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ABSTRACT

The most demanding application of wide area di�er-
ential corrections to GPS is vertical positioning of
aircraft on precision approach. Here the Wide Area
Augmentation System (WAAS) combines accuracy re-
quirements on the order of ones of meters with safety
of life integrity requirements which specify that any
vertical position errors greater than the Vertical Pro-
tection Limit be enunciated to the 
ight crew within
six seconds. The ionosphere is the foremost impedi-
ment to satisfying these requirements.

Stanford, as a member of the National Satellite Test
Bed (NSTB), is developing techniques for estimat-
ing the ionosphere in real-time. Previous research
has established a connection between ionospheric er-
ror and vertical positioning error within the framework
of modal decomposition. Ionospheric tomography is a
natural extension of modal decomposition to the esti-
mation of the ionosphere's three-dimensional electron
density.

We present a tomographic estimation algorithm and
its implementation over the NSTB network. This es-
timator supplies not only corrections to the user but
also appropriate con�dence information for predicting
the accuracy of those corrections in the aircraft. The
tomographic approach to ionospheric correction obvi-
ates the troublesome obliquity factor associated with
typical gridded vertical delay algorithms.

The capability of ionospheric tomography is demon-
strated by a time series of 3D electron density re-
constructions over the Coterminous United States
(CONUS). The accuracy, integrity, and availability af-
forded the user by this approach is quanti�ed through
application on live NSTB observations.

�Supported by FAA Grant 95-6-005.

INTRODUCTION

The ionosphere induces a propagation delay over and
above the free space delay on radiowaves propagating
through the associated plasma. Although this is nui-
sance parameter for ranging applications, at L-band
the additional delay is well modeled as a linear oper-
ator. In addition, since the ionosphere is a dispersive
medium this delay can be observed using radiowaves
at two di�erent carrier frequencies. In the case of GPS
dual frequency receivers a direct measure of the iono-
spheric delay along the line of sight to each GPS satel-
lite in view can be made. The premise of the Wide
Area Augmentation System (WAAS) ionospheric cor-
rection process is to form an estimate of the ionosphere
using such measurements [1]. The resulting estimate
may then be transmitted to single frequency receivers
in order to correct the ionospheric range error.

We have developed two distinct ionospheric estima-
tors for use in the WAAS correction process. The �rst
is comprised of a two-dimensional grid over latitude
and longitude which models the ionosphere as a thin
shell �xed at an altitude in the neighborhood of 350
(km) [2]. Vertical delay is estimated at each grid point
from dual frequency reference station (TRS) measure-
ments. The single frequency receiver then employs a
�xed function of elevation, the so-called obliquity fac-
tor, to map an interpolated vertical delay into a range
delay prediction along the line-of-sight.

The second estimator centers around the tomographic
inversion of the linear phase delay operator which is
simply the Radon transform. Using the known TRS
and satellite locations the three-dimensional phase de-
lay operator is an observation matrix formed via some
basis. The ionospheric electron density estimate is the
inner product of the \inverted" observation matrix and
the TRS measurements. A single frequency receiver
can then predict its ionospheric range error by dotting
the electron density estimate into its own ionospheric
observation matrix.



140˚W

140˚W

120˚W

120˚W

100˚W

100˚W

80˚W

80˚W

60˚W

60˚W

40˚W

40˚W

20˚N 20˚N

30˚N 30˚N

40˚N 40˚N

50˚N 50˚N

60˚N 60˚N

Figure 1: The NSTB reference network geometry is comprised of 23 dual frequency receivers connected in real-time to
a T1 backbone. Stations marked with triangles were used as reference observers and those with stars were monitors
not incorporated into the WAAS correction

Below we give a description of the tomographic in-
version process and identify it as an extension of
the modal decomposition concept presented in pre-
vious work [3]. The reader is referred to the litera-
ture [2, 4, 5] for an exposition of grid estimation tech-
niques. A quantitative comparison between Stanford's
grid and tomographic implementations is made on live
NSTB observations in both the pseudo-range and po-
sition domain for a static user within the context of
accuracy, integrity, and availability metrics. We close
with some comments on immediate implications and
future work.

PROBLEM FORMULATION

Radiowave propagation delay is governed by the phase
relation
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Z SV (r)

R(r)

n(r; f; t)dl(r) (1)

where f is the frequency, c is the speed of light, SV is
the transmitter location, R is the receiver location, n
is the index of refraction, and r is a four dimensional

position vector (x,y,z,t). For the purpose of L-band
ranging (1) is a linear relation since the phase path is
very nearly the line of sight between the satellite (SV )
and receiver (R) [6]. The e�ect of the ionosphere is
captured in the index of refraction, n(r; f), which is
a function of both radiowave frequency and position
along the phase path. The full expression for the index
of refraction in a plasma such as the ionosphere is given
by the Appleton-Hartree equation [7]. We will utilize
the standard L-band approximation [8]

n(r; f; t) = 1�
e2Ne(r)

4��omf
+O(1=f3) (2)

to the Appleton-Hartree equation, where e is the
charge on an electron, Ne(r) is the local electron den-
sity, �o is the permittivity of freespace, and m is the
rest mass of an electron. Substituting (2) into (1) and
subtracting out the free space delay
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Ne(r)dl(r) (3)

where � is a constant, we are left with an expression
for the phase advance induced on the carrier by the
ionosphere.



If we instead insert the group index of refraction
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into (1) we �nd a similar expression for the correspond-
ing code phase delay.
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where � is the code phase.

Since GPS is a ranging application it is convenient to
cast(3) and (5) in terms of time rather than phase
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where � is carrier, pr is code, and K is the appropriate
constant. To �rst order, the code delay is equal but
opposite the carrier phase advance.

The frequency dependence of the phase delay equation
de�nes the dispersion relation which intern provides a
measurement mechanism. The total electron content
(TEC) along the line of sight can be observed by any
receiver with su�cient frequency diversity. In the case
of L1/L2 dual frequency TRSs the code delay obser-
vation equation is

TEC =

Z SV (r)

R(r)

Ne(r)dl(r)

=
fL1fL2(prL1 � prL2)

K(f2
L2
� f2

L1
)

(8)

which can be carrier smoothed [9] in real-time. Con-
versely the TEC induced delay is a ranging error source
for single frequency users since it is unknown.

The task at hand is to make dual frequency TEC mea-
surements at TRS locations shown in Figure 1 and
combine them in real-time to form an estimate of the
electron density and an appropriate con�dence inter-
val on that estimate. The estimate and con�dence is
then transmitted to the user's receiver to correct the
TEC induced error on each single frequency pseudor-
ange measurement.

There are three key points in our application of tomo-
graphic inversion to ionospheric estimation. The �rst
is the equivalence of the observation equation (8) to
the Radon transform expressing a linear operator. The
second is the understanding that this inverse problem
is under-determined. The third is the appreciation of
both Ne(r) and TEC as random �elds.

TOMOGRAPHIC INVERSION

Application of tomography to the �eld of ionospheric
estimation is relatively new, with �rst appearance
in the literature around 1988 [10, 11, 12]. A gen-
eral survey of the static two-dimensional tomographic
implementations to date can be found in [13]. Re-
cently, time dependent ionospheric tomography has
been applied in three dimension on simulated data [14].
Here we present an implementation of real-time three-
dimensional tomographic inversion applied to live GPS
observations.

As a point of departure we de�ne the operator, G :
Ne(r) ! TEC, we wish to invert

G �

Z SV (r)

R(r)

(�) dl(r) (9)

from the observation equation. The operator has �nite
dimension TEC � R(G) in \row" space given a �xed
number of TRS/SVs and presumably in�nite dimen-
sion D(G) � Ne(r) in \column" space.

From here we need to cast the space of the electron
density. The physical ionosphere is a three dimensional
distribution singularly valued in time. As such it has
a well de�ned inner product and a bounded norm im-
plying that Ne(r) is a Hilbert space. This a�ords us
tremendous theoretical leverage most importantly the
Riesz Representation Theorem and the Decomposition

Theorem, de�nitions and proofs for which the reader
is referenced to the literature [15, 16]. The implica-
tion of the former is that the electron density may be
transformed to any basis which spans the space of the
bounding linear functional. The latter provides the
machinery for truncating the in�nite basis set needed
to span the domain of G to a �nite dimensional basis
suitable for computer implementation.

Presuming there is no closed analytic expression for
Ne(r) from which to form a complete basis (a pretty
safe assumption), a necessary step for computer imple-
mentation is to expand the column space of G. There
are many important considerations when choosing a
basis. From the operational perspective we feel the
most signi�cant are the mathematical framework nec-
essary to quantify the con�dence interval rigorously,
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Figure 2: The tomographic TEC delay correction process has three main sections: reference observations, ionospheric
estimation, user range correction.

transmission bandwidth e�ciency, and bounded ver-
sus global support which de�nes the sparsity of G.
Secondary considerations include functional form and
codi�cation e�ort versus computational e�ort.

This being said we have selected spherical harmon-
ics, (Y m

l (�; �) in the latitude and longitude dimensions
and empirical orthogonal functions, �(h), in the radial
dimension for the �rst implementation leaving a fuller
evaluation to subsequent work. The complete basis,
	(h; �; �), is then the series of products

	klm(h; �; �) =

1Y
k;l;m=0

�k(h)Y
m
l (�; �) (10)

which has global support hence G is dense.

We now make our �rst assumption, namely that the
ionosphere has a red power spectrum [3, 14], and in-
voke the second theorem to truncate 	(h; �; �) to �nite
order. For spectral bases such as 	(h; �; �) the cuto�

amounts to a Nyquist criteria on the wave number of
the latitude/longitude and height functionals. This
bound is deterministic in the geometry of the TRS
network/SV constellation and sets a lower bound for
the basis order.

The viewing geometry of a ground reference network is
inherently weaker at resolving vertical variations than
those in the horizontal since the line of sight ray is
never perpendicular to the vertical dimension. Indeed
there is a theoretic upper bound on the wave number
any ground based estimator can attain in the verti-
cal dimension. On the contrary, the horizontal wave
number bound can be increased inde�nitely simply
by adding more TRSs. With this in mind, we treat
	(h; �; �) as a �nite basis in K �L�M functions for
a �xed observation network but defer the speci�cation
of K, L,M to the section on error prediction below. In
any case, G now operates in a discrete column space
and can be expressed simply as an observation matrix,



that is

TEC = hG;Ne(r)i

� hG;	KLM (h; �; �)i � x(t)

= A � x(t) (11)

where x(t) is the vector of coe�cients we seek to es-
timate and the inner product of G and 	(h; �; �) is
carried out over each measurement line of sight. The
explicit time dependence of x will be dropped in the
sequel.

For the purpose of this paper we consider hi`2 as the
inner product for (11). The appropriate inversion in
L2[a; b] is the stochastic inverse

A�g = �mA
T
�
A�mA

T +�d

�
�1

(12)

where �m in the absence of an a priori is the red
spectrum covariance presumed above and �d is the
measurement covariance. This choice of inner product
places the inversion implicitly in the larger framework
of a Kalman �lter. In fact as mentioned in [14], the
stochastic inverse of the observation matrix is nothing
more than the Kalman gain matrix.

Although L2[a; b], is a rather \large" space and cer-
tainly not the only choice, it is one of the simplest
to evaluate, an important consideration in the user re-
ceiver where computational power is a premium. More
importantly it has the additional bene�t that the co-
variance of the estimate is available in closed form.
This is critical to any system such as WAAS which
must generate a rigorous con�dence interval.

The real-time inversion process at one epoch is now
straightforward.

1. Collect vector of TEC measurements, d, from ref-
erence network

2. Build A from TRS-SV geometry (one row per
measurement)

3. Form electron density estimate, x̂ = A�gd

4. Form covariance on that estimate,
�x = A�g�dA

�gT + (I �A�gA)�m

RANGE ERROR PREDICTION

Once the vector of electron density coe�cients and
its covariance are available to the user's receiver, the
range correction for the unknown TEC delay on sin-
gle frequency measurements can be predicted by con-
structing the local observation matrix, Au, and dotting
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Figure 3: Vertical empirical orthogonal functions from
1990 International Reference Ionosphere electron den-
sity distributions.

it into x̂.

d̂u = Aux̂ (13)

and the covariance estimate on the linear prediction is
given by

�du = Au�xA
T
u (14)

The range correction is then subtracted from the cur-
rent pseudorange measurements which in turn are
propagated through the navigation equation. The co-
variance estimate is also propagated through the in-
tegrity equation to form a con�dence interval. The
reader is referenced to [17] for details on this process.

The user's TEC covariance estimate lays the ground-
work for setting the number of basis functions used
to approximate the Ne(r) space. Setting the upper
bound on the number of modes lower than the resolv-
ing power of the reference network aliases observed
ionospheric modes onto the user receiver's so called
unobserved modes [3]. There is no theoretic upper
bound when employing an optimal �lter since unre-
solved modes will be damped out. However, the work
needed to build A is linear in the number of modes,
K�L�M , and the inversion of A is at best quadratic
in that same number.

Choosing the actual number of basis functions dif-
fers depending on the operational scenario. In sci-
enti�c purposes with no real-time constraint and a
focus on resolving the electron density the number
of basis functions should be at the upper end of the
spectrum. Given a �xed observation network the cost
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Figure 4: Dual frequency carrier smoothed TEC mea-
surements from a static user are compared against
code delay predictions from the grid and tomographic
estimators. In this case the monitor station at Grand
Forks, ND is viewing PRN #1.

of adding basis functions is two-fold: computational
expense, but more importantly increased observation
time needed for the geometry to resolve additional
modes. This second cost is the critical condition when
moving to the real-time arena. The only way to miti-
gate the time dependence is to have a strong a priori

estimate and a dynamic model possessing the unusual
property of accuracy that increases with wave num-
ber. Neither of these are currently available at the
level of maturity needed for safety of life integrity re-
quirements demanded in WAAS.

Fortunately in our case we have an escape hatch from
this dilemma. Recall that we wish to correct the
TEC induce pseudorange error for the single frequency
user. The estimate and therefore also its covariance
are passed back through the observation equation. If
we examine (9) we see that it is a smoothing operator
and thus the e�ective wave number in TEC is reduced
from that in Ne(r). Provided the inversion is faith-
ful in covering any biases caused by aliasing with its
covariance estimate, the basis functions, 	klm(h; �; �)
can be truncated to a number commensurate with the
allowable observation time.

We have chosen spherical harmonics to order 5, and 3
EOFs, The EOFs are shown in Figure (3) and extend
from 80 to 580(km). As compared with previous work
of other authors [14, 18, 19] this number of terms is
the low end of the spectrum in concordance with our
decision against incorporating dynamics and the pre-
sumption of an a priori distribution. The observation
matrix constructed over this basis is however rotated
into the solar-magnetic frame to take advantage of any
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Figure 5: The elevation and azimuth of PRN #1
viewed by the Grand Forks monitor station corre-
sponging to the ionospheric delay curves of Figure 4
.

stationarity in the physical electron density distribu-
tion. This mitigates some of the latency in transmit-
ting the estimate to the user. A schematic of the com-
plete correction process is shown in Figure (2).

We have applied the tomographic estimator described
above and the grid estimator of [2] on live NSTB data.
We present here results from two particular data sets,
one collected on 27 July 1997 and the other on 8 Au-
gust 1997 from the the reference network shown in
Figure 1. These data correspond to portions of the
same data analyzed in [20] for clock/ephemeris in-
tegrity monitoring and in [17] for user integrity anal-
ysis. The receivers marked by stars were not incorpo-
rated into the WAAS estimation but rather treated as
static users.

RESULTS

We have the capability to monitor the performance
of the user's ionospheric correction in both the pseu-
dorange domain and position domain. The former is
a direct assessment of the TEC delay correction but
is di�cult to gauge as even dual frequency measure-
ments do not necessarily constitute truth. The latter
is an indirect assessment but in the case of a static
user can quantify accuracy, integrity, and availability
against truth.

Figure 4 compares the code delay prediction of the
two estimators against the dual-frequency carrier
smoothed estimate on the satellite range measure-
ments to PRN #1 in view of the static monitor station
located in North Dakota. The �rst thing to note is the
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Figure 6: Accuracy, integrity, and availability results
of the end-to-end WAAS correction process using the
vertical delay grid of [2] to estimate ionospheric delay.

generally low level of overall delay due to the current
minimum of the �11 year solar cycle. Secondly, the
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Figure 7: The same metrics applied to the end-to-end
WAAS correction process using tomographic inversion
to estimate ionospheric delay.

trends follow the elevation dependence implicit in the
thin shell model.



The grid estimator's major de�cit is in specifying the
range correction con�dence interval at low elevation
angle. The case shown above is typical, where the
the variance is arti�cially in
ated to cover the obliq-
uity factor assumption. There is no rigorous way to
verify the resulting con�dence which is a small but
non-negligible integrity risk. Further, the variance can
not be closed down where appropriate causing a direct
penalty in availability.

The insights of the pseudorange comparison are help-
ful but, as mentioned above, di�cult to apply quan-
titatively. We can assess the veracity of the static
user's correction and con�dence bounds in the posi-
tion domain and assign numbers to the accuracy, in-
tegrity, and availability. The drawback is that all error
sources, multipath, troposhere, receiver noise, residual
clock and ephemeris terms, and residual interfrequency
biases, are rolled into the position solution. Apply-
ing the two estimators to the same data provides rela-
tive rather than absolute performance improvements,
nonetheless this exercise is very informative. WAAS
corrected positions using the two estimators were com-
puted at Dayton, OH, Oklahoma City, OK, and Grand
Forks, ND, comprising a little more than 6 hours of 1
Hz data.

The top histogram Figure 7 reports the cumulative
accuracy for the complete WAAS navigation solution
with the grid and tomographic estimators in the East,
North, and Vertical local coordinates and tomographic
estimators. The e�ect of using the truncated basis in
the tomographic estimator shows clearly in the result-
ing biased position error. The geometry of the ref-
erence network is capable of supporting higher order
spherical harmonics. While this is useful as an aca-
demic measure, the important information is contained
in the bottom two histograms.

The middle chart in Figure 7 addresses integrity by
showing the histogram of the the actual-to-predicted
error ratio at each epoch in the data set. Using the �v
equation de�ned in [17], integrity is maintained so long
as the tails of the histogram are bounded by the unit
Gaussian. This bound is shown as the solid curve and
in both cases integrity was preserved. Although the
biased position accuracy of the tomographic estimator
does push the interval out noticeably, the shape of the
histogram is retained and even slightly curtailed.

The bottom graphic in Figure 7 shows the WAAS pre-
dicted one � error bound histogram. For a naviga-
tion sensor error bound of 19.2 (m) at a probability
level better than 10�7 the maximum allowable bound
is 3.6 (m), if � is larger than this value then the sys-

tem is declared unavailable at that location and epoch.
For both ionospheric estimators the WAAS system was
available at these three locations more than 99.9% of
the duration of this data set. However, the three nines
� value is dramatically lower for the tomographic es-
timator, without extending the tails of the integrity
histogram. While the duration of the data set ana-
lyzed here is not statistically signi�cant for an oper-
ational scenario, the bene�ts of extending the WAAS
ionospheric correction process to include the vertical
dimension have become more lucid.

COMMENTS AND FUTURE WORK

We have put in place the mathematical framework and
an early prototype here. The application of tomogra-
phy to the correction of ionospheric delay a�ords the
possibility of simultaneously improving the availability
and integrity of the WAAS system. In the short term,
since the �rst round of WAAS MOPS for precision
approach are nearing completion, the tomographic es-
timator could be used to generate a MOPS compliant
grid estimate simply by integrating out the vertical
dimension.

In the longer term, additional message types could be
developed which leverage the compactness of more so-
phisticated bases and both the grid and tomographic
models could be broadcast. This is particularly ap-
pealing when we consider the concept of focusing the
correction bandwidth on the regions with highest res-
olution at any given epoch.

As the NSTB collects more and more data, we can ad-
dress the choice of basis functions more appropriately
and explore other inner products which induce a bet-
ter norm and subsequently a more accurate inversion
than the one presented here.
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