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ABSTRACT

The time of arrival (TOA) and the time difference of
arrival (TDOA) measurements are transformable to each other
without a loss of information regarding positioning and thus
the position estimations based on them should be theoretically
equivalent. It is proved by Shin [1] in case of homogeneous
and uncorrelated ranging sources with the weighted least
square (WLS) method. In this paper, their equivalence is
proved in a general case and examined under various practical
scenarios including non-homogeneous and correlated ranging
sources and suboptimal weighting methods such as the least
square (LS) by simulation.

I. I NTRODUCTION

The Global Positioning System (GPS) satellites are under
constant monitoring and calibration and thus contain relatively

high homogeneity in the transmitter errors. But terrestrial
communication systems such as television stations and WiFi
transmitters considered as possible ranging sources lack such
sophisticated supporting platforms and experience highervari-
ation in their noise distributions. Therefore the integration
of the GPS signals and the terrestrial signals for positioning
becomes challenging because the transmitter errors are no
longer homogeneous.

Pseudorange measurement in the time difference of arrival
(TDOA) is often employed to use the terrestrial communica-
tion signals as ranging signals and its performance was shown
to be equivalent to that of the time of arrival (TOA) when the
Weighted Least Square (WLS) method is applied given the
noise covariance under the assumption of homogeneous and
uncorrelated noises [1]. It is also expected to be true for any
noise distribution since either measurement format contains
same position information. However, if a suboptimal weighting
scheme such as the least square method (LS) is applied either
for less complexity or due to inacurrate knowledge of the noise
distribution, there exists a discrepancy in the performance of
the TOA and the TDOA. Thus, in practical situation, they may
not be considered equivalently. The difference between their
performances are to be studied in this paper in various noise
distributions considering homogeneity and correlation.

The weighted dilution of precision (WDOP) is re-defined for
a general case of a noise distribution and used for comparison
between the TOA and the TDOA in Section II. The TOA and
the TDOA are compared with various weighting schemes in
Section III and their performance is simulated in Section IV
and the conclusion is given in Section V.

II. D ILUTION OF PRECISION

The original dilution of precision (DOP) was derived as-
suming that the measurement noises are uncorrelated to one
another and identically distributed with the noise covariance
Σv = σ2

vI. Thus either the LS or the WLS performs equiv-
alently and the DOP depends only on the geometry of the
transmitters represented byG [3], [4].

DOP=

√
tr[(GT G)−1] (1)

tr(·) is the trace of a given matrix. But when other types
of ranging sources are used together with the GPS satellites,
there are significant variations in the noise distributionsand
the DOP is no longer a proper measure of the user position



domain variance. To address this problem, the KDOP, the
weighted DOP (WDOP), and other similar types of measures
were proposed [6]-[10]. The KDOP is a variant of the DOP
for the TOA solution with the LS and the WDOP is for the
TOA and the WLS.

KDOP =

√
tr[G†Σv(G†)T ] (2)

WDOP=

√
tr[(GT Σ−1

v G)−1] (3)

The KDOP and the WDOP serve well the individual scenar-
ios but not all general cases. Therefore, instead of providing a
separate expression for each case, a single governing definition
is desirable to combine and link them together. Because the
purpose of the DOP is to find a translation metric between
range domain errors and position domain errors, a subtle
extension of the original DOP definition suits well. A ratio
between the total variance of user variables which usually
are position variables,tr(Σ

θ̂
), and the average range domain

variance ,tr(Σv)/n = σ2
v,RMS, is a direct extension of the

DOP and introduced as the extended DOP (XDOP). In other
words, the XDOP is a position variance normalized by a range
variance.

XDOP =

√
sum of user variable variances

average of pseudorange variances

=
√

tr(Σ
θ̂
)/σv,RMS (4)

θ is a vector of variables in interest and̂θ is the estimation
of θ. σv,RMS is a root mean square (RMS) average of the
standard deviation of range errors. For the geometric DOP
(GDOP),θ = δx and the position DOP (PDOP), the horizontal
DOP (HDOP), the vertical DOP (VDOP), and the time DOP
(TDOP) also can be defined by selectingθ accordingly.

Other variants of the DOP can be expressed as the XDOP
by evaluatingΣ

θ̂
andσv,RMS for each case.

XDOPΣv=σ2
vI = DOP (5)

XDOPTOA/LS = KDOP/σv,RMS (6)

XDOPTOA/WLS = WDOP/σv,RMS (7)

The XDOP is to be used as a standard metric in the comparison
between the TOA and the TDOA with the LS and the WLS.

III. TOA AND TDOA

A set of pseudorange measurements can be used either in the
TOA format containing an unknown common receiver clock
biasb as they are in (8) or can be transformed into the TDOA
format by differencing between them and removing the clock
biasb in (9).

W δρ = WGδx + Wv (8)

W DDδρ = W DDGDδu + W DDv (9)

where W is the n × n weighting matrix andW D is the
(n − 1) × (n − 1) weighting matrix for the TDOA.D =
[I(n−1)×(n−1),−1(n−1)×1] is the (n − 1) × n differencing
matrix for the TDOA assuming that the last pseudorangeδρn

is with least variance without loss of generality.G is then×4
geometry matrix for the TOA andG = [GD,1n×1] where
GD is the n × 3 geometry matrix for the TDOA.δρ is the
n × 1 vector of the differentiated pseudorange measurements
assumingn transmitters andδx is the4× 1 vector of the dif-
ferentiated user variables assuming 3 dimensional positioning
and δx = [δuT , δb]T whereu is the user position variables.
v is the n × 1 residual measurement noise vector after the
differentiation.

There are two contradicting arguments regarding to the TOA
and the TDOA. The first argument is that pseudoranges in
the TOA format can be transformed into ones in the TDOA
format without loss of information related to the position
estimation and vice verse. It is because the pseudoranges
in the TOA format have the unknown common variableb
and thus only the relative values between them contain the
positioning information which either the TOA format or the
TDOA format carries. Hence, the choice of the format should
not make any difference in the final result as long as proper due
processes to the specific format are done. Theith pseudorange
measurementρi in the TOA and the TDOA format can be
represetned as follows.

ρi = ri + b + ǫi (10)

∆ρi,n = (ri − rn) + (ǫi − ǫn) (11)

whereri is the true range andǫi is the measurement error. The
transformation from the TOA to the TDOA is straightforword
by differencing each measurement by thenth measurement.
The transformation from the TDOA to the TOA is possible if
the clock biasb is not needed to be estimated.

ρ̃i = ∆ρi,n = ri + b + ǫi − ρn = ri + b̃ + ǫi (12)

ρ̃n = 0 = rn + b + ǫn − ρn = rn + b̃ + ǫn (13)

where b̃ = b − ρn. ρ̃i transformed from the TDOA format is
exactly same with the original TOA format measurementρi

except the new clock bias̃b. And bothb and b̃ are unknown
variables to their TOA equation and thus, ifb is not important
to know, the TDOA is shown to be transformable to the TOA
without any loss of information regarding user position.

The second argument is that the estimation error variance
of the TDOA is bigger than that of the TOA. By differencing,
the residual measurement noise termsǫi are subtracted to one
another∆ǫi,j = ǫi − ǫj and if uncorrelated the resulting
variance becomes the sum of the two and is larger than the
individualsσ2

∆ǫi,j
= σ2

ǫi
+ σ2

ǫj
≥ max(σ2

ǫi
, σ2

ǫj
). For example,

if σ2
ǫi

= σ2
ǫj

∀i, j, the TDOA format carries twice larger noise
variances than the TOA format resulting in larger estimation
error variance.


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


 =⇒




2σ2 σ2 . . . σ2

σ2 2σ2 . . . σ2

...
...

. . .
...

σ2 σ2 . . . 2σ2


 (14)

The answer to these contradicting arguments comes from
distinction on the LS and the WLS. The 2nd argument is



based on the LS solution and predicts the superiority of the
TOA/LS over the TDOA/LS but the TOA and the TDOA with
the WLS are not governed by it because the WLS decorrelates
both inherent correlation and artificial correlation created by
differencing and effectively diminishes the variance. The1st
argument supposes the best efforts processing which is the
WLS and thus predicts the equivalence of the TOA/WLS and
the TDOA/WLS.

The LS and the WLS solutions for (8) and (9) are given
as follows supposing the measurement noisev with zero
mean and the known covarianceΣv. The statistics of the
user variables which are the location and the clock bias are
supposed to be unknown.

θ̂TOA/LS =G†δρ (15)

θ̂TOA/WLS =(WG)†W δρ

=(GT Σ−1
v G)−1GT Σ−1

v δρ (16)

θ̂D,TDOA/LS =(DGD)†Dδρ (17)

θ̂D,TDOA/WLS =(W DDGD)†W DDδρ

=[GT
DDT (DΣvDT )−1DGD]−1

× GT
DDT (DΣvDT )−1Dδρ (18)

whereθD = δu andΣv, G, andGD are assumed to be full
rank and(·)† is the Moore-Penrose pseudoinverse of a matrix.
The optimal weighting matrices for the TOA and the TDOA
are

W ∗ = Σ−1/2
v (19)

W ∗
D = (DΣvDT )−1/2 (20)

The WLS solution is equivalent to the best linear unbiased
estimator (BLUE). Although the linear minimum mean square
error estimator (LMMSE) performs better than the BLUE, it
is only applicable when the statistics of the user variablesare
known. The variance of the estimated user variables can be
calculated accordingly.

Σ
θ̂,TOA/LS = G†Σv(G†)T (21)

Σ
θ̂,TOA/WLS = (GT Σ−1

v G)−1 (22)

Σ
θ̂D,TDOA/LS = (DGD)†DΣvDT [(DGD)†]T (23)

Σ
θ̂D,TDOA/WLS = [G

T
DDT (DΣvDT )−1DGD]−1 (24)

Because of the optimality of the WLS, the estimation error
variances of the TOA/WLS and the TDOA/WLS are less than
those of the TOA/LS and the TDOA/LS respectively [5]. From
the 2nd argument in this section the TOA/LS is supposed to
be superior to the TDOA/LS due to the increase in the noise
variance and it is shown to be generally true by simulation in
Section IV in average of multiple random geometry trials. For
Σv = σ2I, the optimal schemes which are the TOA/WLS and
the TDOA/WLS were proved to be equivalent in their position
variance

Σ
θ̂D,TOA/WLS ≡ Σ

θ̂D,TDOA/WLS

as well as their position solutions [1], [2].

θ̂D,TOA/WLS ≡ θ̂D,TDOA/WLS

Here it is to be proved that the equivalence holds for any noise
distributionsΣv.

Proof: First, the equivalence of the covariance matrices
of the TOA and the TDOA are to be proved from (22) and (24).
For fair comparison, the covariance matrix for only position
variablesΣ

θ̂D
needs to be obtained excluding the terms for

the clock bias.

Σ
θ̂,TOA/WLS = (GT Σ−1

v G)−1

=

[
GT

DΣ−1
v GD GT

DΣ−1
v 1

1T Σ−1
v GD 1T Σ−1

v 1

]−1

=

[
Σ11 Σ12

Σ21 Σ22

]
(25)

where1 is a n × 1 vector of one’s and the submatrices of
Σ

θ̂,TOA/WLS are

Σ11 =

(
GT

DΣ−1
v GD − GT

DΣ−1
v 11T Σ−1

v GD

1T Σ−1
v 1

)−1

=

[
GT

D

(
Σ−1

v − Σ−1
v 11T Σ−1

v

1T Σ−1
v 1

)
GD

]−1

=(GT
DPGD)−1 (26)

Σ12 = − (GT
DPGD)−1GT

DΣ−1
v 1

1T Σ−1
v 1

= ΣT
21 (27)

Σ22 =
1

1T Σ−1
v 1

+
1T Σ−1

v GD(GT
DPGD)−1GT

DΣ−1
v 1

(1T Σ−1
v 1)2

(28)

and P = Σ−1
v − Σ−1

v 11T Σ−1
v /(1T Σ−1

v 1). Σ11 is the error
covariance matrix corresponding toθD. In other words,Σ11 =
Σ

θ̂D,TOA/WLS and is equal toΣ
θ̂D,TDOA/WLS.

Σ
θ̂D,TDOA/WLS =

[
GT

DDT (DΣvDT )−1DGD

]−1

=
[
G̃

T

DD̃
T
(D̃D̃

T
)−1D̃G̃D

]−1

=

[
G̃

T

D

(
I − 1̃1̃

T

1̃
T
1̃

)
G̃D

]−1

=

[
GT

D

(
Σ−1

v − Σ−1
v 11T Σ−1

v

1T Σ−1
v 1

)
GD

]−1

= (GT
DPGD)−1

= Σ
θ̂D,TOA/WLS (29)

where G̃D = Σ−1/2
v GD and D̃ = DΣ1/2

v and 1̃ =

Σ−1/2
v 1. D̃

T
(D̃D̃

T
)−1D̃ is the projection matrix to the

range of D̃
T

. As 1 is orthogonal toD, 1̃ is orthogonal
to D̃. ThereforeD̃

T
(D̃D̃

T
)−1D̃ = I − 1̃1̃

T
/(1̃

T
1̃) and

DT (DΣvDT )−1D = P . (29) proves the equivalence of the
position covariances of the TOA/WLS and the TDOA/WLS.



The position solutions of the TOA/WLS and the
TDOA/WLS are given in (16) and (18).

θ̂TOA/WLS = (GT Σ−1
v G)−1GT Σ−1

v δρ

=

[
Σ11 Σ12

Σ21 Σ22

] [
GT

D

1T

]
Σ−1

v δρ (30)

Again, only the position related parts of the TOA/WLS solu-
tion need to be obtained.Σ11 andΣ12 are given in (26) and
(27).

θ̂D,TOA/WLS

= (Σ11G
T
D + Σ121

T )Σ−1
v δρ

= (GT
DPGD)−1GT

D

(
Σ−1

v − Σ−1
v 11T Σ−1

v

1T Σ−1
v 1

)
δρ

= (GT
DPGD)−1GT

DP δρ

= θ̂D,TDOA/WLS (31)

which proves the equivalence of the position solutions of the
TOA/WLS and the TDOA/WLS.

Within this paper, the positioning system is supposed to
have a single clock bias and thusδx = [δuT , δb]T which
represents the GPS only case or the integrated system using
the GPS signal and land based signals with synchronization
between the GPS receiver and the land signal receiver. It would
be a desirable platform for an integrated system and is assumed
to be throughout this paper.

The optimal weighting matrices for the TOA and the TDOA
given in (19) and (20) can be simplified when the measurement
noises are uncorrelated. IfΣv = σ2I, thenW ∗ = I but W ∗

D
becomesI+ extra terms to decorrelate the correlation created
by the differencing.

W ∗ = I (32)

W ∗
D = (DΣvDT )−1/2

=

(
I(n−1)×(n−1) −

1

n
1(n−1)×(n−1)

)1/2

= I(n−1)×(n−1) −
1

n ±
√

n
1(n−1)×(n−1) (33)

W ∗
D can be expressed as an upper triangular matrix

by the Cholesky factorization [11], [12]. IfΣv =
diag(σ2

1 , σ2
2 , . . . , σ2

n), then W ∗ remains diagonal butW ∗
D

becomes really complex. Instead(W T
DW D)∗ is given which

is still within printable complexity.

W ∗ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
n ) (34)

whereW ∗
i,i = σ−1

i andW ∗
i,j = 0 if i 6= j for the TOA.

(W T
DW D)∗ = (35)




(
σ−2

1

∑n
k=1 σ−2

k

)
− 1 . . . σ−2

1 σ−2
n−1

σ−2
2 σ−2

1 . . . σ−2
2 σ−2

n−1
...

. . .
...

σ−2
n−1σ

−2
1 . . .

(
σ−2

n−1

∑n
k=1 σ−2

k

)
− 1




where (W T
DW D)∗i,i =

(
σ−2

1

∑n
k=1 σ−2

k

)
− 1 and

(W T
DW D)∗i,j = −σ−2

i σ−2
j if i 6= j for the TDOA.

(W T
DW D)∗ is obtained by evaluating(DΣvDT )−1 and

removing the common scaler(
∑n

k=1 σ−2
k )−1. In the above

two examples with diagonal covariance matrices, the
weighting matrices for the TDOA are nondiagonal with
complex expressions of the individual noise variances while
those of the TOA remain in diagonal forms easily obtainable
by elementwise inversions. The complexity of the weighting
matrix for the TDOA is due to the matrix inversion whose
operation count isO(n3) and is a disadvantage compared to
the TOA when there is no difference in their performance.
To avoid the complexity, the approximations of the noise
covariance matrix would be preferred in certain low cost
receivers with low computational power. The simplest and
practical approach would be approximating the covariance
matrix by only its diagonal elements. It is to be compared
with the LS and the WLS in the next section by simulation.

IV. SIMULATION RESULTS

There are six different methods to be compared in com-
bination of the TOA and the TDOA with the LS, the WLS
and the diagonal WLS (DWLS) which uses the approximated
weighting matrix considering only the diagonal elements ofthe
noise covariance matrix. For the TOA/LS and the TDOA/LS,
W = I and for the TOA/WLS and the TDOA/WLS,
W = W ∗. For the TOA/DWLS and the TDOA/DWLS, the
weightings are respectively

W = W̃ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
n ) (36)

W D = W̃ D (37)

= diag


 1√

σ2
1 + σ2

n

,
1√

σ2
2 + σ2

n

, . . . ,
1√

σ2
n−1 + σ2

n




For simulation, the geometry matrixG is generated based
on randomly located transmitters on the surface of a half
sphere centered by a user. The covariance matrix of the user
variablesΣ

θ̂
is evaluated according to (21)–(24) and hereθ

is assumed to be the 3 dimensional user position variable
δu. Then the XDOP values are calculated which should be
called as the XPDOP. The comparison is based on the XPDOP
where a higher XPDOP means higher position variance. The
RMS average of the XPDOP in105 random trials is plotted
against the number of ranging sources. To provide the relative
performance of the approaches, an excess ratio is defined as
a percentage of the XPDOP of a given scheme exceeding the
XPDOP of the optimal TOA/WLS.

Excess Ratio=

(
XPDOP

XPDOPTOA/WLS
− 1

)
× 100 [%] (38)

which indicates how much more error is generated by a
suboptimal scheme than the optimal ones.

The noise covariance is assumed to be perfectly known
to the user. Regarding the nature of ranging sources, their
homogeneity and correlation are in interest corresponding



TABLE I

EXCESSRATIO IN HOMOGENEOUSUNCORRELATEDRANGING SOURCES

[%]

n TOA/LS TOA/DWLS TDOA/LS TDOA/DWLS
5 0 0 2.45 2.45
10 0 0 15.88 15.88
15 0 0 27.77 27.77
20 0 0 38.86 38.86

to the diagonal elements and the off-diagonal elements of
the noise covariance respectively. Homogeneous sources have
equal diagonal terms and correlated sources have nonzero off-
diagonal terms.

A. Homogeneous Uncorrelated Ranging Sources

In the space based positioning system like the GPS, the
satellites are usually supposed to be homogeneous and the
noises are uncorrelated thanks to the constant monitoring
and calibration by the ground monitor stations. The noise
covariance matrix becomes an identity matrix multiplied by
a common varianceΣv = σ2I. Then the TOA/LS becomes
equivalent to the TOA/WLS and the TDOA/WLS because
W ∗ = I but the TDOA/LS remains inferior to them because
W ∗

D 6= I. The approximated cases, the TOA/DWLS and
the TDOA/DWLS, are equivalent to the TOA/LS and the
TDOA/LS respectively. In other words, only the TDOA/LS
and the TDOA/DWLS are suboptimal to the rest. Their posi-
tion variance are in the order of

σTOA/WLS = σTDOA/WLS = σTOA/DWLS = σTOA/LS

< σTDOA/DWLS = σTDOA/LS

Because of the optimality, the TOA/LS always generates
lower estimation error variances than the TDOA/LS. In Fig.
3, the ratio between the XPDOPs of the TDOA/LS and the
TOA/LS is shown to be always higher than 1. The gap
between them goes to zero as the number of the transmitters
n comes close to 4 becausen = 4 forces the solution to be
exact and increases asn increases. Each data point in Fig.
1 represents the RMS average of the XPDOPs for 100,000
random geometries where the XPDOPs are shown to be
inversely proportional to the number of ranging sources. They
are translated into the excess ratios (38) in Fig. 2. The gap
between the optimal sets and the suboptimal sets are almost
linearly increasing as more transmitters are used. Forn = 10,
there is approximately 16 % and forn = 15, 28 % increase
of the positioning error if the TDOA/LS or the TDOA/DWLS
is used while all other methods do not experience such loss
which is summarized in Table I where the excess ratios of the
subopitmal schemes are listed. If Fig. 3 is revisited, we can
see that the excess ratio can be as high as 50 % for n=10
which is an substantial degradation.

B. Nonhomogeneous Correlated Ranging Sources

In case of the integrated positioning system combining
the GPS signal and other terrestrial signals, there would be
significant variations in their behavior and the terretrialsignals

5 10 15 20

10
0

10
1

Number of Ranging Sources

R
M

S
 A

ve
ra

ge
 X

P
D

O
P

TOA/LS
TOA/WLS
TOA/DWLS
TDOA/LS
TDOA/WLS
TDOA/DWLS

Fig. 1. XPDOP in homogeneous uncorrelated ranging sources (n= 5–20)

5 10 15 20

0

20

40

60

80

100

Number of Ranging Sources

E
xc

es
s 

R
at

io
 [%

]
TOA/LS
TOA/DWLS
TDOA/LS
TDOA/DWLS

Fig. 2. Excess ratio of XPDOP compared to TOA/WLS in homogeneous
uncorrelated ranging sources (n = 5–20)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

500

1000

1500

2000

2500

3000

3500

XPDOP

H
is

to
gr

am

XPDOP
TDOA/LS

 / XPDOP
TOA/LS

Fig. 3. Ratio between XPDOPs of TOA/LS and TDOA/LS in homogeneous
uncorrelated ranging sources (n = 10)



are more likely to be correlated to one another. Thus they
can be considered as non-homogeneous correlated ranging
sources. For simulation, the maximum deviation between the
noise variances which are the diagonal elements of the noise
covariance matrix is set to be 20 dB and randomly generated
uniformly between 0–20 dB which is a modest assumption
considering much wider variations in real systems. The off-
diagonal elements are proportional to the corresponding diago-
nal terms with random attenuationsΣv,i,j = a

√
Σv,i,iΣv,j,j

where a ∼ U [−0.2, 0.2]. In other words, it is assuemd that
there is in average 10 % correlation between channels which
is again another modest assumption. Because of these mild
assumptions, the result is less severe than the reality where
more degardation is expected.

The major change from the homogeneous uncorrelated case
is that all schemes are benefiting from the non-homogeneity.If
Fig. 8 is compared to Fig. 1, all schemes are performing better
than previous which is because there are very bad channels
but at the same time very good channels which improve the
performance especially the WLS and the DWLS schemes. The
DWLS forms a second group closely following the optimal
WLS while the equal weighting methods form a distant third
group.

For non-homogeneous and correlated sources,
σTOA/WLS = σTDOA/WLS < σTOA/DWLS < σTDOA/DWLS

< σTDOA/LS < σTOA/LS

One thing to note is the switch between the TOA/LS and
the TDOA/DWLS. The TOA/LS is best for the homogeneous
sources but worst for the non-homogeneous ones while the
TDOA/DWLS is worst for the homogeneous but very close
to the best for the non-homogeneous case. It means that their
performance are dependent on the type of the sources and
neither of them could be an universal solution. Another change
from previous two cases is the widened performance gap
between the optimal groups and the LS schemes.

For the non-homogeneous correlated ranging sources, the
weighting strategy is a decisive factor while the TOA and
the TDOA are not differentiated much. Especially the DWLS
schemes generate small degradations represented by the excess
ratio less than 7 % and 13 % respectively for the TOA/DWLS
and the TDOA/DWLS for upto 20 sources in Fig. 9. Thus
they could be an simple and good alternative to the WLS in
this case. Contrarily the TOA/LS and the TDOS/LS cause sig-
nificant degradations and forn = 10 there are approximately
47 % and 40 % and forn = 15, 71 % and 61 % increase
of positioning errors respectively in Table II. More detailed
pictures of the LS schemes and the DWLS schemes are given
in Fig. 6 and Fig. 7 respectively. In both case, one method is
better than the other but not always.

C. Comparison Between Noise Scenarios

To compare the weighting schemes across the various types
of the noise distributions, n is fixed to be 10. 4 different scenar-
ios, homogeneous uncorrelated, homogeneous correlated, non-
homogeneous uncorrelated, and non-homogeneous correlated
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Fig. 4. XPDOP in non-homogeneous correlated ranging sources(n = 5–20)
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Fig. 5. Excess ratio of XPDOP compared to TOA/WLS in non-homogeneous
correlated ranging sources (n = 5–20)
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homogeneous correlated ranging sources (n = 10)
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homogeneous correlated ranging sources (n = 10)

TABLE II

EXCESSRATIO IN NON-HOMOGENEOUSCORRELATED RANGING

SOURCES[%]

n TOA/LS TOA/DWLS TDOA/LS TDOA/DWLS
5 5.93 0.31 4.75 0.44
10 47.38 1.79 39.97 3.63
15 71.07 3.74 60.91 7.78
20 87.78 6.04 76.34 12.76

transmitter networks, are considered. In Fig. 8, the XPDOP
is shown to be significantly lower in the non-homogeneous
case while correlation does not make noticeable change on
it. The robustness of the schemes can be analyzed from Fig.
9. The TOA/LS is very good in the homogeneous cases but
worst in the non-homogeneous cases and the TDOA/DWLS is
in reverse order. The TDOA/LS is in a poor group regardless
of the noise types. Among them, the TOA/DWLS is shown to
be best in all cases only affected by the correlation which is
still in quite low range less than 2 % for n=10. Considering
its simplicity, its robust performance across the noise types is
impressive and it could be a good alternative to the optimal
weighting schemes for low end receivers. In Table III, the
excess ratio is summarized.

V. CONCLUSION

The DOP is the most popular metric of the quality of
a particular set of ranging sources measuring its geometry
and estimating the resulting variance of user variables. But

TABLE III

EXCESSRATIO IN HOMOGENEOUSUNCORRELATED, HOMOGENEOUS

CORRELATED, NON-HOMOGENEOUSUNCORRELATED, AND

NON-HOMOGENEOUSCORRELATED RANGING SOURCES[%] (N=10)

TOA/LS TOA/DWLS TDOA/LS TDOA/DWLS
Homo/Unc 0 0 15.88 15.88
Homo/Cor 1.78 1.78 17.90 17.90
Non/Unc 44.82 0 37.55 1.81
Non/Cor 47.38 1.79 39.97 3.63
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the latter function is only valid in case of the uncorrelated
homogeneous ranging sources. Thus, for proper representa-
tions in general cases where noises can be non-homogeneous
or correlated, the extended DOP (XDOP) is proposed to
be a position variance normalized by range variances. It is
compatible with the conventional DOP and other definitions
of the DOP like the KDOP and the WDOP. Using the XDOP,
the TOA and the TDOA can be compared in combination of
the LS and the optimal WLS in various scenarios.

The TOA and the TDOA have been known to be equiv-
alent when the WLS is adopted in case of homogeneous
uncorrelated ranging sources. In this paper their equivalence
is proved and shown to hold by simulation in a general
case including non-homogeneous correlated cases. However,
in terms of implementation, the TOA is much less complex
and straightforward and thus recommended over the TDOA.
Besides these optimal methods, there are supoptimal weight-



ing schemes such as the LS with equal weighting and the
diagonal WLS (DWLS) with diagonal approximation of the
optimal weighting matrix. Among the suboptimal schemes,
the TOA/DWLS is the best choice which are universally stable
and simple to implement. The TDOA/DWLS and the TOA/LS
perform well only for the certain types of transmiter networks
and the TDOA/LS is the worst of all. Thus, both for the
optimal weighting and the suboptimal weighting methods, the
TOA is recommended over the TDOA.
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