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ABSTRACT

Automatic control of agricultural vehicles has been a
research goal for many years. Previous attempts have
failed largely due to sensor limitations. With the advent of
modern GPS receivers, a single low-cost sensor has been
synthesized in which centimeter-level position and
attitude measurements of the vehicle state are available
using Carrier-Phase Differential Global Positioning
System (CDGPS). Previous research at Stanford

University has demonstrated control of a Deere 7800
tractor at low speed without implements.

Utilizing the Observer/Kalman Filter Identification
method, input-output measurements were combined to
form a central model of the farm tractor for all speed and
implement combinations. A linear quadratic regulator
(LQR) controller was designed utilizing the central model
and experiments were performed to measure the achieved
performance. 

Tight line-following was achieved that surpasses the
capability of human drivers—at a speed of 1.75 m/s (4
mph), standard deviations for tractor with any implement
were less than 7 cm. (3 in.) and with no implement, the
standard deviation at this speed is less than 5 cm. (2 in.).
Tractor automatic control performance improves as tractor
velocity decreases, but remains excellent within the usable
range—standard deviations remain at less than 11 cm. (4
in.) for all implement and speed combinations.

INTRODUCTION

The primary goal of this work was to experimentally
demonstrate system identification and precision closed-
loop control of a farm tractor using CDGPS as the only
sensor of vehicle position and attitude.

Autonomous guidance of ground vehicles has been a
research objective for many years. Previous attempts have
failed largely due to sensor limitations—experimental
systems required cumbersome auxiliary equipment in or
around the field [1,2], while others have relied on vision
systems that require clear daylight, good weather, or field
markers that require complex pattern recognition [3,4].
With the advent of modern GPS receivers, a single, low-
cost sensor for measuring multiple vehicle states has been
incorporated into a prototype self-guided tractor.

Previous work done at Stanford demonstrated carrier-
phase differential GPS (CDGPS) as the primary state
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sensor, with centimeter-level positioning accuracy [5] and
attitude determination to better than 0.1° [6]. Using
CDGPS as the vehicle state sensor, and augmenting the
GPS satellite signals with a ground-based “pseudo”-
satellite, integer cycle ambiguity resolution is assured, and
the solution integrity is greatly enhanced [7]. These
extremely accurate and reliable measurements of multiple
vehicle states lend themselves to system identification,
estimation, and automatic control [8].

Previous work at Stanford has concentrated on setting up
the mechanisms to achieve automatic control of a large
agricultural vehicle, initially working with a golf cart [9],
and progressing to a large farm tractor [10]. Automatic
control of ground vehicles at Stanford has progressed in
measured steps. In 1995, a golf cart achieved line-
following using CDGPS to a standard deviation of 5 cm.
(2 in.)[9]. In 1996, a simple kinematic model was used to
demonstrate tractor control about a line to a standard
deviation of 2.45 cm. (1 in.) at a velocity of 0.33 m/s (0.75
mph)[10]. At the ION-GPS 1996 conference, tractor
control was demonstrated using identified models from
input-output data to control the tractor about a straight line
with a standard deviation of less than 2.5 cm. (1 in.) at
0.33 m/s (0.75 mph) and less 7.2 cm. (3 in.) at a speed of
1.6 m/s (3.5 mph)[8].

Continuing the work presented in 1996, in early 1997 the
Stanford group demonstrated integer cycle ambiguity
resolution using a curving trajectory about a single
pseudolite [11]. The basic shortcoming of this research
was that while precise control was demonstrated and
proved very effective, each controller was designed to
operate at one specific speed, and with one kind of
implement. Switching between controllers had to be
accomplished via driver interaction, gain scheduling, or
additional sensors that allowed the software to determine
the configuration and speed of the tractor and switch

between these individual controllers.

A robust control system was required that utilized a single
controller capable of controlling the tractor at all speeds
with any implement without user interaction. This was a
challenging task—fixed gain controllers that are designed
for a specific speed yield poor performance at speeds
slower than the design point and will go unstable at speeds
greater than the design speed. Furthermore, different
implements can greatly alter the dynamics of the tractor to
the point that controller instability results. Many non-
linear effects come into play when an implement is towed
through the soil: friction on the implement will vary with
soil conditions, soil density variations will impart lateral
forces on a running implement, and strange
tractor/implement interactions such as implement “hop”
can occur at certain speeds.

“Hop” manifests itself when a towed implement causes
the tractor to bounce up and down over the soil as the
“spring” of the rubber tire loads and unloads because of
the towing force. Obviously, during these conditions, front
wheel contact is time-varying and directly affects the
tractor’s response to any steering commands.

All implements tend to reduce the effect of front steer
angle on the tractor’s trajectory due to loss of contact or
reduced normal load on the ground. Disturbances are
much larger and, in many cases, both time-varying and
non-linear. In general, hitched implements (ie: rigidly
attached to the tractor) transmit lateral disturbances from
the soil directly to the tractor, whereas towed implements
do not. Towed implements can drag the tractor to one side
or the other due to non-symmetrical loading of the tractor.
For instance, the disker has angled wheels that tend to pull
the implement to the left.

This paper explores the effort to develop one controller
that can address all of these issues, demonstrates the level
of control that was attained with this “central” controller,
and compares the results to previous designs as well as an
expert human driver.

THE HARDWARE SETUP

Vehicle Hardware: The test platform used for vehicle
identification and control testing was a John Deere Model
7800 tractor (Fig. 1). Four single-frequency GPS antennas
were mounted on the top of the cab, and an equipment
rack was installed inside. Front-wheel angle was sensed
with a potentiometer—the only non-GPS sensor used in
the system—and actuated using a modified Orthman
electro-hydraulic steering unit. A Motorola MC68HC11
microprocessor board was the communications interface
between the control computer and the steering unit. The
microprocessor converted serial commands from the
control computer into pulse-width modulated signals

Figure 1 — GPS-Equipped Tractor



which were sent to the power circuits that controlled the
steering valves. Wheel position was sampled and digitized
by the MC68HC11 and sent to the controls computer at 20
Hz. Both the steering unit and the wheel angle
potentiometer were highly non-linear devices.

GPS Hardware: The equipment rack within the tractor
housed the CDGPS-based system used for vehicle
position—this system was similar to the one used by the
Integrity Beacon Landing System (IBLS)[5]. A four-
antenna, six-channel Trimble Vector receiver produced
attitude measurements at 10 Hz. A single-antenna Trimble
TANS PC-card receiver produced code- and carrier-phase
measurements used to calculate vehicle position at 5 Hz.
An Industrial Computer Source Pentium-based PC
running the LYNX-OS real-time operating system
performed the attitude interface, position calculations,
data collection and controls calculations using software
written at Stanford. A functional representation of the
tractor hardware appears below in Figure 2.

Reference Station: The ground reference station that
produced the carrier-phase differential corrections
consisted of an Industrial Computer Source Pentium PC, a
TANS 9-channel PC-card receiver, and software written at
Stanford to broadcast phase corrections to the tractor
through a Pacific Crest radio modem at 4800 bps. 

Pseudolite: CDGPS required a method for initializing the
solution to the correct position. A robust method for
integer-cycle-ambiguity resolution was to travel a curved
trajectory about a single pseudolite, and use the
geometrical leverage to pinpoint the exact solution [11].
The pseudolite was an IntegriNautics L1-pseudolite
transmitter mounted on top of a 6.7 m. (22 ft.) tall
aluminum mast. A Micropulse quadriphilar helix antenna
is used without a ground-plane in order to radiate power
below the local horizon in the direction of the tractor’s
patch antennae.

VEHICLE MODELING AND SYSTEM
IDENTIFICATION DATA COLLECTION

Agricultural farm vehicles must be able to operate over
various types of terrain and with a variety of implements.
While previous work at Stanford has demonstrated closed-
loop line following based on a simple kinematic model
(Figure 3) to a remarkable precision [10], the model is
based on assumptions that are known to be false.

The kinematic model, based on simple geometry rather
than inertias and forces, assumes both a constant velocity
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along the path as well as no lateral wheel slip. While the
velocity may not vary a great deal, it is not constant, and
the four-wheel-drive on the tractor cannot move the

vehicle forward without slipping the wheels.

The kinematic model did, however, provide an initial
reference point to examine the main parameters that affect
tractor dynamics. Close inspection of the kinematic model
showed, as observed by experimentation, tractor dynamics
are a strong function of forward velocity. Mathematically,
both the cross-track deviation (y) and the azimuthal
deviation (Ψ) integrate not with time, but rather with
distance travelled. The steering angle (δ), however, is
purely the time integral of the control signal. In order to
extract the relevant time to distance transformations, an
ideal linear quadratic regulator (LQR) controller was
designed for each velocity using the kinematic model. The
results are plotted in Figure 4—clearly the feedback gains
on crosstrack and azimuth are parabolic functions of
velocity, but the gain on steering angle remains linearly
proportional to velocity throughout the speed range.

In light of these results, new outputs to formulate velocity-
invariant controllers were synthesized from crosstrack and
azimuth normalized by velocity, and wheel angle as
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measured. In order to gather data to perform a proper
system identification of the tractor, a series of open-loop
line-following tests were conducted in which a human
driver, through the GNC computer, caused the steering to
either slew left or right at the maximum steering rate. Also,
the driver commanded the steering rate to zero through the
electro-hydraulic actuator in order to track a roughly
straight line. This “pseudo”-random input was designed to
apply the maximum power to the tractor through the
controls and produce a rich output that would contain
information from all modes of interest. A typical pass for
system identification is pictured on the previous page in
Figure 5.

These data passes were run with the tractor
unencumbered, with a towed disker, and a hitched three-
shank ripper. Data was collected at velocities of 1.0, 1.25,
1.75, 2.25, 3.0 m/s (corresponding to 5th, 7th, 9th, 11th
and 13th gears) and was subsequently used for calculation
and validation of a linear plant model. The data was
gathered separately and then post-processed as a “batch”
for identification. The data was pre-processed and used to
identify local controllers for each speed and implement
combination as well as velocity-invariant controllers for
each implement. Using the aggregate of all open-loop
identification data, a central model that accurately
predicted the behavior of the tractor under all conditions
was identified and a corresponding controller designed
with this model.

The controller was designed using a standard LQR
methodology. The quadratic cost, as calculated below,
minimized the weighted sum of the outputs (ymax and
umaxare design parameters).

THE OBSERVER/KALMAN IDENTIFICATION
PROCESS

The method of identifying the plant models, as well as the
process and sensor noise statistics, chosen for this project
was the observer/Kalman filter identification (OKID)
method. This method of system identification uses only
input and output data to construct a discrete-time state-
space realization of the system. Since OKID’s
development at NASA Langley for the identification of
lightly-damped space-structures, many advances on the
basic theory have been published[13]. Given a linear
discrete-time state-space system, the equations of motion

can be written as follows:

It has been shown that the triplet, [A,B,C] is not unique,
but can be transformed through any similarity transform
(ie. the outputs are unique, but the internal states are not).
However, the system response from rest when perturbed
by a unit pulse input, known as the system Markov
parameters, are invariant under similarity transforms.
These Markov parameters are:

When these Markov parameters are assembled into a
specific form—the generalized Hankel matrix—this
matrix can be decomposed into the Observability matrix, a
state transition matrix, and the Controllability matrix; thus
the Hankel matrix (in a noise-free case) will always have
rank n, where n is the system order.

Because noise will corrupt this rank deficiency of the
Hankel matrix (the Hankel matrix must always be full
rank) the Hankel matrix is truncated using a singular value
decomposition (SVD) at an order that sufficiently
describes the system. This truncated Hankel matrix is then
used to reconstruct the triplet [A,B,C] in a balanced
realization that ensures that the controllability and
observability Grammians are equal. This is referred to as
the Eigensystem Realization Algorithm (ERA); a modified
version of this algorithm that includes data correlation is
used to identify the tractor. A more complete treatment of
the subject can be found in [13].

For any real system, however, system pulse response
cannot be obtained by simply perturbing the system with a
pulse input. A pulse with enough power to excite all modes
above the noise floor would likely saturate the actuator or
respond in a non-linear fashion. The pulse response of the
system can, however, be reconstructed from a continuous
stream of rich system input and output behavior. Under
normal circumstances, there are not enough equations
available to solve for all of the Markov parameters. Were
the system asymptotically stable, such that Ak=0 for some
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k, then the number of unknowns could be reduced. The
identification process would be of little value if it could
only work with asymptotically stable systems.

By adding an observer to the linear system equations, the
following transformation can take place:

Thus, the system stability can be augmented through an
observer and the ideal Markov parameters established
through a least-squares solution [14]. It is useful to note
that the realization also provides a pseudo-Kalman
observer. The observer orthogonalizes the residuals to

time-shifted versions of both input and output. Utilizing
the separation lemma and the provided Kalman filter, only
the controller gains need be designed to implement a full-
state-feedback linear quadratic gaussian (LQG) controller.
An improved version of the OKID process, which includes
residual whitening [15], was used to identify the farm
tractor from the experimental data.

In order to compare velocity invariant and velocity-
specific controllers, the data runs for each velocity and
implement combination were combined and identified to
generate plant models and estimators that were then used
to create local controllers for each condition. In addition,
each implement had all of the data runs at all of the
velocities with the crosstrack and azimuth measurements
normalized by velocity combined; the resulting sets were
again identified and used to generate velocity-invariant-
controllers for no implement, towed implement, and a
hitched implement.

Lastly,  all of the open-loop data was combined and
identified to create a central model—one model that
predicted all variations to both velocity and implement
differences. This model was used to generate one central
controller capable of stabilizing the tractor at all speeds
and with every tested implement. The identification of all
of the open-loop data produced a model that is essentially
a best fit in a least squares sense to all possible
combinations of velocity and implement. 

An SVD of the aggregate velocity-normalized data for the
tractor demonstrated a large drop in the magnitude of the
singular values from the fourth to the fifth, indicating a
system of order four, n=4 (Figure 6). In addition, modal
singular values (Figure 7) of all tractor models of order
higher than four exhibited a two order-of-magnitude drop
from the fourth modes to modes higher than four.

As an experimental check, on the following page in Figure
8, the identified model (with observer) was compared to a
typical system identification pass. The match was
excellent between the modeled and actual data. Note that
the reconstructed data is offset in the figure to distinguish
between the actual and reconstructed data. The matched
data was normalized to velocity, thus the units are seconds
(meters / meters per second) for crosstrack, and degrees-
seconds per meter for azimuth, and is summarized in Table
1 below. 

Table 1—Reconstruction vs. Actual Data
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implement-invariance, a series of experiments were run
and the results collected. In order to establish the boundary
of how well each velocity-invariant controller would be
expected to perform, the experiments were performed with
each fixed-velocity controller (ie. the 5th gear subsoiler
controller was designed using data identified solely from
open-loop data taken at 5th gear with the subsoiler in the
ground). 

Next, a series of passes were run down the test field with
each velocity-invariant controller, at every speed and with
that controller’s designed implement (ie. all of the
subsoiler data was used to create a velocity-invariant
subsoiler controller). Lastly, the central controller was
tested at all speeds and with the three different implement
combinations. Table 2, on the following page, tabulates the
central controller results—the units are meters for
crosstrack biases and standard deviations. As expected, the
biases and standard deviations increased with velocity, but
were well within the requirements of the agricultural
industry.

Figure 9 shows an overhead view of a typical controlled
pass with several rows, each one meter from the other, that
were disked at various speeds. Figure 10 shows
graphically the standard deviations for the various
controllers at the different speeds—three velocity-
invariant controllers are compared with each local
controller, specific to their own implement; these are the
velocity-invariant disker, subsoiler, and unencumbered
controllers. 

In order to compare the computer controlled results to a
human driver, tests were run at a farm with an expert
human driver. A hitched 10-row bedder was attached to the
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tractor and the driver was instructed to drive as straight a
line a possible. The data from this experiment was
recorded and the best line was fitted through the data.
Deviations from this line were calculated and appear in
Figure 11. Note that this is an exceptional driver driving
under ideal conditions. This driver was able to keep the
tractor on the line with a standard deviation of 12.7 cm. (5
inches). Velocity drops several times when the driver
stopped to let dust blow by the cab in order to maintain
visibility.

Figure 12, on the next page, is a close-up view of the
central controller at 1.75 (4.0) and 3.0 m/s (6.7 mph). The
graphs show the overlay of several passes with disker and
subsoiler automatically guided. All of the controllers guide
the tractor precisely down the desired path with or without
an implement, even at speeds that were previously
impossible while maintaining stability.

An interesting comparison is the crosstrack error
of the central controller at 1.75 m/s (4.0 mph) to
the crosstrack error of the expert human driver.
Note that the vertical scales of the two plots are
identical, and the bands that mark two inches off of
the desired track are also identical. It is entirely
clear that the GPS guidance yields much more
precise control than the human driver.

The central controller is able to control the hitched
implement at the same speed to a standard

deviation of less than 7 cm. (3 in.), nearly twice the
precision of an expert human driver. Using automatic
guidance, the tractor did not need to stop for lack of
visibility. Close examination of Figure 12 shows that the
central controller shows no clear “trends” in the errors,
unlike the human driver. The human driver was given the
benefit of choosing his own line across the field, defined
mathematically as a least-squares fit to the data. In side-
by-side comparisons, it is expected that the automatic
control will show further improvement over human
driving. Clearly, there are far-reaching implications for
this kind of system.

AUTOMATIC CONTROL IMPLICATIONS

With a demonstrated ability to both align the tractor to the
start of any given row and the ability to precisely guide the
tractor down that row, many previously difficult tasks
become possible. By controlling the tractor better than an
expert human driver or by matching that driver’s accuracy
at a higher speed, automatic control of farm vehicles can
save time, increase farm efficiency, and lower overall
costs.

As an example, in Arizona, where water is scarce, farmers
are using tape irrigation, a technique which deposits water
directly on the plant roots. A rough figure that is quoted for
maintenance costs due to severed tapes is approximately
$100,000 per year on a large farm. This cost could be
largely mitigated with automatic control through reduced
damage to the tapes from implements as well as placing
the plants close to the irrigation tape for optimum growth.
In this environment, less water would be required and
productivity would increase while lowering costs.

Another consideration is that, for non-precision
applications, such as disking and ripping, automatic
control would enable the same level of precision as a
human driver at higher speed and without driver fatigue.
Current implements are not designed to run at speeds of
greater than 2 m/s (4-5 mph) because the bearings on the
disker wear too quickly and the load on the subsoiler
shanks at these speeds becomes excessive. New
implements could be designed to take advantage of the
higher speeds enabled by automatic control.
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Table 2—Central Controller Experimental Results
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CONCLUSIONS

It has been demonstrated that, pursuing the research
presented in 1996 [8], controllers can be designed using
only input-output data streams that stabilize and
drastically reduce the error in straight-line-following
applications. The controllers have shown remarkable
performance even when operating with towed or hitched
implements over uneven ground.

Finally, one controller was demonstrated that was both
velocity- and implement-invariant which stabilized the
tractor in all modes of operation—hitched, towed, or no
implement, and at any speed. This is a very necessary step
in order to transition from a laboratory experiment into a
viable commercial product.

Line-following accuracies have been demonstrated that
are less than 11 cm. (4 in.) standard deviation at all speeds
with all implements. When tractor velocity is reduced to

normal operating range, the 1-σ values for line-following
drop to less than 5 cm. (2 in.) even when towing an
implement through a rough field.

At this juncture, the requirements of most farms are met
with the existing system. To make the inner workings of
the system transparent to the user,  automatic controllers
were implemented that are both velocity- and implement-
invariant. Tight-line following will be accomplished with
no further intervention by the driver. Using the existing
system, extraordinary accuracy can be attained without the
requirement for clear vision and without fatiguing the
driver.

Greater speeds are enabled by automatic control that can
contribute to increased farm productivity.  Advances in
irrigation combined with the ability for the tractor to know
the exact location of the implement using CDGPS enable
a wide variety of benefits including a reduction in water
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consumption and an increase in productivity.

Utilizing advanced time-domain system identification
techniques, design of a high-gain central controller that is
both velocity- and implement-invariant was accomplished
with only input-output measurements from CDGPS.
Robust automatic control at various speeds and with
several test implements was demonstrated experimentally,
achieving standard deviations of less than 7 cm. (3 in.) at
all useable speeds.
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