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ABSTRACT 
Complexities inherent to large-scale modern civil structures pose many challenges in the 
design of feedback structural control systems for dynamic response mitigation.  With the 
emergence of low-cost sensors and control devices creating technologies from which large-
scale structural control systems can deploy, a future control system may contain hundreds, 
or even thousands, of such devices.  Key issues in such large-scale structural control 
systems include reduced system reliability, increasing communication requirements, and 
longer latencies in the feedback loop.  To effectively address these issues, decentralized 
control strategies provide promising solutions that allow control systems to operate at high 
nodal counts.   
 
This paper examines the feasibility of designing a decentralized controller that minimizes 
the H∞ norm of the closed-loop system.  H∞ control is a natural choice for decentralization 

because imposition of decentralized architectures is easy to achieve when posing the 
controller design using linear matrix inequalities.  Decentralized control solutions are 
investigated for both continuous-time and discrete-time H∞ formulations.  Numerical 

simulation results using a 3-story and a 20-story structure illustrate the feasibility of the 
different decentralized control strategies.  The results also demonstrate that when realistic 
semi-active control devices are used in combination with the decentralized ∞H  control 
solution, better performance can be gained over the passive control cases.  It is shown that 
decentralized control strategies may provide equivalent or better control performance, 
given that their centralized counterparts could suffer from longer sampling periods due to 
communication and computation constraints. 
 
Keywords: H-infinity control, feedback structural control, decentralized control, smart 
structures. 
 
 
1. INTRODUCTION 
Real-time feedback control has been a topic of great interest to the structural engineering 
community over the last few decades [1-4].  A feedback structural control system includes 
an integrated network of sensors, controllers, and control devices that are installed in the 
civil structure to mitigate undesired vibrations during external excitations, such as 
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earthquakes or typhoons.  Under an external excitation, the dynamic response of the 
structure is measured by sensors.  Sensor data is communicated to a centralized controller 
that uses the data to calculate an optimal control solution.  The optimal solution is then 
dispatched by the controller to control devices which directly (i.e. active devices) or 
indirectly (i.e. semi-active devices) apply forces to the structure.  This process repeats 
continuously in real time to mitigate, or even eliminate, undesired structural vibrations.  It 
was recently reported that more than 50 buildings and towers have been successfully 
instrumented with various types of structural control systems from 1989 to 2003 [5].  In 
practice, semi-active control is usually preferred over active control because it can achieve 
at least an equivalent level of performance, consumes orders of magnitude less power, and 
provides higher level of reliability.  Examples of semi-active control devices include active 
variable stiffness (AVS) devices, semi-active hydraulic dampers (SHD), electrorheological 
(ER) dampers, and magnetorheological (MR) dampers [6].  Additional advantages 
associated with semi-active control include adaptability to real-time excitation, inherent 
Bounded Input/Bounded Output (BIBO) stability, and invulnerability against power failure.   
 
Traditional feedback structural control systems employ centralized architectures.  In such 
an architecture, one central controller is responsible for collecting data from all the sensors 
in the structure, making control decisions, and dispatching these control decisions to 
control devices.  Hence, the requirements on communication range and data transmission 
bandwidth increase with the size of the structure and with the number of sensors and 
control devices being deployed.  The communication requirements could impose 
economical and technical difficulties for the implementation of feedback control systems 
in increasingly larger civil structures.  The centralized controller itself represents a single 
point of potential failure; failure of the controller may paralyze the entire control system.  
In order to overcome these inherent challenges, decentralized control architectures could 
be alternatively adopted [7-9].  For example, a structural control system consisting of 88 
fully decentralized semi-active oil dampers has been installed in the 170m-tall Shiodome 
Tower in Tokyo, Japan [10; 11].   
 
This paper examines both fully decentralized scheme, where the controller on a floor only 
has local sensor data from that floor, and partially decentralized scheme, where the 
controller also receives sensor data from neighboring floors (or substructures).  In a 
decentralized control system architecture, multiple controllers are distributed throughout 
the structure.  Acquiring data from a local subnet of sensors, each controller commands 
control devices in its vicinity.  The benefits of localizing a subset of sensors and control 
devices to each controller include shorter communication ranges and reduced data 
transmission rates in the control system.  Decentralization also eliminates the risk of global 
control system failure if one of the controllers should fail.  For large-scale structures, 
occasional failure of decentralized controllers may only cause minor degradation to the 
control performance. 
 
Decentralized control design based on the linear quadratic regulator (LQR) optimization 
criteria has been previously explored by the authors to study the feasibility of utilizing 
wireless sensors as controllers for feedback structural control [12; 13].  This paper 
investigates a different approach to the design of a decentralized control system based on 
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H∞ control theory, which is known to offer excellent control performance when “worst-

case” external disturbances are encountered.  Due to the multiplicative property of the H∞ 

norm [14], H∞ control design can also consider modeling uncertainties (as is typical in 

most civil structures).  Centralized H∞ controller implementation in the continuous-time 

domain for civil structural control has been extensively studied [15-21].  When compared 
with traditional linear quadratic Gaussian (LQG) controllers, H∞ controllers can achieve 

either comparable or superior performance [22; 23].  For example,  it has been shown that 
H∞ control design may achieve better performance in attenuating transient vibrations of the 

structure [24].  However, decentralized H∞ controller design, either in the continuous time 

domain or discrete time domain, has rarely been explored in structural control. 
 
The H∞ control solution can be readily formulated as an optimization problem with 

constraints expressed in terms of linear matrix inequalities (LMI) [25].  For such problems, 
sparsity patterns can be easily applied to the controller matrix variables.  This property 
offers significant convenience for designing decentralized controllers, where certain 
sparsity patterns can be applied to the gain matrices consistent with certain desired 
feedback architecture.  This paper presents pilot studies investigating the feasibility of 
decentralized H∞ control that may be employed in large-scale structural control systems.  

More specifically, decentralized H∞ controller design is presented in both the continuous-

time and discrete-time domains.  Using properties of LMI, the decentralized H∞ control 

problem is converted into a convex optimization problem that can be conveniently solved 
using available mathematical packages.   
 
Numerical simulations are conducted to validate the performance of the decentralized  H∞ 

controller design.  In the first example, a 3-story structure is used to demonstrate the 
detailed procedure for the design of the decentralized H∞ controller.  The control 

performance of decentralized H∞ controllers is then compared with the performance of 

decentralized LQR-based controllers [12; 13].  In the second example, simulations of a 20-
story benchmark structure are conducted to illustrate the efficacy of the decentralized 
H∞ control solution for large-scale civil structures.  Different information feedback 

architectures and control sampling rates are employed so as to provide an in-depth study of 
the proposed approaches.  Control performance using ideal actuators and large-capacity 
semi-active hydraulic (SHD) dampers are presented for the 20-story structure.  
Performance of the decentralized control system is compared with passive control cases 
where the SHD dampers are fixed at minimum or maximum damping settings. 
 
2. FORMULATION OF DECENTRALIZED H∞ CONTROL 

This section first discusses the design of a decentralized  H∞ controller for structural 

control in the continuous-time domain.  The controller’s counterpart in the discrete-time 
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domain is then derived.  In both derivations, properties of linear matrix inequalities are 
utilized to convert the formulation of the decentralized control design problem into a 
convex optimization problem. 
 
 

2.1. Continuous-time decentralized H∞ control 
For a lumped-mass structural model with n degrees-of-freedom (DOF) subjected to m1 

external excitations, and controlled by m2 control devices, the equations of motion can be 
formulated as: 

( ) ( ) ( ) ( ) ( )t t t t t+ + = +u wMq Cq Kq T u T wɺɺ ɺ  (1) 
 
where q(t) 1n×∈ℝ  is the displacement vector relative to the ground; M, C, K n n×∈ℝ  are the 
mass, damping, and stiffness matrices, respectively; u(t) 2 1m ×∈ℝ  and w(t) 1 1m ×∈ℝ  are the 
control force and external excitation vectors, respectively; and Tu

2n m×∈ℝ  and Tw
1n m×∈ℝ  are 

the control and excitation location matrices, respectively.  
 
For simplicity, the discussion is based on a 2-D shear-frame structure subjected to 
unidirectional ground excitation.  In the example structure shown in Figure 1, it is assumed 
that the external excitation, w(t), is a scalar function (m1 = 1) containing the ground 
acceleration time history ( )gq tɺɺ ; the spatial load pattern Tw is then equal to { } 1n×

−M 1 .  

Entries in u(t) are defined as the control forces between neighboring floors.  For the 3-
story structure, if a positive control force is defined to be moving the floor above the 
device towards the left direction, and moving the floor below the device towards the right 
direction (as shown in Figure 1), the control force location matrix Tu is defined as: 

1 1 0

0 1 1

0 0 1

− 
 = −
 
 −  

uT  (2) 

 
The second-order ordinary differential equation (ODE), Eq. (1), can be converted to a first 
order ODE by the state-space formulation as follows: 

( ) ( ) ( ) ( )I I I I It t t t= + +x A x B u E wɺ  (3) 
 

u3

u2

u1

u3

u2

u1 ( )gq tɺɺ

q2

q3

q1

 
Figure 1. A three-story controlled structure excited by unidirectional ground motion. 
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where ( ) ( ) 2 1; n
I t t ×=  ∈ x q qɺ ℝ  is the state vector;  AI

2 2n n×∈ℝ , BI 22n m×∈ℝ , and EI 12n m×∈ℝ  are 

the system, control, and excitation matrices, respectively: 

[ ] [ ]n n n n
I

× ×
− −

 
=  − − 

1 1

0 I
A

M K M C
, 

[ ]
2n m

I
×

−

 
=  
  

1
u

0
B

M T
, 

{ }
{ }

1

1

n
I

n

×

×

 
=  − 

0
E

1
 (4) 

 
In this study, it is assumed that inter-story drifts and velocities are measurable.  The 
displacement and velocity variables in Ix , which are relative to the ground, are first 
transformed into inter-story drifts and velocities (i.e. drifts and velocities between 
neighboring floors).  The inter-story drifts and velocities at each story are then grouped 
together as: 

x = [q1  1qɺ   2 1q q−   2 1q q−ɺ ɺ   …  1n nq q −−   1n nq q −−ɺ ɺ ]T (5) 
 
A linear transformation matrix 2 2n n×∈Γ ℝ  can be defined such that I=x Γx .  Substituting 

1
I

−=x Γ x  into Eq. (3), and left-multiplying the equation with Γ , the state space 
representation with the transformed (inter-story) state vector becomes: 

( ) ( ) ( ) ( )t t t t= + +x Ax Bu Ewɺ  (6) 
 
where  

1
I

−=A ΓA Γ , I=B ΓB , I=E ΓE  (7) 
 
The system output z(t) 1p×∈ℝ  is defined as the sum of linear transformations to the state 
vector x(t) and the control force vector u(t): 

( ) ( ) ( )t t t= +z zz C x D u  (8) 
 
where Cz

2p n×∈ℝ  and Dz
2p m×∈ℝ  are the output matrices for the state and control force 

vectors, respectively.  Assuming static state feedback, the control force u(t) is determined 
by u(t) = Gx(t), where G 2 2m n×∈ℝ  is termed the control gain matrix.  Substituting Gx(t) for 
u(t) in Eq. (6) and Eq. (8), the state-space equations of the closed-loop system can be 
written as: 

( ) ( ) ( )
( ) ( )

CL

CL

t t t

t t

= +
 =

x A x Ew

z C x

ɺ
 (9) 

 
where 

CL

CL

= +
 = + z z

A A BG

C C D G
 (10) 

 
In frequency-domain, the system dynamics can be represented by the transfer function 
Hzw(s) 1p m×∈ℂ  from disturbance w(t) to output z(t) as [26]: 

( ) ( ) 1

CL CLs s
−= −zwH C I A E  (11) 

 
where s is the complex Laplacian variable.  The objective of ∞H  control is to minimize the 

∞H -norm of the closed-loop system, which in the frequency domain is defined as: 
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( ) ( )sup js
ω

σ ω
∞

=   zw zwH H  (12) 

 
where ω represents angular frequency, j is the imaginary unit, [ ]σ i  denotes the largest 

singular value of a matrix, and “sup” denotes the supremum (least upper bound) of a set of 
real numbers.  The definition shows that in the frequency domain, the ∞H -norm of the 

system is equal to the peak of the largest singular value of the transfer function ( )szwH  

along the imaginary axis (where s = jω).  The ∞H -norm also has an equivalent 
interpretation in the time domain, as the supremum of the 2-norm amplification from the 
disturbance to the output:   

( )
( )

( ) ( )( )
2

2 2
, 0

sup
t

s t t
∞ ≠

=zw
w w

H z w  (13) 

 

where the 2-norm of a signal f(t) is defined as ( ) ( ) ( )T

2

t

t
t t t dt

=+∞

=−∞
= ∫f f f , which represents 

the energy level of a signal.  In this study, the ∞H -norm can be viewed as the upper limit 
of the amplification factor from the disturbance (i.e. seismic ground motion) energy to the 
output (i.e. structural response) energy.  The disturbance is called a “worst-case” 
disturbance when this upper limit is reached.  By minimizing the ∞H -norm, the system 
output (which includes structural response measures) can be greatly reduced when a worst-
case disturbance (which is the earthquake excitation) is applied.   
 
According to the Bounded Real Lemma, the following two statements are equivalent for a 

∞H  controller that minimizes the smallest upper bound of the ∞H  norm of a continuous-

time system [25]: 
1. γ

∞
<zwH  and ACL is stable in the continuous-time sense (i.e. the real parts of all 

the eigenvalues of ACL are negative); 
2. There exists a symmetric positive-definite matrix 2 2n n×∈Θ ℝ  such that following 

inequality holds:  
2

0
*

T T T
CL CL CLγ + +

< − 

A Θ ΘA EE ΘC

I
 (14) 

 
where * denotes the symmetric entry (in this case, CLC Θ ), and “< 0” means that the matrix 
at the left side of the inequality is negative definite.  Using the closed-loop matrix 
definitions in Eq. (10), Eq. (14) becomes: 

2

0
*

T T T T T T Tγ + + + + +
< − 

z zAΘ ΘA BGΘ ΘG B EE ΘC ΘG D

I
 (15) 

 
The above nonlinear matrix inequality can be converted into linear matrix inequality (LMI) 
by introducing a new variable 2 2m n×∈Y ℝ  where =Y GΘ : 

2

0
*

T T T T T T Tγ + + + + +
< − 

z zAΘ ΘA BY Y B EE ΘC Y D

I
 (16) 
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In summary, the continuous-time ∞H  control problem is now transformed into a convex 
optimization problem:  

minimize    γ  
subject to    0>Θ  and the LMI expressed in Eq. (16) 

(17) 

 
Here Y, Θ , and γ are the optimization variables.  Numerical solutions to this optimization 
problem can be computed, for example, using the Matlab LMI Toolbox [27] or the convex 
optimization package CVX [28].  After the optimization problem is solved, the control 
gain matrix is computed as: 

1−=G YΘ  (18) 
 
In general, the algorithm finds a gain matrix without any sparsity constraints; in other 
words, it represents a control scheme consistent with a centralized state feedback 
architecture.  To compute gain matrices for decentralized state feedback control, 
appropriate sparsity constraints can be applied to the optimization variables Y and Θ  while 
solving the optimization problem of Eq. (17).  For most available software packages, the 
sparsity constraints can be conveniently defined by assigning corresponding zero entries to 
the Y and Θoptimization variables.  For example, gain matrices of the following sparsity 
patterns may be employed for a 3-story structure: 

0 0
0 0
0 0

I

 
=  
  

G
�

�

�

, and 
0

0
II

 
=  
  

G
� �

� � �

� �

 (19) 

 
Note that each entry in the above matrices represents a 1 × 2 block.  According to the 
linear feedback control law ( ) ( )t t=u Gx , when the sparsity pattern in GI is used, only the 

inter-story drift and velocity at the i-th story are needed to determine the control force iu  at 
the same story.  When the sparsity pattern in GII is adopted, the inter-story drifts and 
velocities from both the i-th story and the neighboring stories (story) are needed in order to 
determine the control force iu  at the i-th story.  Considering the relationship between G 
and Y as specified in Eq. (18), in order to find the control gain matrices satisfying the 
shape constraints in GI, the following shape constraints may be applied to the optimization 
variables Y and Θ : 

0 0
0 0
0 0

I

 
=  
  

Y
�

�

�

, and 
0 0

0 0
0 0

I

 
=  
  

Θ

�

�

�

 (20) 

 
Similarly, to compute control gain matrices satisfying the shape constraints of GII, the 
following shape constraints may be applied to the optimization variables: 

0

0
II

 
=  
  

Y
� �

� � �

� �

, and 
0 0

0 0
0 0

II

 
=  
  

Θ

�

�

�

 (21) 

 
It is important to realize that due to the constraints imposed on the Y and Θ  variables, the 
presented decentralized ∞H  controller precludes the possibility that a decentralized gain 
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matrix may exist with Y and Θ  variables not satisfying the corresponding shape 
constraints.  For example, it is possible that a gain matrix may satisfy the sparsity pattern 
in GI while the corresponding Y and Θ  variables do not conform to the sparsity patterns 
shown in Eq. (20).  The application of sparsity patterns to Y and Θ  variables makes the 
gain matrix easily computable using existing software packages, although the approach 
may not be able to explore the complete solution space of decentralized gain matrices.  
That is, the approach for decentralized ∞H  controller design may not guarantee that a 
minimum ∞H -norm is obtained over the complete solution space; rather, only a minimum 

∞H -norm is obtained for the solution space contained within the boundary imposed by the 
shape constraints on Y and Θ .  
 

2.2. Discrete-time decentralized H∞∞∞∞ control 

For implementation in typical digital control systems, the decentralized ∞H  control design 

in discrete-time domain is needed.  Using zero-order hold (ZOH) equivalents, the 
continuous-time system in Eq. (9) can be transformed into an equivalent discrete-time 
system [29]: 

[ ] [ ] [ ]
[ ] [ ]

1 CL

CL

k k k

k k

+ = +
 =

d d d d d

d d d

x A x E w

z C x

 
(22) 

 
where the subscript “d” indicates that the variables are expressed in the discrete-time 
domain, and the closed-loop system matrices AdCL and CdCL are defined accordingly: 

CL

CL

= +
 = +

d d d d

d z z d

A A B G

C C D G
 (23) 

 
For linear state feedback, the control force [ ]kdu  is determined as [ ] [ ]k k=d d du G x .  
According to the Bounded Real Lemma, the following two statements are equivalent for 
discrete-time systems [26]: 

1. The ∞H -norm of the closed-loop system in Eq. (22) is less than γ, and AdCL is 
stable in the discrete-time sense (i.e. all of the eigenvalues of AdCL fall in the unit 
circle on the complex plane); 

2. There exists a symmetric matrix 0>dΘ  such that the following inequality holds: 

0
T T

CLCL CL
T

CL

γ
γ

      
− <      

     

d dd dd d

dd

A EΘ 0 Θ 0A C

C 00 I 0 IE 0
 (24) 

 
Replacing dΘ  with 2γdΘ

ɶ  and using the Schur complement [25] and congruence 
transformation, it can be shown that the matrix inequality in Eq. (24) is equivalent to: 

2*
0

* *

* * *

T T
CL CL

Tγ
 
 
  >
 
 
 

d d d d

d d

d

Θ 0 A Θ C

I E Θ 0

Θ 0

I

ɶ ɶ

ɶ

ɶ
 (25) 
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Left-multiplying and right-multiplying the matrix above with a positive definite block-
diagonal matrix diag( 1 1, , ,− −

d dΘ I Θ Iɶ ɶ ), and letting 1−=d dΘ Θɶ , the following matrix inequality 
is obtained: 

2*
0

* *

* * *

T T
CL CL

Tγ
 
 
  >
 
 
 

d d d d d

d

d

Θ 0 Θ A Θ C

I E 0

Θ 0

I

 (26) 

 
Similar to the continuous-time system, by replacing the closed-loop matrices AdCL and 
CdCL in Eq. (26) with their definitions in Eq. (23), and letting =d d dY G Θ , the above matrix 
inequality can be converted into: 

2*
0

* *

* * *

T T T T T T

Tγ
 + +
 
  >
 
 
  

d d d d d d z d z

d

d

Θ 0 Θ A Y B Θ C Y D

I E 0

Θ 0

I

 (27) 

 
Therefore, the discrete-time ∞H  control problem can be converted to a convex 
optimization problem with LMI constraints: 

minimize    γ  
subject to    0>dΘ  and the LMI expressed in Eq. (27) (28) 

 
Here again, Yd, ΘΘΘΘd, and γ  are the optimization variables. After the optimization problem is 
solved, the control gain matrix is computed as: 

1−=d d dG Y Θ  (29) 
 
Furthermore, the sparsity pattern of the gain matrix can be obtained by specifying 
appropriate zero entries to the LMI variables Yd and ΘΘΘΘd, following the same procedure as 
described in the continuous-time case.  
 
3. NUMERICAL SIMULATIONS 
Since the discrete-time formulation is suitable for implementation in modern digital 
controllers, numerical simulations are conducted to evaluate the performance of the 
discrete time decentralized H∞ control schemes described in Section 2.2. In Section 3.1, the 

procedure for designing the decentralized H∞ controller is illustrated in details using a 3-

story structure.  Performance of the H∞ controllers is compared with the performance of 

controllers based on the LQR optimization criteria.  In Section 3.2, simulations using a 20-
story benchmark structure are conducted to illustrate the efficacy of the decentralized 
H∞ control solution for large-scale civil structures.  Results using both ideal actuators and 

large-capacity semi-active hydraulic (SHD) dampers are presented for the 20-story 
structure. 
 

3.1. Numerical simulation of a 3-story structure 
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3.1.1. Decentralized H∞ control 
Simulations of a 3-story shear-frame structure are first presented to illustrate the procedure 
employed in decentralized ∞H  control design.  The frame structure is modeled as an in-
plane lumped-mass shear structure with one actuator allocated between every two 
neighboring floors.  It is assumed that both the inter-story drifts and inter-story velocities 
between every two neighboring floors are measurable.  Such an assumption is reasonable 
considering that modern semi-active hydraulic dampers contain internal stroke sensors and 
load cells that measure real-time damper displacements and forces, respectively [11].  
Assuming V-brace elements are used as shown in Figure 1, the displacement and force 
measurements can be used to estimate inter-story drifts and velocities.  The following mass, 
stiffness, and damping matrices are adopted for the example structure: 

6
6

6

 
=  
  

M 310× kg,  
3.4 1.8
1.8 3.4 1.6

1.6 1.6

− 
= − − 

−  
K 610× N/m, 

12.4 5.16
5.16 12.4 4.59

4.59 7.20

− 
= − − 

−  
C 310× N/(m/s) 

(30) 

 
For unidirectional ground excitation, the continuous-time system matrices A, B and E can 
be obtained via Eq. (7) as: 

0 1 0 0 0 0
266.7 1.2 300 0.8603 0 0

0 0 0 1 0 0
266.7 0.7647 600 2.156 266.7 0.7647

0 0 0 0 0 1
0 0 300 0.8603 533.3 1.965

 
− − 
 = − − 
 
 − − 

A  , 

4

0 0 0
1.667 1.667 0

0 0 0 101.667 3.333 1.667
0 0 0
0 1.667 3.333

−

 
− 
 = × −
 
 − 

B , 

0
1

0
0
0
0

 
− 
 =  
 
  

E  

(31) 

 
Note that the state-space vector corresponding to these matrices no longer contains 
displacements and velocities relative to the ground.  Instead, the vector has been 
formulated to contain inter-story drifts and velocities that are grouped by floors as given in 
Eq. (5).  The system matrices in Eq. (31)  can be readily converted into their discrete-time 
equivalents for a given sampling frequency [28].  For the results presented here, a 
sampling frequency of 100 Hz is employed. The output matrices Cz and Dz shown in Eq. 
(23) are defined as: 

50 0 0 0 0 0
0 0 50 0 0 0
0 0 0 0 50 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 
 
 =  
 
  

zC  , 5

0 0 0
0 0 0
0 0 0 103.162 0 0
0 3.162 0
0 0 3.162

−

 
 
 = × 
 
  

zD  (32) 

 



 11 

The above assignments for Cz and Dz make the 2-norm of the output vector [ ]kdz  a 
quadratic function of the inter-story drifts and control forces: 

[ ] ( ) [ ]
[ ] [ ]

[ ] [ ] [ ]( ) [ ] [ ]( )
[ ] [ ] [ ]( )

2 2

2 2

2

2

2 22
1 2 1 3 2

9 2 2 2
1 2 3

2500

10

k k

k k

q k q k q k q k q k

u k u k u k−

= +

= +

 = + − + −  

+ + +

d z z d d

z d z d

z C D G x

C x D u
 (33) 

 
The decentralized ∞H  controller design aims to minimize the closed-loop ∞H -norm, which 
is defined as the system norm from the excitation input to the output zd.  The relative 
weighting between the structural response and the control effort is reflected by the 
magnitude of the output matrices, Cz and Dz.  If higher attenuation of structural response is 
needed, larger magnitude should be assigned to Cz; on the contrary, if less control effort is 
available, larger magnitude should be assigned to Dz.  Using the matrices defined in Eqs. 
(31) and (32), the convex optimization problem as shown in Eq. (28) can be posed with 
different sparsity patterns imposed on the Yd and ΘΘΘΘd matrices.  For the two sparsity 
patterns I and II defined in Eq. (20) and (21), the solutions to the optimization problem 
result in the following two decentralized control gain matrices, respectively: 

5
1.578 5.608

5.383 3.195 10
4.109 3.013

I

− 
= − × 
 − 

dG  (34) 

5
4.246 10.12 10.59 11.86

4.747 4.141 7.363 11.77 0.1178 0.0788 10
5.106 6.320 9.763 4.061

II

− 
= − − − × 
 − 

dG  (35) 

 
When no sparsity pattern is applied to Yd and ΘΘΘΘd, a full gain matrix representing 
centralized feedback is generated: 

5
  2.354   15.24   0.6553    11.52    1.505    6.281
3.719   10.04       3.358      8.539    1.125    4.499 10
3.954    5.742   1.599     4.726    5.687    3.269

III

− 
= − × 
 − − 

dG  (36) 

 
The open-loop ∞H -norm of the uncontrolled structure and the closed-loop ∞H -norms of 
the controlled structure using the above gain matrices are listed in Table 1.  The  ∞H -norm 
of the uncontrolled structure is computed using the discrete-time system defined in Eq. (22) 
with the gain matrix Gd set as a zero matrix.  Comparing the four cases in Table 1, the 
uncontrolled structure has the highest ∞H -norm (8.4366), which indicates the largest 
“worst-case” amplification from the excitation input wd to the output zd.  Among the three 
controlled cases, because the centralized case with gain matrix GdIII assumes that complete 
state information is available for control decisions, the lowest ∞H -norm (0.7045) is 
achieved (which means best control performance).  The fully decentralized case with gain 
matrix GdI has the largest norm (0.8521) among the three ∞H  controllers; this is somewhat 
expected because the fully decentralized controller has the least amount of information 
available for calculating control decisions for each control device. 
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The 1940 El Centro NS (Imperial Valley Irrigation District Station) earthquake record with 
its peak acceleration scaled to 1m/s2 is used as the ground excitation.  Three ideal actuators 
that generate any desired control force are deployed at the three stories.  In contrast to a 
realistic semi-active or active control device, an ideal actuator offers unlimited force 
capacity, and has zero time delay while delivering the force.   Maximum inter-story drifts 
and control forces during the dynamic response are plotted in Figure 2.  The inter-story 
drift plots in Figure 2(a) include the results for the uncontrolled structure and the structure 
controlled using the three different gain matrices.  Using ideal actuators, all three 
controlled cases achieve significant reduction in inter-story drifts compared with the 
uncontrolled case.  Among the three controlled cases, the fully decentralized case using 
gain matrix GdI achieves the smallest reduction in inter-story drifts, which is consistent 
with the performance comparison indicated by the ∞H -norms in Table 1.  The difference 
between the cases using gain matrices GdII and GdIII is minor, with GdIII achieving slightly 
better performance.   
 
 Figure 2(b) presents the peak control forces for the three controlled cases.  The fully 
decentralized controller imposes the lowest requirements on the control force capacity.  

 
Table 1.  2H  and ∞H -norms of the open-loop transfer function zwH  and the closed-

loop norms using both the ∞H  controllers and LQR controllers  

Closed-loop 
Fully 

decentralized 
Partially 

decentralized 
Centralized 

 
Open-loop 

(Uncontrolled) 
LQR

IdG  
GdI 

( ∞H ) 
LQR

IIdG  
GdII 

( ∞H ) 
LQR

IIIdG  
GdIII 

( ∞H ) 

∞H  norm 8.4366 1.2836 0.8521 1.0462 0.7076 0.9922 0.7045 

2H  norm 0.4657 0.1874 0.3020 0.1786 0.5027 0.1772 0.6108 
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Figure 2.  Simulation results when ideal actuators are deployed on the 3-story structure. 
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The peak control forces are similar between the partially decentralized case GdII and the 
centralized case GdIII.  The largest sum of the three peak actuator forces is about 35kN, 
which represents the total capacity of all the actuators.  This amount of total actuator 
capacity is about 19% of the building weight (180kN), a realistic ratio as suggested by 
most references [30-32]. 
 
Further illustration of the trade-off between structural response attenuation and control 
effort is shown in Table 2.  The table first lists the RMS (root-of-mean-square) values of 
the inter-story drifts at all three floors when the structure is uncontrolled, i.e. 2.9mm, 2.1 
mm, and 1.4mm, respectively.  For the three controlled cases, changes in RMS drifts are 
listed in percentages relative to the uncontrolled values, i.e. negative numbers represent 
reduction from the uncontrolled value.  For example, case GdIII offers 96% reduction to the 
RMS drift at the first story.  RMS values of three actuator forces are also listed for the 
three controlled cases.   For each controlled case, the bottom row of Table 2 provides 
average drift changes and RMS forces across the three stories.  It is again shown that cases 
GdII and GdIII offer greater reduction to structural response through larger control effort. 
 

3.1.2. Comparison with decentralized LQR control 
It could be instructive to compare the decentralized ∞H  controller design with the 
decentralized LQR controller design that was previously studied [12].  The LQR control 
algorithm aims to select the optimal control force trajectory ud by minimizing the expected 
value of a quadratic cost function, J : 

[ ] [ ] [ ] [ ]( )
2 2

T T
2 2

1

,  0 and  0n n m m
k

J k k k k
∞

× ×
=

= + ≥ >∑ d d d dx Qx u Ru Q R  (37) 

 
Using the same definition of the output matrices as described in Eq. (32), the following 
weighting matrices are employed for the LQR controller design: 

T= z zQ C C  (38) 
T= z zR D D  (39) 

 
As a result, the LQR optimization index J is proportional to the signal 2-norm of the 

 
Table 2.  RMS values of control forces and the changes in RMS inter-story drifts  

( ∞H  control cases) 

 

Controlled 
GdI  GdII  GdIII   

RMS of 
uncontrolled 
inter-story 
drift (mm) 

Drift 
change 

Force 
(kN) 

Drift 
change 

Force 
(kN) 

Drift 
change 

Force 
(kN) 

Story-1 2.9 -85% 2.06 -95% 3.08 -96% 3.09 
Story-2 2.1 -78% 1.35 -95% 2.08 -96% 2.06 
Story-3 1.4 -82% 0.69 -95% 1.05 -94% 1.09 
Average N/A -82% 1.37 -95% 2.07 -95% 2.08 
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system output: 

[ ] [ ] [ ] [ ]( )
[ ] [ ]

[ ]

T T T T
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2
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2

1 2

2

2

K

k
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k
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k

J k k k k

k k

k

t

=

=

=

= +

= +

=

= ∆

∑

∑

∑

d z z d d z z d

z d z d

d

d

x C C x u D D u

C x D u

z

z

 (40) 

 
where t∆  is the sampling period, and note that T =z zC D 0  and T =z zD C 0  using the 
definitions in Eq. (32).  The design of the LQR controller iteratively searches for an 
optimal control gain matrix by traversing along the optimization gradient.  Sparsity shape 
constraints are iteratively applied to the search gradient in order to compute the 
decentralized gain matrices.  The following three decentralized/centralized LQR gain 
matrices are obtained: 

LQR 5
4.4137 1.2649

4.6383 0.9489 10
5.1068 0.6965

I

 
= × 
  

dG  (41) 

LQR 5
5.4594 1.2150 -0.3170 0.4404
0.5689 0.5262 4.0575 0.8687 0.2693 0.2932 10

-0.1671 0.2163 5.0089 0.6818
II

 
= × 
  

dG  (42) 

LQR 5
5.2399 1.2321 0.8256 0.5676 0.1599 0.2438
0.5157 0.5230 4.1441 0.8631 0.4141 0.2975 10
0.1322 0.2427 0.6449 0.3228 4.5696 0.6714

III

 
= × 
  

dG  (43) 

 
Table 1 also lists the 2H  and ∞H -norms of the open-loop transfer function zwH  and the 

closed-loop norms using both the ∞H  controllers and the LQR controllers.  Since the LQR 
control approach is equivalent to an 2H  control design that minimizes the closed-loop 2H -
norm, LQR controllers are expected to perform well in reducing the closed-loop 2H -norm 
[14; 33].  Similar to the ∞H  norm, definition of the system 2H -norm can also be written in 
terms of the singular values of the transfer function matrix: 

( ) ( )2

2

1
j

2 i
i

s dσ ω ω
π

+∞

−∞
=   ∑∫zw zwH H  (44) 

 
As expected, Table 1 shows that the LQR controllers, no matter decentralized or 
centralized, consistently perform better than their ∞H  counterparts in reducing the 2H -
norm, while the ∞H  controllers consistently perform better than their LQR counterparts in 
terms of reducing the ∞H -norm. 
 
In this example, the second dimension of the transfer function matrix ( )jωzwH  is one, 

because the disturbance w is a scalar that represents the ground excitation.  Therefore, 
( )jωzwH  has only one singular value at each frequency ω, which is the largest singular 

value.  Figure 3 plots the singular value of the closed-loop system transfer function 

( )jωzwH  using the decentralized ∞H  controller GdI  and the decentralized LQR controller 
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LQR
IdG .  The definition of the system ∞H  norm in Eq. (12) shows that the ∞H  norm should 

be equal to the peak of the largest singular value over the frequency span.  
Correspondingly, Figure 3 shows that the peak of the singular value using the 

∞H  controller GdI is about 0.85, while the peak for the LQR controller LQR
IdG  is about1.28; 

both of which are consistent with the ∞H  norms listed in Table 1.  Figure 3 also illustrates 
that the decentralized ∞H  controller excels at “pushing down the peak of the largest 
singular value”.  In comparison, the decentralized LQR controller is shown to excel in 
reducing all singular values over the entire frequency span, which agrees with the objective 
of minimizing the 2H  norm (as defined in Eq. (44)). 
 
Simulations are conducted using the LQR controllers, with the same 1940 El Centro NS 
earthquake excitation scaled to 1m/s2.  Three ideal actuators are again deployed at the three 
stories.  Maximum inter-story drifts and control forces during the dynamic response are 
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Figure 3.  Singular values of the closed-loop system transfer function ( )jωzwH  using 

the decentralized ∞H  controller GdI  and decentralized LQR controller LQR
IdG  
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Figure 4.  Simulation results when ideal actuators are deployed on the 3-story structure. 
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plotted in Figure 4.  Comparison between Figure 4 and Figure 2 shows that LQR 
controllers generally achieve less reduction to peak inter-story drifts.  On the other hand, 
the advantage of the LQR controllers in this example is that they impose lower 
requirements to the force capacity of the structural control devices.  For the LQR control 
cases, the total actuator capacity is approximately 20kN, i.e. about 11% of the building 
weight.  This ratio is much lower than the ratio of 19% for the ∞H  control cases. 
 
Similar to Table 2 for the ∞H  control cases, further illustration of the trade-off between 
structural response attenuation and control effort is shown in Table 3 for LQR control.  For 
the controlled cases, changes in RMS drifts are again listed in percentages relative to the 
uncontrolled values.  The table shows that as compared with case LQR

IdG , cases LQR
IIdG  and 

LQR
IIIdG  offer greater reduction to structural response at the expense of larger control effort.  

Comparing the bottom rows of Table 3 and Table 2, it is again illustrated that the LQR 
cases achieve less attenuation to structural response, while demanding less control effort.   
 
 

3.2. Numerical simulation of a 20-story benchmark structure 
3.2.1. Simulation using ideal actuators 

To explore the performance of decentralized H∞ control for a larger-scale structure, a 20-

story benchmark building designed for the Structural Engineers Association of California 
(SAC) project is selected [34].  Same as the 3-story example, discrete-time controllers are 
adopted in the simulation.  The building is modeled as an in-plane lumped-mass shear 
structure with control devices allocated between every set of neighboring floors.  Figure 
5(a) shows the mass, stiffness, and damping parameters of the structure.  In the numerical 
simulations, it is assumed that both the inter-story drifts and inter-story velocities between 
every two neighboring floors are measurable.  As shown in Eq. (5), the state-space 
equations are formulated such that the state-space vector contains inter-story drifts and 
velocities.  Simulations are conducted for different decentralization schemes as shown in 
Figure 5(b).  The degree-of-centralization (DC) reflects the different communication 
architectures, with each communication subnet (as denoted by channels Ch1, Ch2, etc.) 

 
Table 3.  RMS values of control forces and the changes in RMS inter-story drifts 

(LQR control cases) 
 

Controlled 
LQR

IdG  LQR
IIdG   LQR

IIIdG   

RMS of 
uncontrolled 
inter-story 
drift (mm) 

Drift 
change 

Force 
(kN) 

Drift 
change 

Force 
(kN) 

Drift 
change 

Force 
(kN) 

Story-1 2.9 -66% 1.20 -71% 1.32 -73% 1.42 
Story-2 2.1 -65% 0.76 -71% 1.04 -72% 1.01 
Story-3 1.4 -67% 0.42 -72% 0.46 -75% 0.59 
Average N/A -66% 0.79 -71% 0.94 -73% 1.01 
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covering a limited number of stories.  The controllers covered by a subnet are allowed to 
access the sensor data within that subnet.  For example, the case where DC = 1 has each 
subnet covering only five stories with a total of four subnets utilized.  For DC = 2, each 
subnet covers ten stories and a total of three subnets are utilized; meanwhile, overlaps exist 
between subnets for DC = 2.  For stories covered by multiple overlapping subnets, each 
controller at these stories should have communication access to data within all the 
overlapping subnets.  Although each controller may command multiple control devices, in 
this example, a control device can only be commanded by one controller.  The gain 
matrices for the decentralized information structures with DC = 1 and DC = 2 have 
following sparsity patterns: 

20 40

when DC 1

×

 
 = = 
  

dG

�

�

�

�
; 20 40

when DC 2

×

 
 = = 
  

dG

� �

� � �

� � �

� �
 

(45) 

 
Each entry in the above matrices represents a 5 × 10 block submatrix.  To achieve the 
sparsity patterns in gain matrix Gd, the matrix variable Yd in Eq. (28) is defined to have the 
same sparsity pattern as Gd, and dΘ  is defined to be always block-diagonal.  For the cases 
where DC = 3 and DC = 4, the number of stories covered by each communication subnet 
increases accordingly, which result in fewer zero blocks in Gd.  Clearly, the case where DC 
= 4 corresponds to a centralized feedback structure with all devices in the same subnet (i.e. 
Ch 1). 
 
To investigate the effectiveness of the proposed decentralized control design, we first 
assume the 20-story structure is instrumented with ideal actuators that can produce any 
desired force.  Output matrices Cz and Dz in Eq. (23) are defined as: 

Seismic Mass
F1             1.126 x 106 kg
F2 – F19   1.100 x 106 kg
F20           1.170 x 106 kg

Inter-story Stiffness
F1-F5       862.07 x 103 kN/m
F6-F11     554.17 x 103 kN/m
F12-F14   453.51 x 103 kN/m
F15-F17   291.23 x 103 kN/m
F18-F19   256.46 x 103 kN/m
F20          171.70 x 103 kN/m

Damping
5% Natural Damping
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Figure 5. Twenty-story SAC building for numerical simulations: (a) model parameters of 
the lumped mass structure; (b) communication subnet partitioning for different degrees-
of-centralization (DC). 
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Simulations are performed for different degrees-of-centralization (DC = 1,…,4) and 
sampling periods (ranging from 0.01 s to 0.06 s at a resolution of 0.01 s).  Additionally, 
three ground motion records all scaled to a peak ground acceleration (PGA) of 1 m/s2 are 
used for the simulation: 1940 El Centro NS (Imperial Valley Irrigation District Station), 
1995 Kobe NS (JMA Station), and 1999 Chi-Chi NS (TCU-076 Station).  Two 
representative performance indices, J1 and J2, as proposed by Spencer, et al. [34] are 
adopted: 

[ ] [ ]{ }1
Earthquakes , ,

ˆmax max maxi i
k i k i

J d k d k=  (47) 

{ }2 2

2 2 2Earthquakes
ˆmaxJ = d dz z  (48) 

 
Here J1 and J2 correspond to maximum inter-story drifts and output vector zd, respectively.  
In Eq. (47), [ ]id k  represents the inter-story drift between floor i (i = 1, …, n) and its lower 

floor at time step k, and [ ]
,

max i
k i

d k  is the maximum inter-story drift over the entire time 

history and among all floors.  The maximum inter-story drift is normalized by its 

counterpart [ ]
,

ˆmax i
k i

d k , which is the maximum response of the uncontrolled structure.  The 

largest normalized ratio among the simulations for the three different earthquake records is 
defined as the performance index J1.  Similarly, the performance index J2 is defined in Eq. 

(48) based on the 2-norm of the output vector zd; i.e. [ ] [ ]2 T

2 1

K

k
t k k

=
= ∆ ∑d d dz z z , with K 

being the last time step of the simulation.  When computing the two indices, a uniform 
sampling period of 0.001 s is used to collect the structural response data points for [ ]id k  

and [ ]kdz , regardless of the sampling period of the feedback control scheme. Because 

these indices have been normalized against the performance of the uncontrolled structure, 
values less than one indicate that the closed-loop control solution is effective with smaller 
index values indicating better overall control performance.   
 
Figure 6 shows the control performance indices for different degrees-of-centralization and 
sampling rates.  Generally speaking, control performance is better for higher degrees-of-
centralization and shorter sampling periods.  The plots show that all control schemes 
achieve obvious reduction in structural response when compared to the uncontrolled case, 
i.e. the normalized performance indices are much less than one.  To better review the 
simulation results, the performance indices for the four different control schemes are re-
plotted as a function of sampling period in Figure 6(c) and (d).  Figure 6(d) clearly 
illustrates the expected comparison among the four control cases, i.e. for each sampling 
time, the achieved output norm generally decreases as the degree of centralization 
increases.   
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While it may appear from Figure 6 that a centralized control architecture always performs 
better than decentralized ones operating at the same sampling frequency, such a centralized 
system with high nodal counts might be economically and technically difficult to 
implement in large-scale civil structures.  For example, significant communication and 
computation resources are usually required to implement a large-scale centralized control 
system.  As a result, longer sampling periods need to be adopted, which in turn, reduces 
the effectiveness of the centralized solution.  In contrast, if a decentralized architecture is 
implemented, the control system would be capable of shorter sampling periods that lead to 
potential improvement in the control performance.  It can be observed from Figure 6 that if 
shorter sampling periods are adopted in partially decentralized control systems (DC2 or 
DC3), smaller performance indices can be achieved when compared with a centralized 
system (DC4) that adopts a longer sampling period.  The trade-off between centralization 
and sampling period will be further explored in the next simulation analysis. 
 

3.2.2. Simulation using semi-active hydraulic dampers (SHD) 
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Figure 6. Simulation results for the 20-story SAC building instrumented with ideal 
actuators. The plots illustrate performance indices for different sampling steps and 
degrees-of-centralization (DC): (a) 3D plot for performance index J1; (b) 3D plot for 
performance index J2; (c) condensed 2D plot for J1; (d) condensed 2D plot for J2. 
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To investigate the performance of decentralized H∞ control using realistic structural 

control devices, semi-active hydraulic dampers (SHD) are employed in the simulations for 
the 20-story structure.  The arrangement of SHD dampers in the building is shown in 
Figure 7(a).  From lower to higher floors, the number of instrumented SHD dampers 
decreases gradually from 4 to 1.  Figure 7(b) shows the installation of a SHD damper 
between two floors using a V-brace, together with key parameters of the damper.  To 
accurately model the damping force, the Maxwell element proposed by Hatada, et al. [35] 
is employed.  In a Maxwell element, a dashpot and a stiffness spring are connected in 
series, which result in a damping force described by the following differential equation: 

( ) ( ) ( )
( )

eff
eff

SHD

k
u t u t k q t

c t
+ = ∆ɺ ɺ  (49) 

 
where u(t) and ( )q t∆ ɺ  denote the damping force and the inter-story velocity, respectively, 
keff represents the effective stiffness of the damper in series with the V-brace, and ( )SHDc t  is 
the adjustable damping coefficient of the SHD damper. 
 
When the SHD damper is deployed in a feedback control system, if the desired damping 
force u(t) is in an opposite direction to the inter-story velocity ( )q t∆ ɺ , as shown in Figure 
7(b), the damping coefficient ( )SHDc t  is adjusted so that the damper generates a force 
closest to the desired force.  If the desired force is in the same direction to the inter-story 
velocity, the damping coefficient is set to its minimum value at 1,000 kN⋅s/m. 
 
An important criterion to consider in evaluating a feedback control system, whether being 
centralized or decentralized, is that the feedback control system should perform better than 
a passive control system.  When the SHD dampers are employed, fixing the damping 
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Figure 7. Instrumentation of semi-active hydraulic dampers (SHD) in the 20-story 
structure: (a) layout of dampers on the floor plans; (b) key parameters of the dampers. 
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coefficients of all dampers at either minimum (1,000 kN⋅s/m) or maximum (200,000 
kN⋅s/m) values constitutes a passive control system.  Figure 8 presents the simulated 
maximum inter-story drifts when the structure is excited using the three ground motions 
with the PGA (peak ground acceleration) scaled to 1m/s2: 1940 El Centro NS, 1995 Kobe 
NS, and 1999 Chi-Chi NS.  Four cases are plotted for each earthquake: the case without 
control, the passive case with minimum damping, the passive case with maximum 
damping, and a decentralized semi-active control case.  For the decentralized semi-active 
control case, the DC (degrees-of-centralization) is 2 (Figure 5) and the sampling frequency 
is 100 Hz.   It is found that the decentralized ∞H  controller with the following output 
matrices, Cz and Dz: 
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achieves satisfactory results.  As shown in Figure 8, all three control schemes, including 
two passive and one semi-active, reduce the maximum inter-story drifts compared with the 
uncontrolled case.  The passive control case with maximum damping generally results in 
less inter-story drifts than the passive case with minimum damping, except at a few higher 
floors for the El Centro and Kobe earthquakes.  The decentralized semi-active control case 
not only effectively reduces drifts at lower floors, but also achieves greater mitigation of 
drifts at the higher floors compared to the two passive cases.  Better performance of the 
decentralized semi-active control case is observed for all three earthquake records.  For the 
Kobe earthquake, decentralized semi-active control reduces the drift at the 18th story by 
about 75% compared with the uncontrolled and the two passive control cases.  This shows 
that in the passive case with maximum damping, dampers at each story may only attempt 
to reduce local responses and results in conflict among damper efforts at different stories.  
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Figure 8. Maximum inter-story drifts for cases without control, with passive control 
(damping coefficients of all SHD dampers fixed at minimum or maximum), and with 
decentralized semi-active control (DC = 2 and 100 Hz sampling frequency). 
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While in the semi-active control case that aims to minimize the overall ∞H  norm of the 
global structural system, efforts from dampers at different stories can be better coordinated 
to reduce overall structural response. 
 
Figure 9 compares the performance indices for the 20-story structure instrumented with 
semi-active hydraulic dampers, when different control schemes are adopted.  The two 
passive control schemes include the maximum and minimum damping cases.  To illustrate 
the effect of faster sampling frequency (i.e. shorter sampling periods) in decentralized 
feedback control, feedback control cases with different centralization degrees (DC = 
1,…,4) are associated with different sampling frequencies.  For each centralization degree, 
the sampling frequency is selected in reverse proportion to the number of stories contained 
in one communication subnet (shown in Figure 5).  For example, a sampling frequency of 
100 Hz is associated with case DC2, while a sampling frequency of 50 Hz is associated 
with the centralized case DC4 due to larger communication and computation burdens.  The 
same three ground motion records scaled to a peak acceleration of 1 m/s2 are used in the 
simulation: 1940 El Centro NS, 1995 Kobe NS (JMA Station), and 1999 Chi-Chi.  As 
shown in Figure 9, the feedback control cases generally achieve better performance when 
compared with the two passive control cases.  Furthermore, the figure illustrates that 
although decentralized feedback control cases do not have complete sensor data available 
when calculating control decisions, they may outperform the centralized case due to the 
faster sampling frequencies that are available through decentralization.  For example, 
compared with the centralized scheme DC4 (at 50Hz), the partially decentralized scheme 
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Figure 9. Simulation results for the 20-story SAC building instrumented with semi-active 
hydraulic dampers (SHD). The plots illustrate performance indices for passive control 
cases and semi-active feedback control cases with different degrees-of-centralization 
(DC) and sampling frequencies: (a) performance index J1; (b) performance index J2. 
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DC2 (at 100Hz) can provide larger reduction to both maximum inter-story drift and the 2-
norm of the output vector zd. 
 
4. SUMMARY AND CONCLUSION 
This paper presents pilot studies in exploring decentralized structural control design that 
minimizes the closed-loop ∞H  norm.  The decentralized control design offers promising 

solutions to large-scale structural sensing and control systems.  Solutions are developed for 
both continuous-time and discrete-time formulations.  The properties of linear matrix 
inequalities are utilized to convert the complicated decentralized ∞H  control problem into 
a simple convex optimization problem.  For such a convex optimization problem, 
decentralized architectures can be easily incorporated to yield decentralized ∞H control 
solutions.  Such solutions are necessary to provide control systems with the ability to scale 
with the number of sensors and actuators implemented in the system.  Nevertheless, it 
should be noted that the shape constraining approach for decentralized ∞H  controller 

design is heuristic.  The approach may not guarantee the minimum ∞H -norm over the 
complete solution space.  
 
Numerical simulation results using a 3-story and a 20-story structure illustrate the 
feasibility of the different decentralized control architectures.  Comparison between the 
performance of the decentralized ∞H  controllers and the performance of decentralized 

LQR-based controllers illustrates that both controllers deliver expected performance.  
Using the simulation results for the 3-story structure, the trade-off between structural 
response attenuation and control effort is demonstrated for both the ∞H  controllers and 

LQR controllers.  The ratio of the required total actuator capacity over the building weight 
appears realistic for both types of controllers.  For the 20-story structure, the simulation 
results demonstrate that when realistic semi-active control devices (such as the SHD 
dampers) are used in combination with the decentralized ∞H  control algorithm, better 
performance can be gained over the passive control cases.  It is also illustrated that 
decentralized control strategies may provide equivalent or even superior control 
performance, given that their centralized counterparts could suffer longer sampling periods 
due to communication and computation constraints.  On the other hand, since the proposed 
control design is based on the assumption of system linearity, further investigation on how 
to improve the control performance with non-linear semi-active control devices is needed.  
 
The drawbacks of the presented decentralized ∞H  control design include the inability to 
consider the effect of time delay in the feedback loop and the requirement for inter-story 
drift and velocity data for feedback.  Future research in decentralized ∞H  control may 

consider time delay effects in the control algorithm and utilize system output feedback.  
Furthermore, dynamic output feedback will be explored instead of static feedback, to 
capitalize on a much larger controller parametric space.  Comparative studies will then be 
conducted between the decentralized ∞H  and decentralized LQR control designs with 
consideration of time delay effects [12].  Future investigation may also include developing 
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a systematic method for the design of decentralized architectures, e.g., the delineation of 
overlapping subnets, as well as the selection of appropriate degrees of centralization. 
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