faulted condition is similar except that 
it adds a faulted bias term 
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Because the occurrence of a fault is unlikely, the value of 

 can be below 5.33 and we expect it to take a value 
between 3 and 4 depending on the assigned probability.  
The term B

,v mdK

B

)

i is an upper bound on the magnitude of the 
fault on the i  pseudorange.  The user VPL is the 
maximum of the two terms: 

th
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For the definition of 2

,ff iσ , BBi, and bi, a detailed discussion 
is given in [1].  A summary is provided here.  We define: 
 

( )2 2 2

, , , , , , ,

2
2.6ff i ff flt i ff tropo i ff air iσ σ σ σ= + + ×   (4) 

 
σff, flt is set to 30% of σUDRE, [8], the tropospheric term is 
set to 5 cm (times the mapping function specified in [8]), 
and the airborne term was based on measurements 
reported in [9].   The nominal biases were set to 0.5 m and 
the faulted bias term was set to 5.33 times σflt.  This term 
is a function of δUDRE and σUDRE.  The δUDRE  term is 
used to describe the uncertainty associated with satellite 
clock/ephemeris faults and is described elsewhere [8], 
[10]. 
 
 
OPTIMIZATION 
 
In [1], the projection matrix S is given by a least squares 
solution where the weighting matrix W is determined 
using the overbounding standard deviations.  Here, 
instead of choosing a set of coefficients resulting from 
Least Squares, we attempt to find the set that minimizes 
the VPL.  This problem can be expressed as follows. 
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To lighten the notations we define: 
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To remove the absolute values, we make the following 
standard change of variable: 
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The problem is then equivalent to: 
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Under this form, we can see that we are optimizing a 
linear expression over the intersection of a simplex and a 
second order cone.  This type of problems is known as a 
Second Order Cone program (SOCP).  SOCPs are a class 
of convex problems that have been extensively studied in 
convex optimization theory [11] and for which there exist 
very efficient solvers (although not as widespread as 
Linear Program solvers) that use interior point methods.  
These iterative solvers have the very important following 
properties: 
- they converge in very few steps to the global 
optimal (typically less than 20) 
- they provide an upper bound on the distance to 
optimality  
- they converge in polynomial time to a given 
accuracy 
 
This approach was already used in a simpler setting [12].  
As in [12], we used a MATLAB based toolbox to solve 
the Second Order Cone Programs.  We chose to use the 
free MATLAB package SeDuMi [13], interfaced with 
YALMIP [14].  Once installed, these tools are almost 
transparent for a MATLAB user as there are only three 



new commands to learn.  These tools have been typically 
developed for large numbers of variables (typically 
hundreds).  Here, we only have tens of variables.  The 
solver reached the optimal solution with 10 digits 
precision in about 10 iterations (which took less than a 
second). 
 
 
AVAILABILITY ANALYSIS 
 
The goal of this section is to evaluate the benefit that can 
be obtained by using the optimal VPL instead of a sub-
optimal one.  We used MAAST to determine the satellite 
geometries and expected clock and ephemeris bounds, σflt, 
given the WAAS network.  MAAST also calculated two 
VPLs on a grid of users around North America.  Both 
VPLs use Equations (1),(2), and (3).  In the first one, the 
coefficients S are determined using least squares: 
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The weighting matrix W is based on the standard 
deviation of the overbounding distribution, as defined in 
[1].  In the second one, the optimal VPL is computed 
using the method presented above.   
 
The simulations conditions are similar to the ones in [1], 
that is, a 24 satellite optimal constellation is assumed, 
users are spaced every 5 degrees in latitude and longitude, 
and, for each user the VPL is computed every 300 s for 24 
hours. 

 
Figure 1.  The 99% maximum VPL as a function of user 
location for the sub-optimal coefficients (Equation (10) ) 
 
In Figures 1 and 2, the colored contours indicate a value 
that is larger than or equal to 99% of the VPLs that would 
be obtained at that location during the course of the day.  
Figure 1 shows the VPLs that can be obtained with the 

least squares coefficients (which were already presented 
in [1]), and Figure 2 shows the optimal VPLs.  As can be 
seen, a significant improvement can be achieved with the 
optimal VPL.  For example, the areas of CONUS that did 
not have a 20 m VPL are now fully covered with VPLs 
below 20 m. 
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Figure 2.  The 99% maximum VPL as a function of user 
location for the optimal coefficients 
 
Figure 3 shows a histogram of the ratio of the optimal 
VPL to the sub-optimal VPL.  The VPL is reduced up to 
30% and 15 % in average.   
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Figure 3.  Histogram of the ratio between the optimal 
VPL and the sub-optimal VPL 
 
 
ACCURACY CONSTRAINTS 
 
As opposed to the Least Squares position fix, the position 
fix resulting in the minimum VPL will not necessarily 



result in the solution with the best accuracy.  Following 
[1], the accuracy is defined as the standard deviation of 
the position using the characteristics of the core of the 
error distributions.  Here, it means using a zero mean 
Gaussian with a standard deviation of 2

,ff iσ  for the 
pseudorange errors: 
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Figure 4 shows a histogram of the ratio of the accuracy 
using the optimal coefficients to the accuracy using the 
sub-optimal coefficients.  As can be seen, in most of the 
cases the accuracy is not degraded significantly, but there 
are some cases where the standard deviation of the error is 
70% more with the optimal VPL coefficients.   
 

 
Figure 4.  Histogram of the ratio between the accuracy 
resulting from the optimal VPL and the accuracy using 
the sub-optimal VPL 
 
For LPV 200 [15], in addition to the 35 m Vertical Alert 
Limit, there is a requirement of 4 m on the 95% accuracy 
and a 10 m requirement on the 10-7 fault free VPL, which 
can be interpreted as a 3.76 m bound on the 95% accuracy 
[1].  For the simulations above, all user geometries with a 
VPL below 35 m had a 95% accuracy below 3.6 m, which 
means that although the accuracy was degraded, it was 
still sufficient for LPV-200. 
 
It is also possible to include the accuracy requirement in 
the SOCP program, so that the VPL is minimized given a 
certain accuracy requirement.  This can be done by 
including the additional constraint: 
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where  is the required accuracy.  The SOCP is 
then written: 

2
,acc reqσ

 

[ ]

[ ]
,

,

minimize      
subject to     0 0 1 0
                    0
                    1

                   

                   

                  

              

T T

T
v md

T
v PA

T T

VPL
G A

t B B

K b t VPL

K b VPL

ACA

λ

λ
λ

μ λ

μ λ

λ λ μ

=

≥

≥

+ + ≤

+ ≤

≤
2

,   

                   

T T
acc reqACAλ λ σ≤

 (13) 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ratio between new accuracy and old accuracy

 
By slightly changing the problem, one could optimize for 
the accuracy while maintaining the VPL within a given 
requirement. 
 
 
CONCLUSION 
 
This paper proposes a methodology to maximize the 
benefits of the Protection Level equation that was 
proposed in [1] for dual frequency SBAS.  It is shown that 
it is possible to minimize the Protection Level by 
optimally choosing the coefficients that project the 
measurements onto the position.  These coefficients are 
computed optimally by casting the problem as a Second 
Order Cone Program, a type of convex problem for which 
efficient and guaranteed to converge solutions exist.  It is 
demonstrated that additional reductions in Protection 
Level of up to 30% can be obtained with this method.  We 
also show that it is possible to either include an accuracy 
constraint or minimize the accuracy while maintaining the 
Protection Level below a given threshold.  
 
If the equation is adopted in future standards, it will be 
worth examining the feasibility of this method in an 
airborne receiver, or developing sub-optimal techniques 
that are easier to implement. 
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