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ABSTRACT

To provide a detailed analysis framework for WAAS
accuracy prediction, a new method has been developed
which combines GPS geometry simulation with least-
squares covariance analysis.  This approach considers all
standard ranging errors for each WAAS reference station
receiver and user, including satellite clock, SA-induced
latency, ephemeris, multipath, receiver noise,
troposphere and ionosphere errors.  Computer simulation
allows us to project mean, 2σ, and 3σ position error for a
grid of user positions across a wide geographic area.

The simulation updates orbit positions of the GPS
satellites augmented by four geosynchronous spacecraft.
For each resulting geometry, satellite geometry for all
WRS's is determined.  The simulation then loops through
a grid of user positions.  The satellite geometry for each
user is computed, and the user's clock/ephemeris error is
projected through covariance matrices that link the error
at each WRS to the user (including non-WAAS errors).

Ionosphere errors are handled by a separate covariance
algorithm running in parallel.  This algorithm uses a
MITRE-like grid of ionosphere corrections, but instead
of using interpolation, a "truth" model of vertical
ionosphere covariances is developed and projected
(using a weighted least-squares solution) from the WRS
pierce points to the master station grid.  The user then
projects the error covariances back to his own pierce
points (including non-iono. WRS errors).  The resulting
clock/ephemeris and ionosphere covariances for each
user are added together.  The user then computes a
weighted least-squares position and finds his expected
1σ position error from the resulting covariance.

The simulation stores histograms of vertical position
error at each grid point and compares them to the 4.1-m
2σ ILS navigation requirement for airborne Category I
precision landing.  Availability is tabulated for each user
position, as is the maximum availability outage period.
Results presented for the Stanford 3-WRS experimental
WAAS network show that the Stanford WAAS meets
this accuracy requirement over a large area. The results
also validate the observed vertical errors from Stanford’s
WAAS flight trials.  Finally, this paper presents accuracy
coverage predictions for proposed FAA NSTB WAAS
testbed networks that cover the entire Continental U.S.

1.0  Introduction

To date, studies of corrected pseudorange accuracy and
satellite availability for prototypes of the Wide Area
Augmentation System (WAAS) have demonstrated the
potential to achieve vertical position accuracies of 2-3
meters at specific user sites [1].  Experiments conducted
to date at sites far from the nearest reference station seem
to confirm this [2].  However, it remains unclear how
results achieved at specified user locations can be
extended to predict user accuracies across a wide
geographic area, which is the purpose of WAAS.
Therefore, while it is apparent that WAAS has the
potential to provide Category I accuracy for aircraft
landing and that baselines of hundreds of kilometers are
possible, it is not clear just how many wide-area
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reference stations (WRS’s) are needed to meet accuracy
requirements over the entire geographic spread of users.

The development of WAAS is taking place in stages.
Small networks of 3 or 4 WRS’s have been built by
Stanford and others to do preliminary tests.  The FAA
plans to build a WAAS testbed (known as NSTB) prior
to development of a 29-WRS’s operational WAAS [3].
Studies to date have used the layout of these preliminary
networks to examine the geographic separation between
users and WRS’s and between ionospheric pierce points;
i.e., the points at which the line-of-sight from GPS
satellite to user pierces the ionosphere [7].  Their results
suggest designing networks of WRS’s that are both
numerous enough and in close-enough proximity to
ensure that users are “close enough” to the nearest WRS
with near-certainty.  WAAS networks are currently laid
out with the help of only these preliminary guidelines.

This paper presents a method for expanding on our
current understanding of WAAS performance capability
by projecting linear least-squares error covariance
matrices from WRS’s through the master station (WMS)
to users.  Although this approach abstracts the detailed
workings of the WRS’s and WMS, it succeeds in
modeling the underlying error uncertainties; thus the
results are indicative of the performance that can be
achieved by a canonical WAAS architecture.  It allows
user accuracy predictions over a wide geographic area
for any proposed network of WRS’s and geosynchronous
satellites (which communicate WAAS corrections and
serve as redundant ranging sources).

This paper describes this new “coverage prediction”
methodology in detail, including the ranging error
variances and least-squares covariance equations.
Results are then displayed for the Stanford network of 3
WRS’s in California and Nevada, along with variations
which examine the effects of adding a WRS in Hawaii.
Results for a much larger network, the proposed FAA
WAAS testbed (NSTB), are then shown, along with
studies of variations of the baseline NSTB network.  The
results demonstrate the utility of WAAS accuracy
predictions over large areas, and they point out possible
weaknesses in the coverage provided by the WAAS
networks mentioned above.  This allows sensitivity
studies to be conducted that promise to greatly aid the
process of designing future wide-area systems.

2.0  Overview of WAAS Simulation Approach

The coverage prediction approach used here is based
on the solution of least-squares covariance equations for
given GPS and WRS geometries.  Accuracy predictions
for large geographic areas are generated by a computer

program which simulates a large number Nt (between
1440 and 10,000) of separate GPS and geosynchronous
satellite geometries using a GPS orbit model.  The orbit
model uses the Volpe almanac data for the 24 GPS
satellites and includes three geosynchronous satellites
located over the Equator at longitudes 180o, 63o E, and
55o W respectively.  The first and third of these can be
seen by users in the Continental U.S.  Spacecraft are
assumed to always be working (i.e. no failure sampling),
and geometries are sampled in either of two ways:  (1)
random time updates sampled from a Uniform[0, 30 min]
distribution, and (2) constant 1-minute time updates.  In
case (2), one day (1440 trials) of satellite orbits is cycled
through, and it is possible to keep track of the maximum
outage duration at each user site, which is the longest
period in which predicted vertical position accuracy does
not meet the 4.1-m ILS Category I requirement.  This
ILS requirement is considered ambitious for WAAS; thus
a more-flexible RNP Tunnel requirement of 6 to 7.6 m is
under consideration and can also be examined here [9].

For each satellite geometry, the matrix of direction
cosines to each visible satellite Gw

i is computed for each
WRS location i (using a 5o mask angle).  At this stage,
the ranging observation errors for each satellite visible at
each WRS are computed from the RMTSA model in
Section 3.0, and the large WRS ionosphere covariance
matrix PP can be computed element-by-element. The
program then cycles through a grid of user locations
separated by 1-3 degrees in latitude and longitude.  For
each user, the geometry matrix Gu is computed, and two
separate processes of covariance propagation are carried
out in parallel.  The first is the clock/ephemeris error for
satellites in view of the user (using a 7.5o mask angle)
based on the WRS’s that can see that satellite and can
thus provide clock/ephemeris corrections.  The second is
ionospheric spatial decorrelation projected from the
pierce points observed by each WRS to the WMS, which
fits a set of predictions to a grid, and finally to each user.

Covariance projections from ionosphere and RMTSA
error sources are brought together into a single
pseudorange error covariance matrix Pν

* for each user.
Using the matrix PSV of clock/ephemeris errors for each
satellite, the weighted least-squares position error

covariance $Px  is computed, and the vertical position

error variance (assumed to be Gaussian) is given by the
[3,3] entry of this final matrix.  The vertical error result
for each geometry is stored in a histogram for that user,
as is the Vertical DOP for the satellite geometry visible
to that user [10].  “Availability” in this case is defined as
the percentage of geometries for which a given user’s

vertical one-sigma error (given by $ [ , ]Px 3 3 ) is within
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the ILS one-sigma requirement of 2.05 meters.
Geometries for which this requirement is exceeded are
deemed “non-available”, and if this state persists over
time, an “outage period” for Category I landings results.

Figure 1 gives a conceptual flow chart for this
covariance propagation method.  Sections 4.0 and 5.0
describe the algorithms for computing clock/ephemeris
and ionosphere covariances, and Section 3.0 gives the
receiver-specific RMTSA ranging error model used.  The
relevant equation numbers are referenced in the figure.
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Figure 1:  WAAS Covariance Overview

3.0  RMTSA Ranging Error Model

WAAS employs GPS corrections computed by a
network of reference stations to remove most of the
satellite-based errors that exist without differential
corrections.  This process is modeled by the propagation
of clock/ephemeris and ionosphere covariances described
here.  However, it is corrupted by receiver and location-
specific errors at each WRS and at the user.  These errors
are collectively labeled RMTSA, representing receiver
noise, multipath, troposphere, and remaining Selective
Availability errors.  In this analysis, these errors are
assumed to be independent and Normally distributed;
thus their combined variance can be obtained by taking
the sum of the individual noise variances.

Noise Source WRS Error (m) User Error (m)
receiver noise 0.33 0.50

SA latency not applicable 0.20
multipath ( )0 20. tan ε ( )0 30. tan ε

troposphere ( )0 176. sin ε ( )0 176. sin ε
Table 1: One-Sigma RMTSA Errors

Table 1 gives the individual error standard deviations
for each individual RMTSA error source.  With the
exception of troposphere, WRS errors are assumed to be
of smaller magnitude compared to a generic single-
frequency user receiver.  User SA latency error assumes
a fast-correction average age of 10 seconds [13].  Note
that both multipath and troposphere errors are functions
of the elevation angle ε from the user to the satellite in
question.  This represents the additional “slant” delay
due to atmospheric effects and the greater GPS signal
reflection magnitude for lower satellite elevations.
RMTSA error terms are introduced into the covariance
equations as diagonal n x n matrices (where n satellites
are in view) in which each diagonal element contains the
combined RMTSA variance for that satellite.

The error sizes in Table 1 are not meant to be
especially conservative.  Instead, they represent a
reasonable estimation of the errors that will be
experienced by WAAS-certifiable equipment.  More
conservative noise distributions have been used in other
studies [8] to show the position accuracy degradation that
might result from “looser” hardware standards.

 4.0  Clock/Ephemeris Covariance Prediction

4.1 Covariance Prediction Equations
The covariance model developed here separates

clock/ephemeris errors from all other ranging error
sources.  Thus, both ionosphere errors (Section 5.0) and
RMTSA errors (Section 3.0) appear as external error
inputs to the clock/ephemeris prediction equations.  In
this approach, user pseudorange error ∆ρ is expressed as
a combination of ephemeris (∆r), clock error (∆b), and
other terms (after corrections are applied) as follows:
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where Gu is the user direction-cosine satellite geometry
matrix (size K x 4, where K is the number of satellites in
view) and ν is a term representing a Gaussian white-
noise model of other error sources.  The augmented
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Since (1) conceptually includes all GPS error sources,
we can proceed to find position error covariance from it.
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The standard pseudoinverse definition for an
overdetermined system (more satellites in view than
unknowns) is:

( )G G G Gu
*

u
T

u u
T=

−1
(3)

Here, we find the user position fix error by weighted
least squares, where the weighting matrix W is given by
the user pseudorange error matrix Pν to be defined next:

( )$xu u
wt*

u
T -1

u u
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−
G G W G G W∆ρ ∆ρ

1
(4)

Using the definition of covariance, the final user position
error covariance P$x  is given by:

( ) ( )P G G P G G G P G$
* * * * *~ ~
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T
= + ν (5)

where Pν
*  is the K x K diagonal matrix of user noise

variances for each satellite due to ionosphere and
RMTSA errors.   It is calculated from the combined
results of the ionosphere covariance model (Section 5.0)
and the RMTSA model (Section 3.0).  The use of this
matrix as W in (4) above should give a minimum-
variance estimate of the true user position, but in this
model, we assume that W cannot be known perfectly by
the user.  Instead, each entry of W is calculated by
sampling from a Normal distribution whose mean is the
corresponding entry of Pν and whose standard deviation
is a fixed ratio of that mean (usually 25%).  We have
found that the WAAS accuracy results are not very
sensitive to this “uncertainty ratio” if it is below 75%.

PSV in (5) is a user-specific block diagonal matrix of K
separate 4 x 4 covariance matrices as follows:
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These separate covariance matrices Pk1, ..., PK each
represent the post-correction covariance in x, y, and z
components of spacecraft ephemeris, as well as the clock
error in t.  If no WAAS corrections are available
(because this satellite is not visible to any WRS), this
matrix has diagonal terms representing uncorrected C/A
code noise variances as follows [14]:

Pno
k =































=



















∆

∆

∆

∆

r

r

r

B

k

k

k

k

m

2

2

2

2

3

3

3

3

0 0 0

0 0 0

0 0 0

0 0 0

9 0 0 0

0 9 0 0

0 0 9 0

0 0 0 100

2( )

(7)

If WAAS corrections are available from at least one
WRS (assume M > 0 WRS's can see a given satellite),
we form the matrix Gw  as follows for each satellite k,

where k = 1,2,...,K:
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where 1m
k  is the direction-cosine vector from WRS m to

satellite k.  Note that the clock/ephemeris error can be
estimated directly by weighted least squares.  However,
a direct solution (such as in equation (4)) tends to be too
sensitive to measurement errors for underdetermined and
exactly-determined (M = 4) cases.  Instead, we include a
a prior state covariance matrix Λ and solve the problem
as a Kalman-filtered measurement update to the prior
covariance.  The inclusion of prior information helps
ensure that a wildly unlikely solution is not force-fit by
“naive” least squares [14].

Although normally the matrix Λ would be the same as
the prior (no corrections) covariance in (7), we have the
freedom to vary the diagonal-entry “weights” of the
matrix.  We do this by multiplying the x, y, and z
variances by a factor of 10, which effectively increases
the weight we assign to the WRS measurements.
Further, we make the prior clock variance very large
since it will in reality be estimated separately from
ephemeris, and we wish to avoid the prior clock variance
from affecting the ephemeris estimates much.  Our final
choice for the state prior covariance is:
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The measurement-update equation for the WAAS-

corrected clock/ephemeris covariance Pw
k  is given by:

( )P G G G W Gw
k

w
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w w
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Λ Λ Λ Λ
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(10)

where the measurement-error weighting matrix WW is
equal to the M x M matrix of RMTSA error variances for
each WRS that can see satellite k.

4.2 Computer Implementation Procedure
In our computer code, for each updated GPS satellite

geometry, the satellite visibility for each WRS is
computed and formatted as shown by the matrix Gw in
(8).  At this point, the algorithm loops through the grid
of user locations that are affected by the WAAS

corrections.  For each user, 
~
Gu  and Gu

*  are computed

from Gu using (2) and (3).  Pk for each satellite in view
of this user is then computed using (7) or (10) as
required; thus giving the block-diagonal matrix PSV (6).

At the same time, the parallel computation of the user
pseudorange error covariance matrix ΣΣu for ionospheric
errors is computed using the algorithm in Section 5.0.
The effects of RMTSA user ranging errors are computed
(see Section 3.0) and summed with ΣΣu to get the final

user error covariance Pν
* .  Finally, the user position

covariance P$x  for this geometry is computed using (5).

This process is repeated for each user location, and we

store the resulting vertical position error variance, σ z
2 ,

given by the 3rd diagonal element of P$x  for each user in

a histogram unique to that user location for post-
sampling analysis.  We also compare the vertical error
variance at a given user for each sample geometry to the
ILS and RNP tunnel accuracy requirements to compute
the overall probability that the resulting vertical position
error is within the specified accuracy.

5.0 Ionospheric Grid Error Propagation Model

The ionospheric grid covariance propagation model,
run in parallel with the clock/ephemeris model detailed
above, directly propagates ionospheric uncertainty from
the WRS's to the WMS, which projects the combined
corrections onto an artificial "grid" of ionospheric pierce
points separated by 5, 10, or 15 degrees of latitude and
longitude.  This covariance is then propagated to the user

depending on the location of his pierce points within the
grid structure.  Note that this grid concept is similar to
that originally proposed by MITRE [5], but it uses
weighted least-squares fits to interpolate corrections
within the grid rather than simple linear inverse-
weighted interpolation.

It is basically assumed by this model that the vertical
ionospheric delay (i.e. not affected by satellite elevation)
observed by a GPS receiver through a given pierce point

denoted as $I p  can be expressed as the sum of two

independent random variables: the true delay (denoted as
Ip) and the observation error (denoted as ΣΣp(ε)).  This
basic relation holds for the WRS's, the WMS, and the
user (with the appropriate subscripts).  Note that ΣΣp(ε) is
elevation-dependent because it represents the RMTSA
error terms discussed in Section 3.0.

The propagation of ionosphere error covariance is
executed in several distinct steps as follows:

5.1 WRS Covariance

The vector I
$P  contains the measured (via dual-

frequency receivers at each WRS) vertical ionospheric
delay at each pierce point observed by all WRS's:
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where I m
P$  represents the observed delays for each

satellite visible to WRS m, m = 1,..., Mrms (the total
number of WRS's).  The vector εεP is a sample of the
RMTSA noise distribution.  Its covariance, denoted as
ΣΣP, is a diagonal matrix whose variances are computed
by summing the RMTSA numbers in Section 3.0 with a
constant interfrequency bias.  This bias represents
miscalibrations between GPS satellites and WAAS/user
receivers.  Based on current bias estimates, we add the
square of a conservative bias deviation estimate of σboas =
0.75 m to each diagonal entry of ΣΣP.  Operational WAAS
systems should be able to reduce this by at least 50% [6].

The true ionospheric delay covariance, denoted as PP,
is a function of the geographic separation between the
WRS pierce points and the assumed “base” delay
variation at a given point over time.  The base delay
standard deviation σb is taken to be 2.8 meters, which is
relatively conservative.  Based on curve fits to absolute
and relative (one station compared to another)
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ionospheric delay data appearing in [4,5], the following
covariance formulas are used for each entry in PP (which
will consequently have no zeros in it) [10]:

( )σ d
I I

OF

R

R
d= base mult

mean

slope

base

(12)

where:

d = distance between ref. and observ. PP’s (km)
Rbase = base separation in Klobuchar data = 348 km
Rslope = linear slope with dist. in data fit = 0.542
Ibase = base ionosphere decorr. for (d = 0) = 0.417 m
Imult = ionosphere decorrelation multiplier = 2.0
OFmean = mean obliquity factor in data = 1.763.

If d > D, where D = 1200 km, the effective σ(d) is
modified by an exponential curve such that σ(d) ≤ σb,
where σb

2 is the “base” ionospheric variance over time
for any given pierce point.  This normally varies with
geomagnetic position, but we use the conservative value
σb = Imult σnorm = 2.8 m.  The resulting equation is:
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where σmarg = σb - σ(D), and ( )σ d fit  is the variance given

by (12) for d > D. This variance from one PP to another
is converted to a covariance entry [i,j] in matrix PP using
the Gaussian bivariate relation:

( )( )σ σ σ σi, j
2

b i, j b1 -= 2 2
d (13)

Summing the covariances PP and ΣΣP gives P
$P , the final

WRS ionospheric measurement covariance matrix.

5.2 WMS Covariance
The Wide Area Master Station (WMS) is where the

pierce-point measurements of the individual WRS's are

collected to form P
$P .  The WMS then relates the pierce

point delay measurements I
$P  to those that would exist

at the WMS grid points by solving for the optimal choice
of mapping matrix A using least-squares:

[ ]A P PT GP P=
−$ $ 1

(14)

where PGP = PGP$  is the "true" covariance (computed
using (12,13) between the fixed WMS ionosphere grid
points (G) and the set of WRS pierce points (P).  From

the definition of covariance, we can simplify the
application of the mapping matrix to get the final grid
point covariance:

[ ] ( ) [ ]P A P P P P
$ $ $ $ $G T GP

T
GP P GP

T
= =

−1
(15)

where P
$G  is the resulting covariance of the WMS

ionosphere grid points.  Note that WRS ionosphere

measurement errors are represented in P
$P  and get

propagated into P
$G  through this process.

 5.3 User Covariance
WAAS users (located on a grid of predetermined

points covering a wide geographic area) use the
transmitted WMS estimates of vertical ionosphere delay

at each ionosphere grid point I
$G  to project ionosphere

errors at their pierce points to the satellites they can see.
As with WMS propagation, we use least-squares optimal
mapping.  From the mapping matrix A in the previous

section, we can find the user-to-grid covariance PUG$ :

[ ]P P A P P PUG UP UP P GP
T$ $ $ $ $

= = (16)

where PUP$  is the user-to-WRS pierce point covariance,

computed (as with PGP) using the spatial decorrelation
equations (12,13).  The definition of covariance and a
second mapping matrix B allows us to project the error
in the WMS grid to the user's pierce points as follows:

[ ]
[ ] ( )

B P P

P B P B P P P

T UG G

U T G UG G UG
T

=

= =

−

−

$ $

$ $ $ $ $

1

1
(17)

where P
$U  is the user ionosphere error covariance due to

the WAAS fitting algorithm.  By our previous
assumptions, the basic equation for user ionosphere

vertical error covariance Pε
U  is:

[ ] ( )P P P P P P Pε
U U U U UG G UG

T
= − = −

−$ $ $ $1
(18)

where PU  is the overall covariance, which can be
computed from the underlying decorrelation between the
user's pierce points using (12).  The last step is to

multiply the covariances in the final result, Pε
U , by

obliquity factors to convert from vertical to slant pierce
point delay.  The obliquity factor OF is computed by:
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( ) ( )
OF = ≈ +
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sin
deg.'ε

ε

(19)

where ε is the elevation angle from user to satellite. Each

entry of Pε
U  is multiplied by (OF)2 to get the final user

slant ionosphere error covariance, ΣΣU.  This final matrix

is added to the user RMTSA covariance Pν
user to get the

“external noise covariance” matrix Pν
*  in (5).  From this,

the user position error covariance P$x  is computed.

5.4 Numerical Difficulties
Because the matrix operations in (14-18) imply the

numerical calculation of inverses of large matrices,
numerical difficulties can arise even though the C code
does not need to explicitly calculate each inverse.  The

WRS pierce-point covariance P
$P  is usually the most

difficult to work with, as it is of size MP x MP, where MP

is the total number of pierce points observed by all
WRS’s.  The C code uses double-precision floating-point
representation (16 digits), but cases arise where the

condition number of  P
$P , which is the ratio of the

largest to the smallest of the singular values of P
$P ,

increases above 1012, meaning that the covariance matrix
approaches singularity to double-precision.  Since
singular matrices are not permitted in the covariance-
propagation equations, a numerical breakdown in the
calculations may result [12].

The source of near-singularity is the fact that most of
the pierce points are located in a relatively small area.
Their correlation to each other is thus quite high relative
to the underlying ionospheric variation and observation
errors (i.e., the diagonal terms).  The covariance matrix
thus becomes closer to singular (i.e. invalid) as the
spatial decorrelation in the off-diagonal terms decreases.
We have found that the matrix condition deteriorates as
more pierce points are included, since more observations
reduce the effective decorrelation.  For WAAS
architectures (such as the FAA NSTB) where MP

generally exceeds 75, a parsing procedure must be
employed to ensure adequate numerical conditioning.

Parsing refers to the reduction of the size of P
$P  by

merging pierce points that are close together into a single

observation (for ionosphere purposes only). P
$P  is

computed normally using (12,13) for all pierce points
(PP’s), then a loop goes through the list of pierce points
backward: j = MP, ..., 1.  If PP j is within a certain
threshold distance Td from another PP i, where i < j, PP j

is parsed out of P
$P  and PP i is moved to a new location:

x
x x

new
old oldi
i ja b

a b
=

+
+

(20)

where x is the relevant PP location in xyz Earth-fixed
coordinates; while a and b are integer weighting factors
which count the number of PP’s that have been “parsed”
into the current PP locations i and j.  In addition, the
base error variance of the new PP is reduced by:

( ) ( ) ( )σ σ σnew old dec old=i i iN
a

2 2 2 1

1
=

+
(21)

This simply models the noise “averaging” which takes
place as more and more WRS’s observe a PP in the same
general area.  The off-diagonal terms are not reduced.

6.0 WAAS User Position Accuracy Results

The covariance propagation method described here has
been applied to a variety of existing and planned WAAS
networks.  Much of the algorithm development was done
with variations of the 3-WRS Stanford WAAS (including
some with one or two additional WRS’s).  The RMTSA
and ionosphere covariance parameters were derived with
results from the Stanford setup in mind.  The algorithm is
the same (with one change to be discussed below) for the
larger FAA WAAS testbed networks, and we have been
able to obtain projections for provisional WAAS systems
anywhere in the world.

Using MATLAB to plot the results of our C programs,
we can present the results as 2-D contours or 3-D surface
plots.  The program outputs the following data for each
user, and the overall results are plotted over a map of the
relevant user geography:

• 95% and 99% vertical position error
• 95% and 99% Vertical dilution of precision (DOP)
• Availability = Pr(vertical error σ < ILS requirement)
• Maximum outage duration
• 95% and 99% vertical ionosphere delay error

Recall that for each geometry, the above results were
stored in histograms.  For the 95% and 99% position
error cutoffs, the outer-loop histogram of error variance
(over all satellite geometries) is convolved with the
Normal distributions implied by the relevant variances
[10].  Note that vertical ionosphere delay error (the last
bullet) corresponds to “User Ionosphere Vertical Error”
(UIVE) in the FAA’s terminology [13] and is contained

in Pε
U  from (18).  “User Differential Ranging Error”

(UDRE) for each satellite in view is given by PSV in
(6,7,8) but is not plotted separately at this point.
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6.1 Stanford WAAS Results
The current Stanford experimental WAAS network

consists of a master station in the Durand building at
Stanford University and three reference stations located
in San Diego, CA., Arcadia, CA., and Elko, NV.  An
additional reference station setup exists at Stanford but is
used in a “passive user” mode to evaluate the quality of
the position solution provided by the three “primary”
WRS’s [2].  Plans for additional WRS’s in Hawaii and
Alaska and possible relocations of the three exisiting
WRS’s have been discussed, motivating us to compute
predictions for some of these variations as well.

Figure 2 shows a 2-D contour plot of 95% vertical
position accuracy over a user area bounded by 18o to 48o

North latitude and 108o to 128o West longitude, divided
into one-degree increments.  A 10o WMS ionosphere grid
is used, extending from 20o to 50o N latitude and 105o to
135o W longitude.  The WRS locations are denoted on
the map surface by an ‘x’ in all plots.
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Figure 2: 95% Position Accuracy, Stanford WAAS

The results for 95% user accuracy show that the
optimal performance region is relatively flat and encloses
an area considerably wider than the area between the
three WRS’s.  Vertical accuracy degrades gracefully as
one gets further away from this zone, although the falloff
becomes substantial if one gets far enough away, because
the WRS observations have little leverage to correct the
(probably different set of) satellites a far-away user can
see. However, accuracy sufficient to meet the 4.1-meter
95% ILS requirement is provided for users as far away as
the Oregon-Washington border and Phoenix, AZ.  Note
that all users use weighted least-squares to get their
position fixes; thus far-away users will optimally
deemphasize the satellites for which good WAAS
corrections are not available in their position solutions.
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Figure 3: 99% Position Accuracy, Stanford WAAS

Figure 3 gives the 99% vertical position accuracy
results for the same system.  Note that if the underlying
overall distribution were Gaussian, 95% cutoffs would
represent 2σ and 99% would result in approximately 3σ,
giving an expected multiplication of 1.5.  In these results,
while the contour shapes are similar, the apparent 99%
performance for most user locations is better than 1.5
times the 95% performance shown in Figure 2.  The
same phenomenon is also observed for the 95% and 99%
UIVE contour plots to be discussed later, where in many
cases the 99% results are only 10-20% worse.  Our
results suggest a non-Gaussian or truncated-Gaussian
underlying distribution, but given that our method is
based on a concantenation of  “Normal” conditions only,
we are not confident that this is a fair representation of
reality.  Rather, we believe that a Gaussian distribution is
valid out to 95% and that a projection of performance
from 2σ to 3σ (i.e. multiplying by 1.5) would be more
reasonable than using the 99% histogram results.

Figure 4 gives a 2-D contour plot of 95% UIVE, or
user vertical ionosphere delay error.  These contours
conform very well to the shape of the WRS geographic
distribution, and once again, the degradation as one
moves away from CA-NV is well-behaved and gradual.
The nominal 95% error of under 0.6 meters is difficult to
verify using our current database of observed ionospheric
errors, but it seems reasonable.  We are devising a new
method for storing observed ionosphere errors so that a
better validation of these predictions can be made.  As
mentioned above, the 99% UIVE plot gives only slightly
higher errors, suggesting that the use of only “normal”
conditions may lead to overly optimistic predictions.  We
instead multiply by 1.5 to represent a 2σ to 3σ projection
of Gaussian UIVE distributions, and we are investigating
this “tail-probability” behavior in our observed data [2].
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Figure 4: 95% UIVE, Stanford WAAS

6.2 Stanford WAAS Plus Hawaii WRS
Various augmentations to the Stanford WAAS have

been proposed.  It is now expected that these will be
incorporated into the FAA WAAS testbed as it is built.
One key augmentation would be the addition of a fourth
reference station in Honolulu, Hawaii.  It would attempt
to both provide Category I accuracy to the Hawaiian
Islands and augment our corrections for users in the
western Continental U.S (CONUS).

Figure 5 is a plot of 95% vertical position errors for
this 4-WRS network over an enlarged user area from 16o

to 50o N latitude and 112o to 162o W longitude, divided
into 2o increments.  A 15-degree ionosphere grid from
the Equator to 60o N and from 105o to 165o W was used
for the WMS.  The considerable distance between
Honolulu and the other three WRS’s (over 3000 km) is
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Figure 5: 95% Position Accuracy, Stanford + Hawaii

why the Hawaii WRS only slightly improves CONUS
performance (compare to Figure 2).  The Hawaii WRS is
not quite able to provide ILS Category I accuracy for the
area encircling the Hawaiian Islands, but the 95% error is
still under 5 m, which would easily meet the relaxed
RNP requirement [9].  Significant improvement is
attainable by improving the ionosphere calibration (i.e.
reducing σbias in Section 5.1) [6].  Note that the
degradation of position accuracy over the Pacific
between CONUS and Hawaii is graceful enough to
support enroute navigation for air routes between them.

A further motivation for including a WRS in Hawaii is
that this WRS would see most satellites before the
stations in CONUS, allowing it to begin filtering
corrections before the satellites are visible in CONUS.
This effect, in which low-elevation rising satellites have
larger post-correction pseudorange errors until averaging
reduces effective multipath, is not modeled in our
“snapshot” covariance algorithms.  We are currently
measuring this effect in the Stanford WAAS data, and we
plan to add it to the RMTSA error model in the future.

6.3 FAA NSTB Testbed Results
In advance of the planned introduction of an

operational WAAS in the late 1990’s, the FAA plans to
build a testbed of about 18 WRS’s spread throughout
CONUS.  This testbed, known as NSTB, is designed to
experimentally evaluate WAAS user performance and to
provide guidance to the development of the operational
system [3].  Stanford University is participating in
developing and testing WRS and WMS algorithms that
may be included in the NSTB.  The covariance methods
detailed here can also be used to predict NSTB user
accuracies over the entire CONUS region.
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Figure 6: 95% Accuracy, FAA 18-WRS NSTB
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Because each of the 18 WRS’s in the NSTB sees an
average of 8-10 satellites at a time, parsing of the

ionosphere covariance matrix P
$P  (see Section 5.4) is

necessary.  Using a separation threshold Td = 500 km, the

number of rows and columns in P
$P  decreases from an

average of 160 to 54 for the 18-WRS NSTB.  With this
level of parsing, no numerical matrix singularity
problems have been observed.

Figure 6 shows a 2-D contour plot of 95% vertical
position errors for a 3o user grid from 20o to 56o North
latitude and 65o to 131o West longitude.  The WMS
ionosphere grid goes from the Equator to 75o N and from
50o to 140o W in 15o increments.  It is clear that even
with conservative ionosphere parameters, 18 WRS’s are
fully capable of providing ILS Cat. I landing accuracy
throughout CONUS.  A WAAS 95% “accuracy floor” of
about 2.7 m is evident in the Western U.S., where the
density of WRS locations is highest.  WRS density in the
Eastern U.S. is much lower, possibly to serve as a more
severe test for landing experiments at the FAA Technical
Center in Atlantic City, N.J.  Nevertheless, the Eastern
U.S. coastline still achieves 95% vertical accuracy of
four meters or better.
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Figure 7: 3-D 95% Accuracy Plot, FAA NSTB

Figure 7 is a 3-D representation of the same position
accuracy results.  This plot gives a nice overview of the
shape of the 95% accuracy surface, or “bowl”, over
CONUS.  As would be expected from the lack of WRS’s
outside CONUS, the gradient of this surface gets worse
near the edges of the user grid.  Users off to the southeast
or southwest of CONUS have the worst accuracy, but it
is still within 7 m.  Figure 8 is a similar 3-D plot of the
95% user VDOP surface.  It is shown to display the
important effect of the added geosynchronous satellites.
Note that users in the lowest section of this surface

(where 95% VDOP ≈ 1.5) can see both the 180o and 55o

E SV’s, whereas most of the other user locations can
only see one of these.  Because a basic requirement for
WAAS is that each user see at least two geosynchronous
SV’s (to ensure reception of valid corrections), more of
these SV’s will be needed for the operational WAAS;
thus VDOP should improve further [11].
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Figure 8: 3-D 95% VDOP Plot, FAA NSTB

Figure 9 is a 2-D contour plot of 95% UIVE for the
NSTB.  These errors are small even for our conservative
ionosphere model parameters.  In the center of CONUS,
the presence of WRS observations on all sides improves
95% UIVE to below 0.4 m, and all of CONUS is under
0.8 m.  This demonstrates how well a nationwide WAAS
can fit the underlying ionosphere states under “normal”
ionospheric conditions.  In solar maximum years, these
errors should be no worse than twice that shown here [4].
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The rapid worsening of the user accuracy performance
at the edges in Figure 7 motivates a study of adding
additional WRS’s outside CONUS.  Likely sites include
Honolulu, HI, Anchorage, AK, Puerto Rico, and Gander,
Newfoundland.  In addition, it is worth investigating the
change in East Coast performance if one of the many
WRS in the West is moved to Atlantic City, NJ.  Figures
10 and 11 show 95% vertical accuracy and UIVE results
for a variant of the NSTB that adds the four WRS’s listed
above and moves the Casper, WY. WRS to Atlantic City.
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Figure 10: 95% Accuracy, FAA 22-WRS Variant

Figure 10 clearly shows substantial user accuracy
improvement compared to the basic NSTB (Figure 7).
With these changes, all of CONUS now has 95% vertical
error of less than 3.6 m, and the accuracy gradients have
lessened along the borders of CONUS.  The network is
still unbalanced towards the West, but the East Coast has
improved markedly.  Also note that very little was lost
by the removal of the Casper WRS, while much was
gained by an addition in Atlantic City.  Figure 11 shows
that UIVE has improved substantially as well.  The
variant NSTB provides 95% UIVE under 0.5 m for over
80% of CONUS.  Note that the two northern WRS
additions are closer to CONUS than the southern ones;
thus UIVE improves much more along the northern U.S.
border.  In contrast, little improvement is gained along
the U.S.-Mexico border (a WRS in Mexico would help).

6.4 Summary of Results
The results presented in this section demonstrate that

the covariance propagation methods developed in this
paper produce useful and sensible predictions of WAAS
performance.  The Stanford WAAS predictions meet our
performance expectations and agree with our limited
flight-test data base.  The geographic performance
degradation is gradual enough to verify that the WAAS
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Figure 11: 95% UIVE, FAA 22-WRS Variant

concept can provide truly useful “wide-area” corrections.
The addition of a WRS in Hawaii has a limited effect
over CONUS since it is far away, but it provides “local-
area” accuracy to its own area and helps calibrate the
error surface over the region of the Pacific in between.

Predictions for the FAA NSTB suggest that a WRS
network of this density is easily able to meet the ILS
Category I landing requirement throughout CONUS.  A
combination of nearby WRS density, geosynchronous
satellite visibility,  and a bias toward the best-error-fit
middle of the WRS region influence a given user’s
performance in a logical way.  The data collected from
NSTB starting in 1997 will be the first opportunity to
verify these predictions.

Several key points should be raised here regarding the
limitations of this methodology for predicting WAAS
utility.  First, the covariance propagation steps use batch
least squares fits to the GPS error surfaces.  Given the
assumed “white” Gaussian behavior of GPS performance
in non-failure cases, a least-squares solution is generally
seen to be optimal.  However, execution time constraints
and the numerical problems mentioned in Section 5.4
make this approach probably infeasible in a real-time
WAAS.  Instead, numerically easier data fits will be used
[1].  Thus, our covariance method represents the assumed
underlying behavior of GPS errors in a WAAS context.
It could therefore be viewed as an algorithmic upper
bound on WAAS performance.  Instead, we believe that
the conservative parameters of our current error models
with improve as more data is collected.  Furthermore, the
process of design-and-test should produce real-time
algorithms that are tuned to non-ideal error performance
as observed from test results.  As a result, we believe that
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operational WAAS systems will be able to improve on
the predictions contained in this paper.

In addition, the assumption of “normal” WAAS error
performance does not allow us to make integrity or
continuity predictions.  Indeed, the excellent accuracy
predicted for the NSTB in Section 6.3 suggests that
adequate integrity is possible but cannot demonstrate it.
Monte Carlo sampling has been used to predict integrity
performance [8,10], but it would be a major task to do it
over a large WAAS user grid.  In fact, the relatively high
WRS density of the NSTB (and the operational FAA
WAAS) can be seen as partially a hedge against worse-
than-expected spatial decorrelations.  Our confidence in
making WAAS integrity predictions will rely critically
on further experimental ionosphere results.

7.0  Conclusions and Further Work

Despite the assumptions and limitations of the best
GPS/WAAS error models available, we have
demonstrated that it is possible to use least-squares
covariance propagation to predict the performance that
widely-spread-out users will be able to achieve from any
candidate WAAS network.  This approach has produced
reasonable, internally-consistent accuracy predictions for
both current prototype WAAS systems and a full-scale
NSTB designed to cover all of CONUS.  It thus serves as
a very useful “end-to-end” computer analysis tool to aid
the layout, design, and development of future networks.

Currently, we are using this method to predict WAAS
performance while varying the proposed FAA network
layouts and some of the key error parameters that go into
the covariance model.  A key addition is the rising vs.
falling satellite error dependence mentioned in Section
6.2.  Predictions are also being generated for conceptual
WAAS networks covering Western Europe and East
Asia.  Since we can manually try different configurations
and study the changes in accuracy, it is also possible to
automate the optimal-network search process, using a
combination of accuracy, cost, and (indirect) integrity
models to numerically evaluate each alternative.  Global
search methods such as Simulated Annealing and
Genetic Algorithms can be used to converge toward an
optimal WAAS architecture for a given user area.
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