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ABSTRACT  
 
Location-based security service provides authorization of 
persons or facilities based on their distinctive location 
information.  It applies the field of position navigation 
and time (PNT) to the provision of security.  Location 
parameters from radio navigation signals are mapped into 
a location verification tag or geotag to block or allow 
certain actions or access. 
 
Loran and Wi-Fi are chosen as case studies because of 
their good properties that are beneficial to location-based 
security services.  The achievable performance and the 
security of the system are determined by the quantity and 
quality of location features.  By quantity, we mean the 
total number of different (independent) location 
dependent measurements available.  By quality, we mean 
that amount of unique location dependent information and 
its consistency provided by each parameter that can be 

used to generate a robust location tag.  It is desirable to 
have the parameters be relatively insensitivity to temporal 
changes which weaken the uniqueness of the information.  
As a result, repeatability and repeatable accuracy are the 
fundamental requirement for any location-based security 
service. 
 
In this paper we propose fuzzy extractor scheme to 
generate strong location tag from noisy location data.  A 
fuzzy extractor is an algorithm that can reliably extract 
desired information from input, and is error tolerant in the 
sense that this information will be the same even if the 
input changes.  We develop different constructions of 
fuzzy extractor for various parameter distance measures: 
Euclidean and Hamming metrics. A combination use of 
the constructions will produce a more robust location tag.  
In addition, we mathematically analyze the entropy loss 
of the fuzzy extractor and study how to choose optimal 
design parameters under the tradeoff. 
 
 
INTRODUCTION  
 
In this paper we introduce a security-oriented location-
based service and use Loran and Wi-Fi as case studies.   
In general, location-based services require accurate 
estimation of position, such as latitude, longitude and 
altitude, from location measurements.  We show that there 
is no need to map location measurements into an accurate 
global position for a number of security applications.  
Loran, which operates at most of the northern hemisphere, 
has many advantages over satellite-based navigation 
systems for secure location-based service.  It is a high 
power terrestrial signal and easily penetrates buildings 
and cities, where line-of-sight signals are not available.  
The Loran location-based parameters are used to derive a 
location tag, which is a piece of information that allows or 
restricts one’s access for security applications.  Although 
Wi-Fi was initially designed for communications between 
electronic devices, the proliferation of Wi-Fi has a 
growing interest in indoor location-based applications.  
Wi-Fi is chosen to complement Loran in the indoor 
environments.  Location tag is computed by quantizing 
these parameters into grid spaces and mapping into a 
binary string.  We provide examples of the location-based 



security applications in two categories: block-listing and 
white-listing. 
 
• Block-listing: An example of block-listing application 

is digital manners policy (DMP).  Technologies for 
DMP [1] attempt to enforce manners at public 
locations.  A DMP-enabled cell phone can be 
programmed by the phone provider to turn off the 
camera while inside a hospital, a locker room, or a 
classified installation.  Or the phone can be 
programmed to switch to vibrate mode while inside a 
movie theater.  Even though these ideas are highly 
controversial [2], we only focus on the technical 
aspect of the application in this paper.  Using our 
location tag, one can build a list of location tags 
where the camera is to be turned off.   The device 
downloads an updated list periodically.   When the 
device encounters a location tag on this blocklist, it 
turns the camera off.   When the device leaves the 
blocked location the camera is turned back on.  
Hence, digital manners are enforced without ever 
telling the device its precise location. 
 

• White-listing: location-based access control is a 
white-listing example.  Consider a location-aware 
disk drive.  The drive can be programmed to work 
only while safely in the data center.  An attacker who 
steals the device will not be able to interact with it.  
Location-based access control using encryption was 
studied by Scott and Denning [3] under the name 
Geoencryption.   

 
A location-based security system must survive the 
following attack: the attacker owns the device and tries to 
make the device think it is somewhere else.  We make 
two assumptions to survive this threat.  First, a device that 
integrates a location sensor and geoag generation 
algorithm should be tamper-resistant.  If a device is not 
tamper-resistant, one can perform attacks such as 
replacing received location parameters with fake ones, 
brute force attack or tampering with tag database.  
Second, radio signal is self-authenticated to allow users to 
verify the source of incoming signals.  A signal 
authentication protocol, Timed Efficient Stream Loss-
tolerant Authentication (TESLA) is proposed on Loran.  
We proposed a mean of implementing TESLA for 
authentication.  The analysis and experimental results of 
authentication performance were discussed in our 
previous papers [4,5]. 
 
Additionally, it is desirable to have tags reproducible thus 
location parameters should be relatively insensitivity to 
temporal changes.  Reproducibility means that 
measurements at the same location at different times 
always produce the same tag, and is a fundamental 
requirement to derive a robust geotag.  However, several 
types of errors presented in the radio frequency (RF) 

signals can degrade the performance of location-based 
security service.  This paper provides efficient error-
tolerant techniques, called fuzzy extractor, to generate 
strong geotags from noisy location data.  We propose the 
constructions of fuzzy extractor for various distance 
measures based on location error patterns, such as 
Euclidean distance and Hamming distance.  Our 
constructions of fuzzy extractor can also be applied to 
other RF signals, such as satellite-based, Wi-Fi, TV, and 
cellular signals, and non-RF signals like infrared and ultra 
sound. 
 
The structure of the paper is organized as follows.    We 
first describe system models of a location-based security 
system and the error patterns of location dependent 
parameters in the next section.  This paper then defines 
fuzzy extractor, and shows four different constructions of 
fuzzy extractor for various distance measures.  We 
evaluate the reproducibility and security of location tags 
based on the constructed fuzzy extractors in the following 
sections.  This paper then provides a performance 
comparison of the fuzzy extractors and concludes with 
future directions of the research. 
 
 
SYSTEM MODELS  
 
Reproducibility and repeatable accuracy are desirable 
qualities in location-based security systems.  It allows one 
to provide his location-dependent parameters, or the 
derived tag at calibration—and still have those parameters 
valid at a latter time for verification.  Figure 1 illustrates 
how the system works.  Location parameters from the 
surveyed locations are mapped into tags and stored in a 
central database at calibration step.  At verification step, 
one matches his computed tag with the stored one to 
validate the correctness of his location.   
 

 
Figure 1. Location-based security system 

 
The signal characteristics should be consistent enough so 
that when the user is ready to verify, measurements at the 
same location will yield the same previously generated 
tag.  Temporal variation reflects instability or degree of 
scatter within a particular parameter at a given location 
and increases the likelihood to mismatch tags.  Thus, we 
use fuzzy extractor to reliably extract location-based 
information from noisy Loran signal inputs.  A fuzzy 
extractor is a form of error tolerant algorithm to reproduce 
desired secret information.  The extraction is error-



tolerant in the sense that the derived tag is the same even 
if the input changes.  The tag generation consists of three 
steps: extracting features or location-based parameters 
from the received location signals, quantizing the 
parameters with chosen step sizes, and mapping the 
quantized parameters into a binary string.  The binary 
mapping process can be done using a hash function, 
which is easy to compute but hard to invert. 
 
Error Models 
 
To achieve optimal construction of fuzzy extractors, we 
study the various types of errors presented in location 
data.  The most common error source is the thermal and 
atmospheric noise.  The thermal noise, considered as 
white Gaussian, cannot be eliminated and always presents 
in all electronic devices and transmission media.  Loran 
atmospheric noise, caused by lightning, is usually 
Gaussian but not always and can be impulsive if the 
lightning is local.  Both thermal and atmospheric noises 
depend on the propagation path, distance between 
transmitter and receiver, quality of the receiver and the 
local noise floor, etc.   
 
Another error source is bias.  An example of seasonal bias 
in Loran signals is Additional Secondary Factor (ASF) 
that is the extra delay in propagation time due to the 
signals traveling over a mixed path: seawater path and 
land with various conductivities.  This error introduces 
large seasonal variations in time-of-arrival (TOA), shown 
on the left of Figure 2.  The four stations, Fallon, George, 
Middletown and Searchlight, are from Loran west coast 
chain, Group Repetition Interval (GRI) 9940.  Fallon is 
the master station of GRI 9940 while the other three are 
the secondary stations.  The monitor data was collected at 
Stanford University for 90 day period to observe seasonal 
variations on Loran signals.  The delay can be significant 
and introduce a position error of hundreds of meters [6].  
Thus ASF represents one of the largest error sources in 
Loran.  Many factors affect ASF, including conductivity 
of soil, temperature, humidity, local weather, etc.  
Therefore, ASF varies both temporally and spatially, and 

this raises the difficulty modeling ASF over CONUS.  
The temporal component comes from all time varying 
aspects; while the spatial component takes into account 
the non-uniform ground conductivity and topography [7].  
Many methodologies have been developed to mitigate 
ASF.  In the previous study [8] we demonstrated two 
simple ideas: time difference and “previous day is today’s 
correction”.   Time difference (TD) is the difference in 
TOAs between secondary stations and the master station; 
thus master station is used as a reference to remove the 
ASF bias.  The second method is to use the previous day’s 
ASF measurements as today’s correction.  This requires 
either the user receiver constantly monitors Loran data or 
a reference station that is nearby the users broadcasts 
previous day’s ASF as a correction via a data channel.  
Both methods do not remove ASF completely.  TD 
method has spatial decorrelation due to the different 
propagation paths of master and secondary stations.  
Previous day’s correction suffers from the temporal 
decorrelation of ASF because previous day’s ASF is 
different from today’s ASF.  In this paper we use the TD 
method to mitigate partial ASF temporal variations 
because it mitigates more ASF biases according to 
previous study [8].  The TD measurements from four 
stations are plotted in the middle of Figure 2. 
 
In addition, quantization error, which is the difference 
between value of continuous parameter and the quantized 
value, can cause the system fail to reproduce correct 
location tag. The quantization error is usually correlated 
with thermal noise, atmospheric noise and seasonal biases 
discussed above.    We cannot guarantee that the 
measurements are always in the middle of the 
quantization grid.  The worst case is that the 
measurements lie on the boundary of the grid, shown in 
the right plot of Figure 2.  The graph plots the TD 
measurements from Middletown with zero mean.  The red 
dash lines represent the quantization grid boundaries.  
Even though the quantization step is chosen to overbound 
signal variations due to random noise and seasonal biases, 
the quantization error increases the likelihood failing to 
reproduce a location tag.   

 
Figure 2. TOA with zero means (left); TD with zero means (middle); TD quantization (right) 



 
The last type error comes from the operations of RF 
system.  Loran stations might be offline due to 
maintenance or other implementation issues.  Wi-Fi 
access points (APs) are moving around by the users.  
Figure 3 illustrates the Wi-Fi AP availability or response 
rate, which is the percentage of time for a receiver is able 
to track an AP.  The data was collected in an office 
building for four hours.  Only the first AP can achieve 
100% response rate thus a geotag will not be reproducible 
if more than 2 APs are used to derive the tag.   
 

 
Figure 3. Wi-Fi access points response rate 

 
Distance Metrics 
 
The construction of fuzzy extractors depends on distance 
metrics of inputs.  Thus it is important to analyze the error 
patterns and determine the proper distance metrics 
accordingly.  In addition, the tag reproducibility under 
natural variations of RF signal is relative to the 
underlying metric in the space of location data.   
 
Let x be the location parameter vector at calibration step, 
and qx defined in Equation (1) represent the discrete 
parameter vector after quantization.  The pair (x’, q’x) 
represents the parameter vectors at verification step.  Δ is 
the quantization step vector.  All the vectors are n-
dimensional, where n is the number of parameters used to 
compute a tag.  Quantized parameters qx and qx’ are 
integers over Z but they are not necessarily positive.  For 
instance, it is possible to result in a negative TD if the 
distance between the secondary station and a user is 
shorter than the distance between master station and the 
user.  
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The most common metric for the location parameter 
vector x is Euclidean distance.  Euclidean metric fuzzy 

extractor is designed to tolerate the random noises, 
seasonal biases and quantization errors.   
 
We consider the distance measure for last error type 
(missing parameter or offline transmitter) as Hamming 
metric.  Hamming distance measures the number of 
different elements in quantized location parameter vectors 
at calibration and verification, qx and qx’. 
 
Performance Metrics 
 
The problem of deciding whether the received parameter 
is authentic or not, can be seen as a hypothesis testing 
problem.  The task is to decide which of the two 
hypotheses H0 (accepting as an authorized user) or H1 
(rejecting as an attacker) is true for an observed location 
measurement.  Location-based security system can make 
two types of errors: 1) mistaking the measurements from 
the same location to be from two different locations and 
accepting hypothesis H1 when H0 is true, called false 
reject; and 2) mistaking the measurements from two 
different locations to be from the same location and 
accepting H0 when H1 is true, called false accept.  Both 
false reject rate (FRR) and false accept rate (FAR) depend 
on the accuracy of the Loran receiver and the step size 
chosen to quantize location parameters.  FAR only applies 
to white-listing applications while FRR can be a 
performance metric for both block-listing and white-
listing applications. 
 
FRR and FAR can be traded off against each other by 
varying the grid size.  A more secure system aims for low 
FARs at the expense of high FRRs, while a more 
convenient system aims for low FRRs at the expense of 
high FARs. 
 
 
FUZZY EXTRACTORS 
 
Background and Definitions 
 
The first approach of fuzzy extractor or error-tolerant 
cryptographic algorithm, called fuzzy commitment 
scheme, is proposed for biometrics by Juels and 
Wattenberg [9].  The scheme uses an error correcting 
code to handle Hamming distance.  More approaches for 
Hamming distance, set difference, and edit distance are 
introduced in [10].  It also introduces a different error 
tolerant algorithm, called secure sketch.   
 

 
 

Figure 4. Fuzzy extractor (top); Secure sketch (bottom) 



 
In this paper we follow the definition of fuzzy extractors 
in [10].  A fuzzy extractor works in two steps, illustrated 
in Figure 4.  During calibration step, one runs an 
algorithm Gen in input x∈M to generate a public value P 
and a location tag T, where M is a metric space of x.  The 
public value P is stored for future use.  An algorithm Rep 
is used to reproduce the tag T using P from noisy location 
vector x’.  Fuzzy extractors are information-theoretically 
secure, thus we can use them for security applications 
without introducing additional assumptions [10].  A 
secure sketch also consists of two steps.   A procedure SS 
produces s, called a sketch, using input x.  Then given s 
and x’ close to x, a procedure Rec can recover x.  The 
sketch should not reveal much information about x.  
Unlike fuzzy extractors, a secure sketch recovers the 
original input x from noise while a fuzzy extractor 
reproduces location tag T from noisy input. 
 
Definition 1.  A fuzzy extractor is a tuple (M, t, Gen, 
Rep), where M is the metric space with a distance 
function dis, Gen is a generate procedure and Rep is a 
reproduce procedure, which has the following properties: 

If Gen(x) outputs (T, P), then Rep(x’, P) = T, whenever 
dis(x, x’) ≤ t.  If dis(x, x’) > t, then there is no guarantee T 
will be outputted.    

Definition 2.  A secure sketch is a tuple (M, t, SS, Rec), 
where M is the metric space with a distance function dis, 
SS is a sketch generating procedure and Rec is a recover 
procedure, which has the following properties. 
 
Rec(x’, SS(x)) = x, if dis(x, x’) ≤ t.  The sketch s is to be 
made public.  We say the scheme is m-secure and the 
entropy loss of s is at most m.  H(x) – H(x|s) ≤ m.  H 
denotes the entropy of a random variable. 
 
In this paper we propose three fuzzy extractors based on 
Euclidean and Hamming metrics for inconsistent location 
parameters.  We also introduce the secure sketch that 
Chang and Li [11] proposed for small set difference, 
which works the same as Hamming metric fuzzy extractor 
for location data.  Although their approach was initially 
designed for biometric data, it can be adapted for 
location-based services with slight modifications. 
 
Euclidean Metric Fuzzy Extractor 
 
Let location vectors be n-dimensional in metric space M. 
We consider the distance measure for location-based 
parameters is L∞ norm to be conservative.  We normalized 
the measure using Δ, and the distance is defined as 
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The basic idea of this fuzzy extractor is to adjust the 
offsets between the continuous parameters and the 
discrete ones after quantization.  The construction of the 
fuzzy extractor is shown as follows 
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If
2
1)',( <xxdis , then quantized location vector qx’ can be 

reproduced, that is, T’ = T.  This claim defines the 
reproducibility of location tag.  The quantization step Δ is 
a design parameter.  The bigger the step, the more errors 
can be tolerated using this fuzzy extractor. 
 
Shannon entropy is used to measure entropy loss of fuzzy 
extractors mathematically.  We estimate the entropy loss 
or the mutual information between the conditional H(x|P) 
and unconditional H(x) entropies.  They are statistically 
independent if the mutual information is zero.  Given x = 
qx + P, let x’ =  qx + P – δ, where δ is the Euclidean 
difference between x and x’ due to noises and biases.  Our 
objective is to determine an upper bound on H(x|P).  By 
using the definition of conditional entropy [12], we obtain 
 
 )()(  )|( δHxHPxH −=  (5) 
 
Thus, the entropy loss of public value P is H(δ).  It 
depends on the probability distribution of x and the 
quantization step Δ.  For the case n number of different 
location parameters, the total information leakage is 
 

 ∑ Δ≤
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This equation assumes the location parameters are 
uniformly and independently distributed and provides an 
upper bound on the entropy loss.  In practice, the entropy 
loss is small in comparison with H(x).  The measured 
entropy in a location tag also quantifies the amount of 
uncertainty from an attacker’s point of view.  The entropy 
in a location tag computed from quantized parameters is 
equal to H(qx|P).  By the definition of qx, qx is 
independent of P; thus, P does not leak any information 
on qx.  Intuitively, this makes sense that knowing the 
offsets between x and Δx qx, one cannot figure out the 



user’s quantization level exactly without further 
information. 
 
Reed-Solomon Based Fuzzy Extractor 
 
The approach achieves robustness against noises and 
biases by making use of error-correcting codes to recover 
changes measured by Hamming distance.  Hamming 
distance, defined in Equation (7), measures the number of 
different elements between two strings or vectors.  In 
addition, this fuzzy extractor deals with the problem 
caused by offline transmitters.  Location tag can be 
reproduced even when there are missing parameters.  
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We use Reed-Solomon (RS) error-correcting code to 
construct a fuzzy extractor to recover the changes of the 
quantized location parameters.  Reed-Solomon coding is a 
well known forward error correction coding method that 
potentially for burst errors [13].  The key idea of the 
construction is to first create a polynomial by encoding 
the secrets, which is the tag in location-based security 
system.  The next step is to project the quantized location 
parameters on the polynomial and randomly create chaff 
points to hide the polynomial.  At last, the secrets can be 
recovered from the chaff points with adequate location 
parameters.  The detailed construction is described as 
follows.   
 
Calibration.  Given qx = {q1,…,qn},  
 
1. A secret message is computed from a random 

generator. 
2. The secret message can be hashed to get tag T. 
3. The tag T is encoded to a vector c using Reed-

Solomon code.  The vector c has size n.   The RS 
encoder (n, k) is chosen based on design criteria that 
the total number of errors t can be corrected is 
determined by (n-k)/2.   

4. Construct mapping matrix or public information P.  P 
has a size of N × n, where N is the number of 
quantization levels of location parameters and 
determined by chosen quantization steps.  For each 
column of P, locate the element of vector c based on 
each quantized location parameter.  For instance, if qi 
= 20, then P(20, i) = ci.  Figure 5 illustrate the 
formation of mapping matrix P.  Populate the rest of 
the matrix using random numbers.  This mapping 
matrix is then saved for future use. 
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Figure 5.  Mapping matrix construction 

 
Verification.  Given qx’ is a location parameter vector that 
has t or less than t elements different from qx.   
 
1. Given the mapping matrix P generated previously. 
2. Obtain a vector c’ using P and qx’.  If qx’ and qx are 

identical, c’ has the same elements as c.  If attackers 
have no information on location parameters qx, it is 
difficult to guess a vector c’ that satisfies dis(c, c’) ≤ t 
due to the large search space of mapping matrix.  It is 
equivalent to brute-force attack.    

3. Apply Reed-Solomon decode to compute T from c’.  
If dis(c, c’) ≤ t, the secret message can be recovered 
correctly; otherwise, the output would not be the 
same as T.   
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This approach makes use of the property of Reed-
Solomon codes to tolerant t errors in the quantized 
location parameters.  It is not fault-detective since users 
would not be able to find out whether the errors in 
received location parameters can be tolerated or not until 
computation of the tag.  The entropy loss of this 
construction is tlogN.  This results in the effective tag 
length is (n-t)logN.  Thus Hamming metric fuzzy 
extractors improve location tags’ reproducibility at the 
expense of their entropy. 
 
Secret Sharing Based Fuzzy Extractor 
 
The third construction of fuzzy extractor is based on the 
idea of secret sharing.  The scheme is a method of sharing 
secret S among a set of n participants.  For any subset of k 
(k ≤ n) participants, the secret S can be reconstructed.  But 
a subset of less than m participants will fail to reconstruct 
S.   
 
The distance metric in this construction is also Hamming.  
The input to the fuzzy extractor is quantized location 
vector qx.  The first step of construction is to create a 
polynomial f(x), such that f(i) = qi, ∀ i = 1, 2, …, n.  The 
generation and reproduction procedures are as follows 
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If knqqdis xx −≤)',( , the polynomial f(x) can be 
reconstructed with the assistance of P thus tag T can be 
reproduced T’=T.  The effective tag length is klogN. 
 
Fuzzy Extractor Modified from Chang and Li’s Secure 
Sketch  
 
Unlike fuzzy extractor, the secure sketch recovers the 
input at calibration using a sketch.  The main security 
requirement is that the published sketch s should not 
reveal essential information on the inputs; otherwise, it 
will be compromised to attackers.  Chang and Li proposed 
small secure sketch for point set difference [11], which 
can be applied to location-based security system with 
modification.  Location data that is always contaminated 
by noises is not possible to recover exactly; therefore, we 
modify the secure sketch to fuzzy extractor.  The distance 
measure is also Hamming metric in this approach.  The 
constructions of the modified approach is as follows  

 
Calibration.  Given qx = {q1,…,qn},  
1. Construct a monic polynomial ∏ −= =

n
i iqxxp 11 )()( . 

2. Publish P = <p1(0), p1(1),…, p1(2t-1)>. 
 
Verification.  Given P = <p1(0), p1(1),…, p1(2t-1)> and qx’ 
= {q’1,…, q’n}, 
1. Construct a new polynomial ∏ −= =

n
i iqxxq 11 )'()( . 

2. Compute q1(0), q1(2),…, q1(2t-1). 
3. Let ∑+= −

=
1
02 )( t
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t xaxxp , ∑+= −

=
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02 )( t

j
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j
t xbxxq  

be polynomials of degree t.  Construct the linear 
equations with aj’s and bj’s as unknowns, and satisfy 
the following condition, 
 

120for        ),()()()( 2121 −≤≤= tiiqipipiq  
  

4. Find one solution of the linear system. 
5. Solve for the roots of the two polynomials p2(x) and 

q2(x).  Let the roots be x’ and y’ respectively. 
6. The recovered location parameter is 

'\)'(' yxyqx ∪= . 
 
The lemma 1 in Chang and Li’s paper states the entropy 
loss due to enrollment is at most 2tlogN when 

0}12,...,0{ /=−∩ tx .  The assumption is that x does not 
contain any element from {0,…, 2t-1}. 
 

Combination Use of Fuzzy Extractors 
 
We design the Euclidean metric fuzzy extractor to adjust 
the errors introduced by random noises and seasonal 
biases.  The RS and secret sharing based fuzzy extractors 
can be used to reproduce location tag while location 
parameters are missing due to offline transmitters.   
 
As noises and biases are always presented in RF signals, 
Euclidean fuzzy extractor should be applied all the time to 
minimize the impact of signal temporal variations and 
guarantee the reproducibility of location tags.  Unlike 
noises and biases, errors due to missing parameters are 
infrequent.  Users have their choices to use which fuzzy 
extractor.  A combination use of Euclidean metric and 
Hamming metric fuzzy extractors can achieve more 
robustness in tags but the tradeoff is more entropy loss.    
   
 
REPRODUCIBILITY ANALYSIS  
 
In this section we examine and compare the performance 
of three fuzzy extractor constructions.  The evaluation is 
based on user’s FRR, attacker’s successful rate FAR, and 
entropy loss.   
 
All the three constructions improve consistency of 
location parameters thus reduce the FRR.  Users’ false 
reject depends on the variations of the parameters, the 
selected quantization step Δ and the quantization offset 
that is, how far off are the received parameters from the 
center of the quantization grid.  The most desired scenario 
is the distribution of the parameter is exactly in the middle 
of the quantization grid (offset = 0) while the worst case 
is that the distribution lies on the boundary of the grid 
(offset = 0.5Δ), shown in Figure 6.   
 

 
Figure 6.  Quantization scenarios: best (left); worst(right) 

 
Euclidean Metric Fuzzy Extractor 
 
We first examine how the reproducibility of location tag 
improves using the Euclidean metric fuzzy extractor.  The 
analysis is shown in Figure 7.  The x-axis is the 
quantization steps in terms of standard deviation σ and 
the y-axis is the estimated FRR.  The tag is computed 
from time difference (TD), signal strength (SS), and ECD 
(envelope-to-cycle difference) using the seasonal data 
from four west coast stations.  As a result, there are 11 
different location parameters. 
 
To estimate FRR we take the first day of the 90-day data 
as calibration to compute a tag and the data from the rest 



of 89 days for verification.  The experimental FRR is the 
number of days, in which the tags are matched with the 
computed tag on day one, divided by 89.   We observe 
that the estimated FRR is reduced by 84% after applying 
the Euclidean metric fuzzy extractor.   
 

 
Figure 7. Euclidean metric FE performance improvement 

 
From mathematical analysis the Euclidean metric fuzzy 
extractor rounds off the location measurements at 
verification step to the measurements at calibration step.  
A tag can be reproduced when the offset between the two 
measurements is less than a threshold, Δ/2.   
 
Reed-Solomon Error Correcting Review 
 
This section provides a short review on Reed-Solomon 
codes as the FRR of multiple parameters using Hamming 
metric fuzzy extractor depends the RS error correcting 
performance.  Let q be the code alphabet, that is, q = 2b 
the number of possible symbols, where b is the number of 
binary bits in a symbol.  RS codes are non-binary codes.  
The decoding algorithm of RS codes is defined as 
bounded distance decoder, that is, only received 
sequences within a fixed designed bound of a valid 
codeword can be decoded and no errors can be corrected 
over the bound [13].  The representation of decoder 
operation is illustrated in Figure 8.  Each white dot 
corresponds to actual RS codeword.  The black dots 
enclosed by the circles are the possible received 
sequences, and can be mapped to the closest codeword. 
 
The decoder can make two types of errors: the received 
sequence is decoded in an incorrect codeword, called 
undetected error; the received sequence is not decoded to 
any of the codewords, considered as a decode failure.  Let 
the purple circle in Figure 8 represent the correct 
codeword.  If the received sequence is within any other 
orange circle, the output codeword is incorrect and we 
consider it is undetected error.  If the received sequence is 

in the gray region and not bounded by the circles, we 
consider it is a failure.  For a RS(n, k), the minimum 
spacing between different codewords is n-k.    The 
decoder can correct errors up to ⎣ ⎦2/)( knt −≤ .  Let p 
be the symbol error or the error rate of one location 
parameter.  The probabilities of incorrect decoding [13] 
are  
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Figure 8. RS decoder representation 

 
The evaluation of error detection can be classified into 
three different scenarios to compute three probabilities 
[14]: that the decided codeword is correct PC, that the 
decoded codeword is an undetected error PUE, and that 
fails to decode PF.  For RS(n, k) code, the minimum 
distance between codewords can be defined as dmin = n – k 
+ 1.  Let u represent the number of symbol errors, and 0 ≤ 
u ≤ n.  The three probabilities can be computed as follows  
• For 0 ≤ u ≤ t, PC = 1, PUE = 0 and PF = 0 since the 

decoder can correct error up to t.   
• For t ≤ u ≤ dmin-t, PC = 0, PUE = 0 and PF = 1 since the 

received sequence is too far from any of the possible 
codeword thus considering as a decode failure. 

• For u ≥ dmin-t, PC = 1, and PF = 1-PUE.  The 
undetected error probability can be computed using 
Equation (13).   

 
RS Based Hamming Metric Fuzzy Extractor 
 
In practice, multiple parameters are used for robustness 
and security strength of location tag.  More location 
parameters provide more information entropy, better 
precision, and increase the difficulty in predicting a tag.  
However, one drawback is that the FRR of the system is 
increased.  The reproducibility comparison with and 
without a Hamming metric fuzzy extractor is illustrated in 



Figure 9.  Both cases use Euclidean metric fuzzy extractor 
to ensure data lying in the middle of quantization grids.  
We use 15 parameters to estimate FRR in this analysis 
thus n = 15.  The overall FRR of Euclidean metric fuzzy 
extractor can be estimated as 1-∏ −=

n
i ip1 )1( , where pi is 

the error rate of one parameter or symbol error.  For the 
combination of fuzzy extractors, overall FRR, shown in 
orange color, is estimated using Equation (12).  We 
choose the number of errors t can be corrected in 
Hamming metric fuzzy extractor as 2.  This results in that 
k = 11.  The solid lines represent the analytical analysis 
while the dots are estimated using the same seasonal data 
mentioned in the previous section. 
 

 
Figure 9. Performance of RS-based fuzzy extractor 

 
Secret Sharing Based Hamming Metric Fuzzy Extractor 
 
In this section we use Wi-Fi data shown in Figure 3 to 
evaluate the performance of secret sharing based 
Hamming metric fuzzy extractor.  Only APs are used to 
map into a location tag for simplicity.  Other location 
dependent parameters such as received signal strength 
(RSS) and response rate can also be used to derive Wi-Fi 
location tag.  Euclidean metric fuzzy extractor should be 
applied if RSS is used for the geotag generation.  The 
performance analysis is shown in Figure 10.  The blue 
line illustrates the FRR of the derived geotag without 
using any fuzzy extractor while the red line represents the 
improved FRR after using secret sharing based Hamming 
metric fuzzy extractor.  Figure 3 shows that there is only 
one AP, which has 100% response rate.  It is 
understandable that the tag computed from 2 or more than 
2 APs has low FRR or low reproducibility, as illustrated 
in Figure 10.  From the analysis, we observe that the FRR 
is reduced by 85% when the number of APs used to 
derive a geotag is 4.  The geotag has high FRR when the 
number of APs is greater than 4 even with secret sharing 
based fuzzy extractor.  Wi-Fi tag reproducibility is 

location-dependent as the coverage of Wi-Fi APs is 
different from one location to another.     
      

 
Figure 10. Performance of SS based fuzzy extractor 

 
 
SECURITY ANALYSIS  
 
An important measure of security in location-based 
services is false accept rate, which is probability of an 
attacker who achieves a desired location tag successfully 
in white-listing applications.  In this section we study how 
fuzzy extractors affect the security performance in a 
location-based security system. 
 
Euclidean Metric Fuzzy Extractor 
 
FAR values depend on the distance between the physical 
locations of authorized user and attacker, variance and 
decorrelation of location parameters, and quantization 
steps selected by a user.   
 
The Euclidean metric fuzzy extractor does not always 
increase or reduce attacker’s false accept rate.  The key 
idea of this fuzzy extractor is to round off user’s 
measurements to a specific quantization level.  For all the 
measurements x’, if dis(x-x’) < Δ/2, quantized parameter 
qx can be recovered.  This claim is also true for attackers.  
For any attacker whose measurements are within Δ/2 
distance from x, the measurements can map into a correct 
grid.  The following diagram explains the claim using two 
scenarios.   
 

 
Figure 11. Security performance of Euclidean FE 

 
Let the white ball represent authorized user, and two red 
balls represent two attackers.  The two long vertical lines 
bound a quantization grid with a step Δ.  The absolute 
distance between the white ball and the center of the grid 



is the public value P.  After applying fuzzy extractor, the 
white ball is shifted to the center, and the left red ball is 
also moved inside the grid while the other red ball is 
moved outside.  From this diagram we see the probability 
that an attacker achieves a correct quantized value 
depends on the closeness of the user and attacker.  In 
addition, the more parameters used to compute a tag, the 
higher the difficulty to break the tag for attackers. 
 
RS Based Hamming Metric Fuzzy Extractor 
 
The false accept rate using RS based fuzzy extractor 
depends on the RS decoder performance.  As mentioned 
earlier, the decoder replies on a bounded distance to map 
into the closest codeword and the bound is determined by 
n and k.  We consider the FAR is a type of undetected 
error.  From an authorized user’s point of view, 
undetected error is that the received sequence is mapped 
into any of the incorrect codewords, which are the orange 
circles in Figure 8.  From an attacker’s point of view, 
undetected error is that the received sequence is mapped 
into the user’s codeword, the purple circle in Figure 8.  
The total FAR of multiple parameters using RS based 
fuzzy extractor should be analyzed in two conditions: 
dis(qx, qy) ≤ t and dis(qx, qy) > t, where qx is the quantized 
location vector of an authorized user and qy is the vector 
of an attacker.  The FAR estimation is derived from 
Equation (13), shown as follows 
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When the Hamming distance between user and attacker’s 
vectors is less than or equal to t, both user and attacker 
can reproduce the desired codeword.  However, when the 
Hamming distance is greater than t, the probability of 
error is fixed, and depends on n and t only.  For instance, 
if we use 15 location parameters n = 15 and allow 2 errors 
t = 2, the probability that an attacker receives a desired 
codeword is approximately 0.00185.   
 
SS Based Hamming Metric Fuzzy Extractor 
 
This FAR analysis of secret sharing and secure sketch 
based fuzzy extractors is similar to that of the RS based.  
Desired location tag can be achieved if the number of 
errors is less than a certain threshold.  For the secret 
sharing based, the threshold is n-k; for Chang and Li’s 
approach, the threshold is t, which is a design parameter.  
If attacker’s location parameters have more errors than the 
threshold, the false accept rate is low. 
 
 
TRADEOFF  

 
As mentioned in the previous section, multiple location 
parameters provide more security strength in the derived 
location tags; however, it reduces reproducibility of tags 
and reliability of authorized users.  The security strength 
of each parameter is different in terms of information 
entropy, reproducibility and false accept rate. 
 
We first study the tradeoff between false reject rate of 
authorized users and false accept rate of attackers as the 
number of location parameters increases.  Loran data is 
used for this study.  The analysis is illustrated in Figure 
12.  The error rates also depend on the selected 
quantization steps.  The two orange curves represent the 
FARs with quantization steps of 3σ and 6σ while the two 
green curves indicate the corresponding FRRs.  The error 
rates of 3σ quantization step is shown in circle marker 
and solid line.  The triangle marker and dashed lines 
indicate the error rates of 6σ step.  The seven selected 
parameters are TD from George, Middletown and 
Searchlight, and the signal strength from all four stations 
in GRI 9940.  The error rates are calculated using the 
seasonal data shown in Figure 2.  To estimate FRR, we 
think ourselves as authorized users.  We take the first day 
of seasonal data as calibration measurements the rest days 
of data as verification measurements, and estimate the 
percentage of time that the location tags at calibration and 
verification steps match.  On the other hand, to estimate 
FAR, we think ourselves as attackers, whose parameters 
are 1σ off from the authorized user’s parameter values.  
We observe that the tradeoff between false reject rate of 
users and false accept rate of attackers with varying 
number of location parameters and quantization step 
sizes.   
 

 
Figure 12. Tradeoff between FAR and FRR 

  
The second tradeoff study, illustrated in Figure 13, is 
between reproducibility and information entropy.  The 
more entropy in the location parameters, the longer the 



tag we can derive.  The longer tag means it is harder to 
use brute-force attack to break.  Brute-force attack is a 
method to defeat a cryptographic scheme by trying all the 
possible combinations of a binary key.  With a long 
enough tag, brute-force attack is not threatening to the 
system.   
 
The left axis is the FRR of authorized user and the right 
axis is the sum of information entropy of location 
parameters.  The quantization step used in this analysis is 
6σ.  We observe that 56-bit tag can be achieved from 7 
parameters with this particular quantization step.  The 
time to break a 56-bit tag with 1 operation per 1 μsec is 
1142 years.  With a supercomputer that performs 106 
operations per 1 μsec, it takes only 10 hours to break a 
56-bit tag [15]. 
 

 
Figure 13. Tradeoff between FRR and entropy 

 
The geotag FRR and average cell size can be traded off 
against each other by varying the number of parameters 
used to compute the getoag, shown in Figure 14.  Wi-Fi 

data is used in this analysis.  A cell size is defined as the 
dimension of quantized spatial cells, which all have 
different geotag.  The cell size depends on the separation 
between the calibrated locations and the spatial 
decorrelation of location parameters. 
 

 
Figure 14. Tradeoff between FRR and average cell size 

 
 
CONCLUSION 
 
We proposed location-based security services using RF 
signals: in which location is used as a validation to restrict 
or deny certain action in security applications.  
Verification tags are computed from location information 
that is obtained from a location sensor.  The location tag 
is not a replacement but builds on the conventional 
authentication schemes.  This location-based service can 
be applied to many applications, such as DMP, inventory 
control and data access control. 
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Table 1. Comparison of fuzzy extractors 



Euclidean metric fuzzy extractor was developed for noise, 
biases and quantization errors to achieve high 
reproducibility of location tag.  Reed-Solomon based and 
secret sharing based fuzzy extractors were designed for 
the scenario that RF transmitter is offline.  The entropy 
loss of Hamming metric fuzzy extractor is more than the 
Euclidean metric one.  The performance comparison of 
proposed fuzzy extractors is shown in Table 1. 
 
Adequate quantization step should be chosen to achieve 
reasonable tag reproducibility.  FAR, FRR and 
information entropy can be traded off by varying the 
quantization steps and number of location parameters.  A 
more secure system requires smaller quantization step and 
more number of parameters while a more convenient 
system prefers larger step and less parameters.  Users of 
location-based security service have the flexibility to 
select appropriate design parameters based on their 
applications and performance requirement. 
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