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ABSTRACT

Operating heavy equipment can be a difficult and very
tedious task; control of an agricultural tractor requires
the continuos attention of the driver, and farmers often
work long hours during the critical times of planting
and harvesting. Loaders and other ground vehicles are
frequently used in situations which are unpleasant or
even hazardous for the human operator. In the past,
some efforts have been made to automate agricultural
vehicles, but they have been largely unsuccessful due
to sensor limitations.

This paper explores the use of kinematic GPS as the
primary sensor in closed loop control of farm and
construction vehicles. A single, low-cost GPS receiver
can measure position to within a few centimeters and

attitude to within 0.1°, and does not drift with time. The
ability to provide accurate information about multiple
vehicle states makes GPS ideal for system
identification and control of dynamic systems. In this
work, a ground vehicle control system was designed
and simulated using readlistic plant, sensor, and
disturbance models. Optima control methods were
examined to deal with non-linear and time-varying
vehicle dynamics. To validate this simulation,
experimental data was taken at Stanford using a GPS-
equipped electric golf cart.

This research builds upon previous work in developing
GPS-based aircraft autopilots. It is significant because
it is the first step towards a safe, low-cost system for
adaptive, highly accurate control of a ground vehicle. It
is anticipated that the implementation of these ideas
will take place in three steps. (1) driver-in-the-loop
control using a graphical display; (2) driver assisted
automatic control, with an on-board operator making
only high-level decisions; and (3) vehicle autonomous
guidance and control with on-line parameter
identification and adaptive control that will operate for
several hours without human intervention.

INTRODUCTION

Ground vehicle automatic control has been a goa for
many years. Superior control for individual vehicles
and cooperative efforts for multiple vehicles have
myriad applications. Smart roads in which the driver
merely programs the destination, construction vehicles
that automatically build roads, agricultural vehicles
which alow full resource utilization, and vehicles
operating in hazardous environments are some
examples. In the short term, the largest application of
autonomous vehicle control would be farm vehicles in
which only high level decisions are made by a human
operator.

Farming vehicle operation can be a trying and tedious
task; speeds are very slow across large fields, and often
fog, dust, or darkness limit visibility. Operating heavy
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equipment requires the full attention of the driver in a
high noise and vibration environment. Further, farming
operations during critical times such as harvest require
long hours and are usualy limited to daylight hours.
Autonomous control has many potential benefits; such
as allowing operation with limited visibility, more
accurate control of row spacing, removal of a human
operator from a chemically hazardous environment,
and an increased efficiency in farming techniques.

Autonomous guidance of agricultural vehicles is not a
new idea. However, previous attempts to navigate and
control ground vehicles for farming applications have
been largely unsuccessful due to sensor limitations.
Some require cumbersome auxiliary guidance
mechanisms in or around the field of interest [1,2].
Others rely on a camera system requiring clear daytime
weather and field cues that can be deciphered by
visual pattern recognition [3,4].

The ground vehicles described above typically operate
in environments with good sky visibility. With the
recent arrival of GPS, engineers now have access to a
low cost sensor that is well suited for use in vehicle
navigation. GPS is already being used in a number of
ground vehicle applications, including agriculture.
Code differential techniques are being used for
geographic information systems [5-7] driver assisted
control [8] and even automatic control of ground
vehicles [9].

Using precise differential carrier phase measurements
of the satellite signals, GPS navigation systems have
demonstrated accuracy’s of a few centimeters in
vehicle positioning [10], and better than 0.1° in
attitude[11]. This ability to accurately measure
multiple states makes GPS ideal for system
identification, state estimation, and automatic control
of dynamic systems. Also, with aiding from a Pseudo-
Satellite Integrity Beacon, navigation system integrity
is impeccable [12].

This paper specifically focuses on the automatic
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control of ground vehicles wusing carrier-phase
differential GPS as a sensor. A ground vehicle
automatic control system using GPS was developed
and simulated in software. This control system was
implemented and tested experimentally on an electric
golf cart. Experimental data was used to study a
recursive system identification algorithm to determine
if important, time-varying vehicle parameters could be
ascertained from sensor data in real time.

EXPERIMENTAL SETUP

The platform used for initial ground vehicle testing was
a 1984 model Yamaha Fleetmaster electric golf cart
pictured in Figure 1. The vehicle has a 1.55 meter
wheel base, and is just under 2 meters tall with the
canopy attached. Four single-frequency GPS antennas
are mounted to the top of the canopy. The top speed of
the golf cart is around 5 meters per second, and is
controlled manually by the driver. Experiments took
place on a grass field, and the vehicle was driven at a
nominal speed of 2 m/s.

The GPS system used for vehicle position and attitude
determination was identical to the one used by the
Integrity Beacon Landing System (IBLS) [10], as
shown in Figure 2. A 4-antenna, 6-channel Trimble
Quadrex receiver produced 4 hertz carrier phase
measurements for attitude determination.
Measurements from a single-antenna 9-channel
Trimble TANS receiver were used to determine vehicle
position. An on-board Dolch computer with a Pentuim-
90 running under LYNX-OS real time operating system
performed attitude, position, and control signal
computations.

The ground reference station consisted of a Dolch
computer with a 9-channel TANS receiver generating
carrier phase measurements, and a Trimble 4000ST
receiver generating RTCM code differential
corrections. Data was transmitted from the ground
station to the vehicle through Pacific Crest 450-470
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MHz. radio modems over a range of less than one
kilometer.

Vehicle steering angle was sensed and actuated by a
modified Navico WP5000 boat autopilot. A Motorola
MC68HC11 microprocessor board performed the
communications between the computer serial port and
the autopilot as shown in Figure 3. Analog steering
angle was encoded from a potentiometer attached to
the front wheels, and a pulse width modulated signal
was sent to the steering motor. The maximum steering
angle was +/- 30°, and the motor commanded rate was
limited to +/- 2.3"/sec.

To achieve centimeter level accuracy quickly and
reliably, a pre-defined location was surveyed using the
IBLS software. To begin testing, the vehicle was taken
to this location and its navigation solution was
initialized. The integer residuals were checked after
the initialization to help verify that the correct integers
were obtained. A final system for safe, reliable ground
vehicle navigation and control will probably require a
better method of integer cycle ambiguity resolution.
Using an Integrity Beacon near the field of operation
would alow rapid integer determination, provide an
additional ranging signal for navigation system
accuracy and integrity, and would still allow the user
to operate with less expensive, more reliable single-
frequency SPS equipment.

VEHICLE MODEL IDENTIFICATION

The most difficult aspect of performing a meaningful
ground vehicle simulation is arriving at a good model
of vehicle dynamics and disturbances. Ground vehicle
dynamic models range from very simple to
overwhelmingly complex, and there is no single model
that is widely accepted in the literature [13]. The most
complex mathematical model of a dynamic system is
not always appropriate to use [14], especially since
controller and estimator design requires a simple
(typically linear) model of plant dynamics.
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Figure 4 - Simple Vehicle Model

Before performing experiments to identify golf cart
dynamics, initial calibration tests were run to linearize
the steering angle sensor and the steering actuator.
The calibration produced look-up tables which were
implemented in software on the navigation and control
compulter.

Open-loop tests using sinusoidal or random control
inputs (standard system identification techniques [15])
posed a problem. Only alimited amount of data could
be taken before the vehicle traveled to the end of the
field of operation. For this reason, a controller was
designed for closed-loop straight line and U-turn driving
based on a simple kinematic vehicle model with no
estimator. The vehicle model used assumed no wheel
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Figure 6 - State-Space Equations

dlip, small steering and heading angles, constant
velocity of the rear wheels, actuation through a single
front tire, and no roll or pitch motion (see Figure 4.).

This original controller was intentionally designed with
no filtering of sensor data so the control signal would
be noisy in response to noisy sensor measurements.
Feed-forward U-turn trajectories were also designed to
require large positive and negative control signals.
Both of these were done to sufficiently excite the golf
cart dynamics, providing rich data for identification of
an appropriate vehicle model in post-processing.

After some problems with instability due to actuator
hard limiting, the controller succeeded in guiding the
golf cart for a five-minute trial, complete with 6 U-
turns as seen in figure 5. Recursive transfer function
system identification techniques based on the LMS
algorithm [16] were used on the golf cart data to
determine the appropriate discrete model order to use
for control system design. By performing identification
on increasing model orders until pole-zero near-
cancellations occurred, it was found that only 1 state
was needed to describe the control to steering angle
transfer function, and 2 states were needed to describe
the control to heading transfer function. Furthermore,
the transfer functions found were consistent with the
simple kinematic vehicle model described above. The
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Figure 7 - Control Block Diagram

equations describing this model are shown in figure 6.
GROUND VEHICLE SIMULATION

Because the simple kinematic model described above
matched the golf cart experimental data, it was used
for the vehicle simulation and control system design in
this work. Using this model, the controllable vehicle
states are lateral deviation from desired position (y),
heading (y), and steering angle (8). The steering
angle rate (u) was commanded by the control
computer, and was physically limited by the motor to
+/- 2.3 °/sec.

The technique used for vehicle automatic control was a
discrete Linear Quadratic Regulator / Estimator, as
shown in figure 7. The control gains (K) were chosen to
minimize a quadratic cost function based on control
inputs and state deviations from nominal [17]. The full
vehicle state was appended to include the observable
sensor biases Y-bias and d-bias for estimation purposes.
The optimal estimator gains (L) were found using the
assumed vehicle dynamic model and a model of
disturbances based on the experimental data [18].

The ground vehicle simulation and estimator design
both assumed random, uncorrelated measurement noise
with normal distribution. The 1-0 measurement and
discrete disturbance errors that were assumed are
shown in Table 1.

Table 1 - Simulated Measurements and Disturbances

1-o(noise) 1-o(dist)
Position y (cm) 20 0.1
Heading Y (deg) 0.3 0.06
Steering o (deg) 0.3 0.3
Heading Bias (deg) - 0.006
Steering Bias (deg) - 0.006

Two cases were explored in the simulation. In one
case, the control signal sent to the vehicle was a linear
combination of the optimally estimated state described
above (Estimator Case). In the second case, the control
signal was a linear combination of the measured state
with sensor biases approximated and no filtering (No
Estimator Case). The same controller gains, sensor
noise, and measurement noise were used in both cases.

Figure 8 shows the simulation results for both cases
simulated with an initial lateral position error of 30 cm.
Cross track position error (y), actuator control effort
(u), and estimated sensor biases are plotted for a
typical 100 meter path. The initial errors on steering
and heading biases were 0.2°.

An extended simulation was run for a 10 kilometer path
to gather statistical data. The results for true vehicle
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Figure 8 - Simulation Results

position error (y), control signal (u), and sensor bias
estimate errors are shown in Table 2.

Table 2. - Simulation Statistical Results

Estimator No Estimator
(Mean +/- 1-0) (Mean +/- 1-0)
Position y (cm) 0.0+-31 16.3 +/- 2.7
Control u (deg/s) .00 +/- .43 .00 +/- .92
W-Bias Error (deg) .00 +/- .06 .20 +/- .00
0-Bias Error (deg) .00 +/- .03 .20 +/- .00

The simulation shows that a fairly small sensor bias
error can significantly affect the lateral position
accuracy of the ground vehicle. This is especially true
because the level of control being sought is so precise.
A 0.2° bias in two sensors caused a 16.3 centimeter
bias in the lateral position, which was held to a
precision of around 3 centimeters. Estimating sensor
biases in real time eliminated the lateral position bias.

The amount of control used in the simulation was also
quite different between the two cases. The control
signal standard deviation in the Estimator case was

half the size of the No Estimator case. During
controller design, lateral position accuracy was traded-
off for control effort because of the physical limit of the
steering motor. Based on this, an estimator should
alow more aggressive control design, since less
control was required for the same system accuracy.

GOLF CART TEST RESULTS

The controller and observer gains from the simulation
were used to perform closed-loop tests on the actual
golf cart. The vehicle attempted to follow the same
straight line for 12 separate trials. Hard limits on
actuator authority caused instability in 2 of the 12
trials, but the golf cart successfully followed the line
for 100 meters in the other 10. The raw measurements
from the 10 successful runs are shown in Figure 9.
Note that no "truth" was available for lateral position
error since the only position sensor in use was GPS.

The measured lateral position was zero mean with
standard deviation of 5.0 centimeters. The control effort
was mean of -0.01 degrees/second with  standard
deviation of 1.26 degrees/second.



Cross Track Error (cm)
40 : : :

30}

0 20 40 60 80 100
Along Track (m)

Control Effort (deg/s)

0 20 40 60 80 100
Along Track (m)

Figure 9 - Golf Cart Experimental Results

The experimental results show that more control effort
was required and accuracy was poorer than predicted
by the simulation. This is most likely due to an inexact
disturbance model in the simulation, since the
measurement performance of GPS is fairly well
understood.

One likely cause of the disturbance noise was the roll
motion of the golf cart. Although the roll angle of the
vehicle was measured, the resulting motion of the 2
meter high positioning antenna relative to the wheel
base was not corrected for. The data shows that the roll
motion was on the order of +/- 1 degree over a few
seconds, which corresponds to a lateral disturbance
motion of about 4 centimeters.
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PARAMETER IDENTIFICATION

In order to determine the feasibility of real-time
parameter identification using GPS, the data taken
during the first closed-loop control trial (Figure 5) was
run through an Extended Kalman Filter [19]. The
vehicle state included |, 6, and &-bias. In addition, the
state transition matrix parameter -Vyo/(l1+l2) was
appended to the state vector and estimated along with
the state.

The parameter and steering bias values were initially
set to zero to see how the filter would converge. The
results of the identification are shown in Figure 10. The
time history of these values are plotted along with their
“expected” values based on previous identification and
golf cart dimensions. The parameter estimate
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Figure 10 - Extended Kalman Filter Results



converged within about 25 seconds, and the steering
bias within around 60 seconds.

CONCLUSION

The Results presented in this paper are promising for a
number of reasons.

(1) A ground vehicle control system was simulated
and demonstrated using GPS as the only sensor for
position and heading. One additional sensor—a
potentiometer—was used to measure steering
angle.

(2) A constant gain controller based on a very simple
vehicle model successfully stabilized and guided a
golf cart along a straight, pre-determined path.

(3) Using a slow actuator and sensors with significant
biases, a vehicle was controlled along a path with
no steady lateral position bias and a 5 centimeter
lateral position standard deviation.

(4) The ability to estimate vehicle dynamic
parameters in real-time has been demonstrated
using an Extended Kalman Filter on experimental
data. This suggests that adaptive control may be
feasible to deal with changing vehicle dynamics in
more complex field settings.

The structure and repeatability in the experimental
path-following data suggests that we could improve
performance significantly by correcting for the
positioning antenna moment arm. Also, we feel the
experimental results presented here could be improved
with a stronger actuator.

The dynamic model used to represent the electric golf
cart will almost certainly be inadequate for simulation
and testing of farm and construction vehicles in
realistic settings. It is the authors' hope that the control
methodology discussed here can be extended to more
complicated dynamic systems. Once an accurate
vehicle model is developed, and reduction of that
model to one sufficiently linear for control system
design is achieved, optimal control methods can be
applied to implement autonomous control.

The implication is that GPS could be used with a real-
time parameter identification algorithm to create a
control system that is able to adapt to changing vehicle
conditions. Future research is intended to further
explore this possibility in the automatic control of
ground vehicles.
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