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ABSTRACT

We present the design and implementation of a highly portable
multi-antenna datalogging system which can log several
minutes of multi-channel raw GPS L1 baseband. In ad-
dition, our design interleaves two serial data streams with
the baseband data, allowing, e.g., inertial data to remain
synchronized with the data stream. The system is FPGA-
based and uses two CompactFlash cards for storage. The
data is extracted by imaging the CompactFlash cards onto a
PC and recovering synchronization codes interleaved with
the baseband data. The resulting system is useful for multi-
(and single-) antenna receiver development, as it allows for
simple data collection. The data files can then be used as in-
puts to software receivers for algorithm development, test-

ing, and quantitative comparisons.

1 INTRODUCTION

Traditional GNSS receivers use a bank of special-purpose
logic to correlate incoming (downconverted) data samples
against locally generated copies of these signals. This cor-
relation is used to steer the code and carrier tracking loops,
which in turn produce estimates of code and carrier phase
shifts that are used by higher-level navigation processing.
In typical real-time implementations, once an incoming sam-
ple has been integrated in the correlations, it is discarded
on the next clock cycle. This architecture is well suited for
a wide variety of applications, as it can be used to design
the low-power receiver ASICs that have contributed to the
dramatic drop in GPS receiver prices in recent years.

However, this architecture does not lend itself well to re-
ceiver design and signal analysis, as the raw RF baseband is
not available for experimentation. In this work, we describe
the design and implementation of a portable device which
is well suited to receiver research and algorithm develop-
ment. This device will capture every data sample from a
6-antenna array and save it to a flash-based storage. The
samples can be later recovered to PC files for receiver al-
gorithm development on real-world data.

1.1 Motivation

In the Stanford Computer Science Department, ongoing re-
search has produced advances in the state of the art of aer-
obatic autonomous helicopter flight [1]. In prior work, we
have presented applications of statistical machine learning
techniques to aerobatic R/C helicopter system identifica-
tion (model building) and controller generation. We have
used these techniques to successfully derive controllers ca-
pable of autonomous inverted hovering, rolls, flips, funnels,
and a variety of other maneuvers.



However, as we have continued to push our airframes and
algorithms into ever more agressive maneuvers, we have
found that obtaining accurate localization is rather difficult.
This is particularly true in aerobatic maneuvers that require
the helicopter to repeatedly transition through inverted ori-
entations. In our experience, single-antenna GPS receivers,
even very good ones, cannot rapidly re-acquire carrier lock
in such situations. As a consequence, state estimation must
rely solely on inertial integration, which in our experiments
is MEMS-based and thus degrades rapidly.

Therefore, we have begun to investigate the feasibility of
constructing a multi-antenna GPS receiver which provides
omnidirectional reception via antenna switching. As a first
step in this undertaking, we describe the construction of a
multi-antenna datalogging device which is capable of op-
erating onboard our helicopter platform and collecting the
raw GPS baseband streams emitted by a collection of RF
front-end chips.

1.2 Application areas

A portable, robust, easy-to-operate baseband data collec-
tion system is of great utility in designing GPS receiver
algorithms. By capturing the raw output of RF front-end
chips, multi-antenna receiver algorithm development can
happen offline in software. The datalogging device is par-
ticularly useful if experiments, such as helicopter flights,
have practical difficulties or are challenging to simulate.

Although high-fidelity single-antenna simulators have ex-
isted for a number of years in the GNSS community, ob-
taining real-world multi-antenna data logs helps increase
the likelihood that receiver algorithms designed in software
will work in a wide variety of real-world situations.

2 ENVIRONMENTAL CONSTRAINTS

The R/C helicopter application imposed numerous restric-
tions on our design. Because these restrictions were the
deciding factor in several design choices, we will provide
some details of the R/C helicopter environment.

Figure 1. Aerobatic RC Helicopter

Our helicopters (see Figure 1) run powerful single-cylinder
engines. The airframes and small and light (1 meter and 5
kilos, respectively). As a direct consequence, the airframes
undergo vibrations in the 2G range. Furthermore, the ex-
cellent thrust-to-weight ratio allows the helicopters to un-
dergo accelerations in the 3G range (along the axis of the
main rotor). Aerobatic tuning of the flight controls allows
for rotational rates of 0.5 rotations per second in the pitch
and roll axes and 1 rotation per second in the yaw axis. The
dynamic nature of the platform means that any datalogging
device must be quite mechanically robust.

As with any aerial platform, the flight weight of the sys-
tem is severely constrained; heavier payloads reduce the
aerobatic capabilities of the vehicle. Furthermore, on such
small helicopters, payload size is limited to a few cubic
inches, as larger payloads could shift the center of gravity
far from its nominal position along the axis of the main ro-
tor, resulting in an airframe that is more difficult to control.

3 DATA STORAGE

There are several options for storing the baseband data. The
following sections describe the various options and their
respective feasability for the R/C helicopter application.

3.1 DRAM

A large DRAM module could serve as a data store: the
hardware could fill the DRAM with the sample data, and
later dump this data to a PC for permanent storage. This
option has the advantage of being relatively simple, but it
is limited by the size of DRAM modules that are readily
obtainable (at time of writing, modules larger than 4 GB
are rather expensive). Furthermore, a loss of power before
the DRAM module has been copied out of the datalogger
will result in the loss of all data.

3.2 Mechanical hard disk

Mechanical hard disks have been successfully used in the
past [2], [3] to create multi-antenna dataloggers. Because
laptop hard disks are readily obtainable, this solution would
be inexpensive and have a very large capacity. However,
we chose not to pursue this concept due to the severe vibra-
tions and accelerations our platform experiences in normal
operation. Because the vibration of our platform is approx-
imately double the vibration rating of most consumer hard
drives, we feared that head crashes would destroy a hard-
disk based datalogger.



3.3 Solid-state hard disk

Solid state hard drives are gaining momentum in the com-
puter industry as replacements for mechanical hard drives.
These drives can use the same ATAPI protocol and form
factor as mechanical drives, but they implement data stor-
age using flash memory instead of rotating platters. Al-
though these drives are dropping in price, a large solid-state
drive with high throughput costs several thousand dollars
at time of writing. This option was not pursued simply be-
cause of cost; as prices continue to fall, solid-state drives
may become a viable option for portable datalogging.

3.4 USB flash disk

USB flash disks have previously been used to record dual-
antenna data [4]. In that work, the logging system was a
small form factor (nano-ITX) PC with two USB flash disks
for storage. The resultant system was small enough to fly
on a balloon for successful experiments. However, as we
were seeking to reduce weight and power even further in
our logger design, we chose not to follow the embedded
PC approach in this work, opting instead for a fully FPGA-
based system. Since we did not have a host PC, USB flash
disks were not an option in our design.

3.5 Removable Flash Media

There are a variety of removable flash media formats cur-
rently used in mass-market digital cameras. Flash cards of
each of these formats are readily obtainable. However, ac-
cess to the technical specifications of many formats require
significant licensing fees.

For this project, we chose to use the CompactFlash stan-
dard. Its specification is freely available, and the fastest
CompactFlash cards currently provide the highest through-
put of all the various flash standards.

CompactFlash cards can run in several operational modes.
We chose the “True IDE” mode, which means the card is
operated by the parallel ATA (PATA) protocol. Various ver-
sions of this protocol have been in use for decades. Thus,
documentation and open-source software and hardware im-
plementations are widely available.

4 WRITE STALLS

Like many storage devices, CompactFlash cards have bursty
write characteristics. As shown in Figure 2, the cards oc-
casionally (especially at startup) stall in the write cycle, re-
sulting in several milliseconds of zero throughput. Since
the goal of the GPS baseband logger is to capture the raw
output of the RF front-end chips, such gaps in the data are

Figure 2. Write speed (bits per second) over time. This plot
shows the empirical write throughput during 10 sec-
onds of continuous write requests at a nominal rate of
100 megabits per second.

unacceptable. Therefore, we spent significant efforts in de-
signing a buffering scheme which can absorb such write
stalls without dropping data samples.

5 FRONT-END BOARD

Our front-end board is based around the SiGE SE4110L.
The RF signal from a GPS L1 antenna is fed into the chip,
which then outputs a downconverted and digitized version
as a 2-bit digital stream at 16.368 MHz.

Figure 3. Front-end board

Our prototype front-end board has 8 of these chips, as shown
in Figure 3. However, for the experiments described in this
paper, only 6 of these chips were used due to limitations on
the sustainable CompactFlash write bandwidth. All 6 chips
are driven from the same clock reference. Because the
SE4110L directly derives its sample clock from the input
clock on this frequency plan, the output digital stream is al-
ways in phase across all 6 chips. Thus, this front-end board
can be seen as producing a single 12-bit digital word at
16.368 MHz, which results in approximately 196 megabits



per second. These bits are carried through a wire harness to
the digital logger section, which will be discussed in detail
in the next section.

6 LOGGER IMPLEMENTATION

The digital logging section of our design is constructed
around a mid-size Xilinx Spartan-3E FPGA. The FPGA
paradigm was chosen because of the high data rates of the
system and the desire for portability. Although an all-software
solution might be possible using a high-power CPU and
clever use of the memory hierarchy, we instead used cus-
tom FPGA logic to implement the system in a small and
reasonably low-power fashion.

6.1 Block Diagram

Figure 4. Logger block diagram

A block diagram of the logger is shown in Figure 4. In
the diagram, white blocks are synthesized on the FPGA,
and yellow blocks indicate off-chip components. Heavy
red lines indicate high-bandwidth data flows, and thin black
lines indicate low-bandwidth data flows.

The top half of the diagram is the standard picture of FPGA-
based embedded systems: a soft-core processor (in this
case, the Xilinx MicroBlaze) surrounded by various off-
chip I/O peripherals to form a complete computer system.

The bottom half of the diagram, however, was custom-
designed for this project. The next few sections will de-
scribe this data path in detail.

Figure 5. Input stage block diagram

6.2 Input Stage

As shown in Figure 5, data words emitted by the front-end
board enter the FPGA clock domain through a dual-clocked
FIFO. Due to the high data rate of the front-end board, we
chose to create two (identical) parallel data paths. Each
arm of the data path handles 98 megabit/sec, which is com-
fortably below the (empirically measured) maximum 128
megabit/sec sustained write speed of CompactFlash cards
in “True IDE” programmed I/O (PIO) mode.

After leaving the clock-domain-crossing FIFO, the incom-
ing 12-bit data words are therefore split into two 6-bit data
words. The next component in the data path combines these
6-bit data words to form a stream of 16-bit data words.
Since the least common multiple of 6 and 16 is 48, the
conversion is performed by an 8-state logic block which
produces three 16-bit data words for every eight 6-bit in-
puts.

6.3 Input FIFO, Mux, and Synchronization Codes

Figure 6. Synchronization stage block diagram

As shown in Figure 6, the 16-bit data words are fed into an-
other FIFO, which is fetched by a component that, every 64
bits, stops the FIFO and inserts a “synchronization word,”
which consists of an 8-bit counter and two 4-bit shift regis-
ters constructed by directly sampling the data lines of two
serial receivers (UARTs). This synchronization word thus
provides an integrity check on the data as well as allowing
two UARTs to be logged alongside the GPS data. Since
the UART and baseband data are interleaved, they are well-
synchronized in time. In our application, one of the UARTs
was driven by an inertial memeasurement unit (IMU), and
thus maintaining time synchronization was critical.



After the bit width conversion and synchronization code
multiplexing, this stage outputs a stream of 16-bit data words.

6.4 Buffering

The buffering stage, shown in Figure 7 operates on 16-bit
data words, and uses off-chip SRAM to provide buffering
of 1 million words. This is achieved with a single-port
18-megabit SRAM. In order to provide buffering to both
SRAM cards, two circular buffers were implemented on
the SRAM: one using the even addresses, and one using
the odd addresses. Maintaining read and write addresses
for each circular buffer allowed the single SRAM to pro-
vide storage for two deep FIFOs.

Figure 7. Buffer stage block diagram

To avoid wasting bus cycles while shifting the SRAM be-
tween write and read operations, small FIFOs were synthe-
sized on the FPGA to buffer 1000 words in each data path.
These FIFOs allow the SRAM to perform large numbers
of sequential writes and reads, rather than change the bus
direction (and incur wait cycles) for each data word.

At a 200 megabit/sec data rate, the 16-megabit buffer is ca-
pable of holding 80 milliseconds of data. This was more
than sufficient for our experiments. However, we note that
the various brands and models of CompactFlash cards have
different stall characteristics and sustained write speeds.
Our hardware only works with relatively new high-performance
cards. Older or lower-quality cards simply do not have the
sustained write speed to keep up (and catch up after write
stalls) with the data rate of the front-end board.

6.5 Card Control

Our CompactFlash controller combined two levels of soft-
ware control with hardware logic.

The top tier of control was written in C and runs on the
Xilinx MicroBlaze soft-core CPU which is at the heart of
the logger. This high-level control layer resets the cards
after power-up, queries their sizes, and places them in a
known state.

The middle tier of control was written in assembly for a
small 8-bit soft-core processor, the Xilinx PicoBlaze. Be-
cause these processors are small and easy to instantiate,
we synthesized one for each CompactFlash card. Once the
high-speed datapath is started, these processors attempt to
keep the card as busy as possible: they initiate the sector
writes and poll the cards until they are ready to receive data.

The lowest level of control was written in Verilog. This
layer pulls data from the SRAM buffer and, using the Com-
pactFlash PIO Mode 6 timings, shuttles data to the cards.
At the end of each sector, this control layer relinquishes
control of the card to the middle tier of control.

6.6 User Interface

The user interface of the datalogger is quite simple. A few
buttons provide for reset, “start logging,” and “stop log-
ging” functionality. A small LCD display shows the num-
ber of bytes written as logging progresses. For debugging
information, a USB-UART chip is provided, allowing the
datalogger to provide a console (via a virtual COM port)
when plugged into a host computer’s USB bus.

6.7 Runtime

Using two 8-gigabyte flash cards, the system can store ap-
proximately 10 minutes of data using the front-end board
described previously, which emits data at a rate of 200
megabit/sec. Naturally, this recording time would double
if 16-gigabyte flash cards were used, and even higher card
densities will likely emerge in the future.

A simple 3.3-volt switching power supply was implemented,
allowing the datalogger to be directly driven from any DC
power source in the 5-15 volt range. For our experiments,
we powered the system from 3-cell lithium-polymer bat-
teries. The nominal power draw of the system was 2 watts.
The optional LCD backlight drew another 1 watt when pow-
ered on. This means that a 3-cell lithium-polymer bat-
tery will power the system for approximately two hours,
although this runtime is somewhat irrelevant because the
logging capacity of the data store is an order of magnitude
less.

6.8 Physical Layout

As shown in Figure 8, the FPGA is carried on a separate cir-
cuit board which plugs into a pin-grid array (PGA) socket
on a custom-designed carrier board. The FPGA module is
commercially available and integrates the FPGA (and its
difficult-to-prototype BGA packaging), a PROM to config-
ure the FPGA, and 16 megabytes of DRAM.1 The carrier
board provides two megabytes of SRAM, two Compact-
Flash sockets, a small LCD display, two RS-232 ports, a
few buttons, and a power supply.

Additionally, the carrier board has a U-Blox LEA-4S mod-
ule which is used as a “sanity check” on the data stream. Its
NMEA output is interleaved with the GPS baseband data,

1The Darnaw1 FPGA module is available from Enterpoint Ltd.



Figure 8. Digital logger board

as discussed previously, to provide a baseline for checking
all post-processed navigation solutions.

6.9 Flexibility

Because the digital logging section is separated from the
RF front-end board, it is possible to substitute any man-
ner of RF front-end in the place of our 6-channel GPS L1
board. So long as the data rate stays below 250 megabit/sec,
the digital side of the system will operate in the same fash-
ion. For example, one could use different front-end chips
to log fewer channels with more bits of resolution, or log
another frequency band such as Galileo or COMPASS, or
some mixture of frequencies. The digital side of the system
simply shuttles bits around and stores them.

7 DATA EXTRACTION

The logger hardware does not attempt to set up a file system
on the CompactFlash cards. Rather, it simply treats the card
as a (massive) linear array. To extract usable data, the cards
are first imaged into a PC’s file system. Then, subsequent
processing stages decode the disk image and recover the
GPS baseband data and the interleaved serial data streams.

7.1 Baseband Data Recovery

To recover the baseband data, the card images are scanned
to find the offset of the synchronization word. This offset
is easily found, as the synchronization word contains an 8-
bit counter which is inserted into the data stream every 128
bytes. By reading the first few sectors of the card image
and trying every possible offset, the true offset is readily
obtained.

As previously discussed, the 6-bit data words fed to each
arm of the data path are combined in a state machine to

form streams of 16-bit words. To recover the true starting
phase offset out of the 3 possibilities, the average activa-
tion of each bit is observed using each of the 3 possibili-
ties. Since the SE4110L chip has automatic gain and bias
control, the sign bit should be active 1/2 of the time and the
magnitude bit should be active 1/3 of the time. To resolve
the ambiguity between antennas, we intentionally reverse
the sign and magnitude bits for front-ends 1 and 4. This
means that the correct data phase will result in the follow-
ing bit activation rate:

1/3 1/2 1/2 1/3 1/2 1/3

After decoding the first few sectors of data with each of the
possible initial data phases, the correct data phase is readily
apparant.

After the initial synchronization word and data phase off-
sets are found, the data decoding can begin. We decode
the sign and magnitude bits to produce binary files which
use one byte per sample, with each byte one of {-3,-1,1,3}.
Such files are then easily imported into MATLAB or read
by other languages.

7.2 Serial data recovery

To recover the two serial streams, their shift registers are
first extracted from the synchronization words. Then, in
software, we perform exactly what a UART does in hard-
ware: wait for the start bit, then (using the previously known
baud rate) sample the data bits, and finally ensure that a
valid stop bit is present. Our software then writes this data
stream to a binary file for further processing.

In our experiments, one serial stream was the ASCII NMEA
data from a GPS receiver module, and the other stream was
300-hertz inertial data (3-axis accelerometers, angular rate
sensors, and magnetometers). While the NMEA data could
be read directly with a text editor, the inertial data required
another decoding stage to produce a text file suitable for
importing into MATLAB.

8 EXPERIMENTS

To verify the functionality of the logger, we attached six
GPS L1 antennas to the roof of a vehicle and drove for sev-
eral minutes with the logger running. The resulting data
files were first treated as separate data logs and tracked
independently. As shown in Figure 9, the antennas have
similar noise figures. We are uncertain if the differences
in Figure 9 are due to antenna placement on the roof of the
vehicle or to the physical layout of the front-end board. Re-
gardless, there is a marked difference, as shown in Figure
10, when the signals are combined. This figure shows the
results of tracking the data log using a multi-antenna re-



Figure 9. C/No obtained by tracking each of the 6 channels sep-
arately. The variations in C/No are perhaps due to an-
tenna placement or physical front-end board layout.

Figure 10. C/No obtained by an adaptive antenna-array process-
ing algorithm. Red shows tracking using only one
antenna, and blue shows tracking with all 6 antennas
combined adaptively.

ceiver algorithm [5]. The results verify the functionality of
both the datalogger and the tracking algorithm as the sig-
nals are adaptively combined to yield a significantly higher
C/No ratio.

Although not shown in this paper, the IMU and reference
NMEA outputs were also reasonable. Therefore, we con-
clude that the datalogging device is successfully storing
multi-channel GPS baseband data, interleaved with two se-
rial data streams.

9 CONCLUSIONS

We have presented the design and implementation of a portable
data-collection device which can capture data streams of
up to 250 megabit/sec. For our own experiments, we con-
structed a 6-channel GPS L1 front-end board which pro-

duces data at 200 megabit/sec. We demonstrated the func-
tionality of the device by logging 6 GPS L1 antennas and
an inertial data stream on a moving vehicle’s roof and post-
processing these streams both independently and using multi-
antenna techniques.
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