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ABSTRACT 
 
For several years, Receiver Autonomous Integrity 
Monitoring (RAIM) has been used successfully for 
horizontal positioning in the phases of flight with 
Protection levels on the order of several hundreds of 
meters.  In the next years, there will be many more 
navigation satellites (Galileo, a renewed GLONASS 
constellation, Compass), all expected to have signals in at 
least two frequencies.  This has raised the possibility of 
using RAIM for much more demanding phases of flight 
(LPV 200 or Cat. I, for example), and perhaps ultimately 
replacing integrity providers such as SBAS and GBAS.  
However, it is not possible to apply the assumptions that 
are made for RAIM today in studies for vertical approach 
availability.  Among others, the definition of failure needs 
to be changed: because the expected accuracy will be 
better, the threshold for failure will be reduced; as a 
consequence, the prior probability of failures could be 
larger than what is used now.  This, together with the fact 
that there will be many more ranging sources makes it 
necessary to consider the possibility of multiple 
simultaneous failures.  There are several RAIM 
algorithms treating multiple failures.  However, most of 
them present certain disadvantages: either the calculations 
required to compute the Protection Levels are very 
complex, or the link between these Protection Levels and 
the Probability of Hazardously Misleading Information is 
problematic (often because several approximations are 
necessary). 
 
In this paper, we give a detailed explanation of an 
optimized Multiple Hypothesis Solution Separation 
algorithm for RAIM.  There are several advantages in the 
Multiple Hypothesis approach.  First, the link between 
threat model, Protection Level and PHMI is a very easy 
and straightforward one; second, the calculation of the 
Protection Level does not involve complex steps.  We will 
show how these advantages stem mostly from the fact that 
the algorithm works by computing a Protection Level that 
meets the PHMI requirement, rather than computing a 
probability of misdetection.  One of the key points in this 
algorithm is the allocation of the PHMI to the different 
failure modes.  In previous papers, the allocation was 
made heuristically, in this one we will show how to 
compute an optimal allocation.  As an example, the 

algorithm will be applied to a single dual frequency 
constellation (GPS or Galileo) and a dual constellation. 
 
 
INTRODUCTION 
 
In the next years, several GNSS constellations are 
expected to become operative, such that users will have 
access to a large number of pseudoranges in two 
frequencies, which will allow receivers to cancel the 
ionosphere induced error.  This has raised the possibility 
of using RAIM to provide worldwide coverage of vertical 
guidance (starting with LPV 200), with a reduced need for 
ground monitoring [1], [2], [3].  However, compared to 
the algorithms used currently for horizontal positioning, 
the RAIM algorithms will need to be updated such that 
they accommodate complex threats (in particular multiple 
failures with any number of satellites and different a 
priori probability of failure), have a rigorous proof of 
safety (Probability of Hazardously Misleading 
Information) while not being unnecessarily conservative.  
Generalizations of the slope based RAIM algorithm [5] to 
multiple failures have been devised [6], however the 
threat model is not clearly defined and the proof of safety 
still relies on approximations. 
 
The algorithm presented here is an improvement on the 
algorithm that has been described in [1], which in turn is a 
modification of the Multiple Hypothesis Solution 
Separation algorithm described in [4].  Also, the 
algorithm is bears several similarities with other RAIM 
algorithms based on solution separation [5].  The main 
features of the optimized MHSS RAIM algorithm are as 
follows.  First, as long as one can provide a definition of 
the threat and an a priori probability, the algorithm can 
account for it.  In particular, multiple failures with an 
arbitrary number of satellites can be included in a 
transparent way.  Second, the algorithm has a simple 
proof of safety: the Probability of Hazardously 
Misleading Information (HMI) is computed by adding up 
the contribution of each failure, following a fault tree (as 
it is done in the Wide Area Augmentation System proof 
of safety [7]).  Finally, The Probability of HMI is 
allocated dynamically to increase performance (by 
reducing the Protection Levels).  Dramatic gains in 



performance can be obtained in the case of heterogeneous 
a priori probability of failure for different fault modes 
 
The paper starts by defining the threat model framework 
and describing the baseline MHSS RAIM algorithm.  
Then, the optimization of the integrity budget allocation is 
explained - the original contribution of this paper.  After 
that, we present a little-known formula linking slope 
based RAIM and solution separation RAIM.  This 
formula allows us to compare slope based RAIM with 
solution separation RAIM.  Finally, the optimized 
algorithm is used to assess the global coverage of vertical 
guidance using RAIM with high prior probabilities of 
failure. 
 
 
THREAT MODEL 
 
The threat model is defined here as a collection of error 
model states that partition the whole space.  A probability 
is associated to each error model state (or fault mode), 
which corresponds to the a priori probability of being in a 
given state i, which is labeled Pap,i.  Typically, such 
collection of states includes a nominal mode which has a 
probability close to one.  For the examples developed in 
this paper, each state corresponds to a partition of the 
measurements between nominal measurements 
(measurements that follow a known nominal distribution) 
and faulty measurements (measurements that are not tied 
to a distribution, and in particular, that could “conspire” 
against users).  Therefore, if there are n measurements, 
there are at most 2n error model states.  In the nominal 
state, the pseudorange error is assumed to be overbounded 
(in the sense of [9], for example) by a Gaussian 
distribution with a maximum bias.  In the examples used 
in the results, it is assumed that the satellite failures are 
independent with probability Psat.  As a consequence the 
probability of failure of a given satellite is Psat, the 
probability of failure of a given set of two satellites is 
Psat

2, etc. Notice, that this is a conservative 
approximation, since the probability of failure of one 
satellite and one only is slightly smaller than Psat.  
However, the difference is small with the values of Psat 
used here. 
 
 
DEFINITION OF PROBABILITY OF 
HAZARDOUSLY MISLEADING INFORMATION 
 
The Probability of Hazardously Misleading Information 
(PHMI) is the probability that the true position lies 
outside the error bound determined by the user.  As it was 
pointed out in [8], this definition is not complete as it does 
not specify on what the probability is conditioned on.  
The usual interpretation of this probability is that it is 
conditioned on the geometry and the error characteristics, 

but not on the pseudorange errors.  This is the 
interpretation that will be adopted here. 
  
The PHMI can be computed by counting the contribution 
of each possible error model state weighted by its prior 
probability: 
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Notice that it is not necessary to identify the correct error 
state model.  It is only necessary to compute an error 
bound such that the true position is within the bound with 
sufficient probability. 
 
 
BASIC ALGORITHM 
 
The main idea of the approach is to compute as many 
position solutions as there are possible error model states 
(subsets of failed satellites).  For each solution, a sub-
interval around it is computed (corresponding to nominal 
errors).  Then, an interval is formed such that all sub 
intervals are included in it.  If these sub-intervals are 
chosen carefully, then it is possible to show that the 
probability of the true solution being outside this interval 
is below the required PHMI. 
 
Real time 
 
First, a list of all error models is tabulated.  The maximum 
number of the error models is equal to the number of 
subsets of satellites that is 2n.  The PHMI budget, labeled 
PHMIreq is distributed among all the modes.  For the basic 
algorithm, the determination of each term is arbitrary: 
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Next, for each mode, a vertical position solution and a 
sub-interval is computed such that: 
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Both xv

(i) and Li are computed by using only the nominal 
measurements in the error model i (thus ignoring the 
measurements that are arbitrary). 
 
Let us assume that state 0 corresponds to the failure free 
case.  The real time Vertical Protection Level (VPL) 
associated to the all in view position is given by: 
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Proof of safety 
 
The interval defined by this VPL and the all in view 
position is such that: 
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As a consequence: 
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Predicted VPL 
 
The algorithm described in the previous paragraphs 
computes the real time error bound.  As one can see from 
the definition of the real time VPL, this depends on the 
actual measurements.  (Notice that the probability that is 
computed is the system probability, not the probability 
conditioned on the measurements).  In many applications, 
an upper bound of the error bound VPLRT needs to be 
predicted with a specified probability, labeled Pcont here 
(for continuity).  That is, we need to determine VPL such 
that: 
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The definition of VPLRT gives: 
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Again, the continuity budget Pcont is distributed among all 
the modes (although not the all-in-view mode): 
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For each mode we determine Mi such that in nominal 
conditions: 
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The VPL is then defined as: 
 

( )max i ii
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With this definition, the continuity requirement is met.  It 
is important to notice that this framework is extremely 
flexible: As long as one can compute the position and 
error bound in the known presence of each threat, the 
VPL can be derived. 
 
 
EXAMPLE 
 
Here we give an example of the application of the 
algorithm which covers many practical applications.  Let 
us suppose that there are n pseudorange measurements.  
The geometry matrix is labeled G.  The pseudorange 
errors have a nominal error characteristic well described 
by a Gaussian distribution with standard deviation σk and 
maximum bias bk. A weighting matrix W is defined by: 
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Each failure is characterized by a partition of the 
measurements in nominal and failed.  Let us consider one 
failure mode, which is indexed as i.  A geometry matrix 
Gi is defined that has the same size as G but with zeros in 
the rows corresponding to the (possibly) faulty 
measurements.  It is assumed that more than 4 rows are 
non zero, so that a position can be computed.   
 
Real time VPL 
 
In real time, we can compute xv

(i) for each mode as a 
linear combination of the measurements that are not 
affected by the fault: 
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A good choice for h is given by: 
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It is assumed here that the 3rd component is the height.  
Let us define: 
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Then Li can be defined as: 
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In this equation, KHMI,i is defined as: 
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With this definition, the PHMI requirement is met.   
 
 
Predicted VPL 
 
In order to compute a predicted VPL, we need to compute 
the terms Mi, which bound the expected separation 
between the different solutions.   
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As this is the predicted solution separation under nominal 
conditions, its distribution is overbound by a normal 
distribution with standard deviation σss,i and bias BBss,i: 
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In the Appendix, it is shown that in the case that W is 
diagonal we have the relationship: 
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The term Mi can be defined as: 
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The constant Kcont,i is defined by: 
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OPTIMIZATION 
 
In the previous section, the baseline algorithm has been 
described, along with a general example.  In this section, 
the method to optimize the VPL is described, which is the 
original contribution of this work. 
 
First, it is necessary to understand over which variables 
one can optimize.  It is possible to vary: 
 

- the set of coefficients used for each subset 
solution.  In the previous example, we have used 

the weighted least squares solution based on the 
weighting matrix.  Other weights might provide 
a smaller error bound, in particular if biases are 
on the same order of magnitude as the random 
errors [SOCP reference] 

- the continuity budget (or false alarm probability) 
allocation 

- the PHMI budget allocation 
 
In this algorithm it is not possible to optimize the 
allocation given the measurements themselves, as the 
proof of safety assumes that an allocation is made before 
the measurements are known.  The allocation cannot be 
dependent on the measurements. 
 
The search of optimal subset solution coefficients is 
independent for each mode, and independent of the 
allocations.  Once this choice has been made, we can 
associate a function to each subset solution i: 
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As was described earlier, the final VPL is obtained by 
taking the maxima of the VPLi, so that the problem of 
minimizing the VPL can be formulated as: 
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The optimal solution to this problem is unknown to the 
authors of this work.  However, because both Li and Mi 
are decreasing functions of their arguments, one can show 
that at the minimum all the VPLi are equal.  A simple 
proof is as follows: suppose that one of the terms is above 
the remaining ones, one could increase the allocation of 
that term (and decrease the other ones) so that the net 
effect would be a reduction in the VPL.  This is a useful 
property that suggests strategies that, although 
suboptimal, produce better results than an arbitrary 
allocation.  Before describing how the minimization was 
done in this work, we indicate how to compute a lower 
bound on the VPL. 
 
It is possible to evaluate a lower bound of the optimal 
VPL (which we don’t know how to calculate) by 
evaluating: 
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The difference here is that each mode is allocated the full 
continuity budget.  Because Pcont is usually on the order of 
10-6, optimizing the continuity budget does not decrease 
the VPL substantially: the ratio between the sigma 
containment at 10-6 to the sigma containment at 10-7 is 
less than 10%, and the continuity term is usually less than 
50% of the total VPL, such that the total decrease is less 
than 5%.  It is due to this reason that in this work, the 
continuity budget was allocated arbitrarily (which 
determines Mi) whereas the integrity was allocated 
optimally. 
 
Once the continuity budget has been allocated, the 
problem to solve is of the form: 
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where fi are decreasing functions.  As indicated above, at 
the minimum we have: 
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So the problem can be reformulated as: 
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This is a mono-dimensional problem that can be easily 
solved numerically, for example by interval halving.  
 
 
ADDITIONAL CONSIDERATIONS 
 
Extension to the horizontal dimension 
 
The algorithm can be extended to the horizontal 
dimension using the same approach that is used in the 
WAAS Horizontal Protection Level calculation [10].  For 
Gaussian errors, it is not straightforward to compute the 
probability of a horizontal error being below a certain 
threshold.  It is however easy to find an overbound by 
finding the direction of maximum error (corresponding to 
the maximum eigenvalues of the covariance in the 
horizontal plane) and using Rayleigh statistics instead of 
Gaussian statistics [10]. 
 

The bias also needs to be accounted and an overbound of 
the bias in any direction in the horizontal plane needs to 
be computed.  It is proven in the Appendix that the 
maximum bias in the horizontal plane for a given a set of 
coefficients S and maximum pseudorange biases can be 
bounded by: 
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In this equation, it is assumed that the dimensions 
corresponding to the horizontal plane are the first one and 
the second one. 
 
Exclusion 
 
The algorithm presented here computes the Protection 
Level once the measurements are dimmed to be 
consistent.  It is important to keep in mind that exclusion 
is not an integrity issue: leaving a corrupt measurement in 
the solution will simply degrade the Protection Levels 
such that a given service is not available.  An exclusion 
algorithm well adapted to a Multiple Hypothesis Solution 
Separation algorithm has been described in [1].  However, 
any exclusion method can be used in conjunction with the 
algorithm presented here.   
 
Continuity error bounds and integrity error bounds 
 
In the examples shown above, the same nominal error 
models have been used for both the integrity part of the 
VPL and the continuity part.  It is possible to use a 
different set of models for continuity and integrity.  The 
integrity model error needs to be an overbounding density 
for each given user.  The continuity error model can be 
averaged over different users and conditions (although for 
the same geometry).  For this reason, the continuity 
bounds are not as stringent as the integrity bounds.  For 
each pseudorange, two additional parameters are 
introduced here to describe the continuity error bound: 
σcont,k and bcont,k.  The continuity parameters are used in the 
formulas for σss,i and BBss,i: 
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This approach allows users to compute less conservative 
predicted protection levels while meeting the integrity 
requirements in real time. 
 
 
LINK WITH MAXIMUM SLOPE BASED RAIM 
 
In this section we introduce as an aside a comparison 
between solution separation RAIM and chi-square based 
RAIM.  This paragraph shows that while the two methods 
behave similarly, there are significant differences that can 
result in different performance levels. 
 
Link with maximum slope based RAIM 
For this section it will be assumed that: 

- Nominal biases are zero 
- There are n failure modes corresponding to each 

satellite failing at a time 
This last assumption is made here to lighten the notation, 
and the conclusions reached in this paragraph do not need 
it. 
 
In this paragraph the differences and common points of 
slope based RAIM and MHSS RAIM are highlighted.  As 
opposed to MHSS RAIM, Maximum slope based RAIM 
only checks the chi-square statistic that can be formed 
from the residuals.  One of the approaches of slope based 
RAIM is the one described in [weighted RAIM], which is 
summarized here.  The methodology has been generalized 
to multiple failures in at least one way [Angus].  The 
formula for the VPL is given by: 
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For one line of sight, the slope is given by: 
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The threshold T is set by the required false alarm 
probability.  At first sight, this formula is appears to be 
very different from the MHSS formulation.  However 
they are actually very similar since there is the exact 
relationship: 
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(In this paragraph, we can use the same index k for both 
the mode and the line of sight.)  The slope based VPL is 
defined by: 
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Differences with slope based RAIM 
 
In slope RAIM the proof of safety relies on certain 
approximations [cite Brown] which are not proved to be 
conservative, but have been dimmed sufficient for large 
error bounds (such as for En Route, Terminal and 
LNAV).  The main formula is obtained by assuming that 
all the errors are coming from the failed subset, and that 
the magnitude of the chi-square statistic is only a function 
of the bias of the failed subset.  Ad hoc terms are added in 
two different ways to account for the effect of the nominal 
noise, but they are not strictly conservative.  (However, if 
both terms are added, then it is strictly conservative).  
This is an important point when comparing the magnitude 
of the VPL using other methods.  One can see the effect 
of this approximation in the second term of the VPL: 
whereas the MHSS solution uses the standard deviation of 
the subset, slope RAIM uses the standard deviation of the 
all-in-view set. 
 
Another drawback of slope RAIM is the loss of 
information that occurs when forming the chi-square 
statistic (instead of exploiting the residual vector, which 
has N-4 degrees of freedom.)  This loss of information 
causes the difference in the first term of the VPL 
equation.  The chi-square statistic threshold defines an 
ellipsoid (with degenerate dimensions).  The first term of 
the VPL corresponds to the maximum solution separation 
given that the measurements fall within the ellipsoid.  
However, there are ample regions in the ellipsoid that do 
not result in a large solution separation.  As a 
consequence, the use of the chi-square statistic as a 
discriminator, while practical, appears to be arbitrary.  It 
is interesting to notice that once the whole vector of 
residuals is used (through the subset solutions), it is 
possible (and easy) to compute a provably conservative 
VPL. 
 
While it is not possible to directly compare the relative 
performances, we can compare the first term in the VPL 
by computing the ratio: 
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For the purposes of the comparison, we can choose to 
divide the continuity budget among the failure modes (a 
conservative factor of 3 is added here to account for the 
continuity allocation in the horizontal dimension): 
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In Table 1, the resulting ratio is shown for n varying from 
5 to 20 and n = Nmod and Pcont = 4 10-6.  One can see that 
there is a clear advantage in using the solution separation 
statistic rather than the chi-square statistic. 
 
Nsat 5 8 11 14 17 20 

,cont i

T
K

 
.96 1.12 1.23 1.31 1.39 1.46 

 
Table 1.  Ratio between the first term in the VPL between 
a chi square based protection level and a solution 
separation based protection level. 
 
In addition, to the performance considerations, MHSS 
RAIM allows a much more flexible threat model (varying 
a priori probability of failures, nominal biases, distinction 
between continuity and integrity error bounds). 
 
 
RESULTS 
 
To illustrate the optimized algorithm, we show 
availability and coverage results corresponding to a single 
constellation and a dual constellation (GPS and Galileo).  
The integrity nominal standard deviation σk is defined by: 
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The continuity nominal standard deviation σcont,k is 
defined by: 
 

2 2 2 2
, , , _ ,cont k cont URA k DF air k tropoσ σ σ σ= + +  

 
The error models specifying the Code Noise and 
Multipath (CNMP) error bound and the tropospheric error 
are described in the Appendix.  In addition we need to 
specify the User Range Accuracy both for integrity and 
continuity as well as the maximum bias.  In all the 
performance evaluations we assume: 
 

- σURA =.7 m (integrity) and σURA,cont = .25 m 
(continuity) 

- Nominal bias b = 1 m (integrity) and continuity 
bias bcont = .1 m 

 

Please refer to the section on Additional Considerations 
for the difference between the continuity and integrity 
error bounds.  The required integrity (PHMI) and 
continuity (Pcont) requirements are 10-7 and 4 10-6 
respectively. 
 
Performance evaluation 
 
The performance of the algorithm was evaluated by using 
the set of MATLAB scripts MAAST [11] to compute the 
predicted VPL of a set of users distributed over the world 
during one day.  The users are placed on a grid every 5 
degrees in both longitude and latitude (which gives 2592 
locations).  For each location, the geometries are 
simulated every 5 minutes (which gives 288 epochs).  For 
each time and location a VPL is computed following the 
algorithm specified above. 
 
Comparison with a non-optimized MHSS RAIM algorithm 
 
In order to illustrate the benefits of the optimization, the 
algorithm is compared to a non-optimized MHSS 
algorithm.  Notice however, that the non-optimized 
algorithm needs to be minimally modified to achieve 
sufficient performance: some of the low a priori 
probability fault modes with weak geometries can be 
excluded before ever computing the associated interval, 
because their probability is so small that they don’t need 
to be mitigated by the RAIM algorithm. 
 
Single constellation (27 satellites in three planes) 
 
The first example considers a three plane constellation 
with 27 satellites (one of the options considered for 
Galileo) [12].  The probability of failure per satellite is 
chosen to be 10-4.  (which matches the probability of fault 
that is assumed in the Galileo Safety-of-life concept [13]).  
It will be assumed that the failures are independent, such 
that the probability of two simultaneous failures is 10-8.  
These need to be considered because the probability of 
any two failures is above the total integrity budget of 10-7.  
The VPL map is shown in Figure 1.  The meaning of this 
map is the following: the value plotted is the 99.9 
percentile of all the VPL values computed at a given 
location over the course of a day. 
 



 
Figure 1. 99.9 Percentile of the VPL over the course of a 
day for a single constellation. 
 
In Table 2, we show the difference between the 
performance of the optimized algorithm compared to the 
non-optimized one.  Although the average VPL reduction 
is about 15% only, the difference for the coverage of 35 m 
(with 99.9 % availability) is significant, since there with 
the optimized allocation algorithm there is no 
unavailability. 
 
 Equal Allocation Optimized 

Allocation 
Average 99.9% 
VPL 

28.4 24.2 

Coverage of 
99.9% 35 m 
avail.  

95.5% 100% 

 
Table 2.  Performance summary for a single constellation 
with 27 satellites 
 

 
Figure 2. 99.9 Percentile of the VPL over the course of a 
day for a dual constellation. 
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Allocation 

Average 99.9% 
VPL 

18.6 m 15.1 m 

Coverage of 
99.9% 20 m avail. 

83.7% 100% 

 
Table 3.  Performance summary for a single constellation 
with 27 satellites 
 
Dual constellation  
 
The second example considers a dual constellation with 
the Galileo (the same as in the first example) and a 24 
satellite GPS constellation (the optimized 6 plane 
constellation defined in [10]).  The probability of fault per 
satellite was chosen to be 10-3, which is a very high 
probability of failure.  The resulting VPL map is shown in 
Figure 2 and the summary of results in Table 3.  The 
reduction in average VPL is in this case close to 20%.  
The increase in the coverage of 20 m VPL (with 99.9 % 
availability) is dramatic: it goes from 83.7% to 100%. 
 
 
CONCLUSION 
 
The algorithm presented here is very flexible in the threat 
model it can protect against; also, its proof of safety relies 
on a PHMI calculation based on a fault tree (which is an 
accepted methodology for WAAS and LAAS); finally, it 
dynamically allocates the integrity budget among possible 
failure modes to optimize the Protection Levels.  This 
dynamic allocation improves substantially the 
performance of the baseline MHSS RAIM algorithm 
(15% to 20% in VPL reduction), bringing the coverage to 
100% in cases with high probabilities of satellite failure 
(10-4 for a single constellation with 27 satellites and as 
high as 10-3 for a dual constellation (27+24)).   

VPL (m) - 99.9%
< 12 < 15 < 20 < 25 < 30 < 35 < 40 < 50 > 50

Longitude (deg)

La
tit

ud
e 

(d
eg

)

VPL as a function of user location

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

 
 
APPENDIX 
 
Two-step Minimization 
 
Another possibility is to approach the optimization is by 
minimizing independently the continuity term (M) and the 
integrity term (L): 
 

Minimize  ( )( ),max i cont ii
M P

Subject to   
mod 1

,
1

N

cont i cont
i

P P
−

=

=∑
And then: 
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max i
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PHMI
M P L

P

⎛ ⎞⎛ ⎞
⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Subject to  
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−
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As pointed out earlier the benefit of optimizing over the 
continuity allocation is much smaller than the benefit of 
optimizing the integrity allocation.  Also, it can be very 
damaging to performance, because some modes with very 
weak geometries have a disproportionate effect on the 
final bound, even though they might have a very low a 
priori and could have been excluded in the first place.  
The equal allocation of the continuity allows some terms 
to be very large, but when the PHMI allocation is 
optimized, those terms are effectively canceled (the PHMI 
allocation to these modes matches the a priori of the 
fault.) 
 
Biases in the horizontal dimension 
 
We prove: 
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Formulas relating Solution Separation RAIM and slope 
based RAIM 
 
The formula for the slope used in weighted RAIM is the 
following: 
 

cov

cov

T
i ii

i T
ii i i i i i
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P w w g g w
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−
 

 
In this equation, the vector e is the direction of the 
coordinate of interest.  The matrices with the subscript 

mean that the pseudorange (or set of pseudoranges) is 
excluded.  We have: 
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We also have: 
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The proof is as follows: 
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Finally, we have: 

( )( )( )ˆ ˆ ˆ ˆ cov covT
i i iE x x x x− − = −  

So that: 
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Besides linking the two main forms of RAIM, this last 
formula provides an easy way to compute the generalized 
slope term that was described in [6]. 
 
 
Nominal Error Models 
 
Here is the definition of the Code Noise and Multipath 
(CNMP)error  and tropospheric error used in the Results 
section.  The CNMP error bound is given by: 

2 22
2 2 51
, _ 1, , 5, ,2 2 2 2

1 5 1 5
k DF air L k air L k air

ff
f f f f

σ σ
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2
2σ  

where: 
2 2 2 2
1, , 5, , , ,L k air L k air k noise k multipathσ σ σ σ= = +  

f1 and f5 are the L1 and L5 frequencies. 
 
The multipath contribution is defined in [10] for AAD-A 
aircraft: 
 

( ) 10
, 0.13 0.53 k

k multipath m m e θσ − °= +  
The noise term was assumed to be: 

( )( ) (, 0.04 0.02 5 / 85k noise km mσ θ= − − ° )°  
This formula was taken from [14]. 
 
The tropospheric error is assumed to be bounded by: 
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