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ABSTRACT

Complexities inherent to large-scale modern citiictures pose many challenges in the
design of feedback structural control systems forathic response mitigation. With the
emergence of low-cost sensors and control devieeging technologies from which large-
scale structural control systems can deploy, adéutontrol system may contain hundreds,
or even thousands, of such devices. Key issuesudh large-scale structural control
systems include reduced system reliability, inarepg€ommunication requirements, and
longer latencies in the feedback loop. To effedyivaddress these issues, decentralized
control strategies provide promising solutions t@dédw control systems to operate at high
nodal counts.

This paper examines the feasibility of designindeaentralized controller that minimizes
the H., norm of the closed-loop systerti,, control is a natural choice for decentralization

because imposition of decentralized architectuse®asy to achieve when posing the
controller design using linear matrix inequalitieecentralized control solutions are

investigated for both continuous-time and disctetee H,, formulations. Numerical

simulation results using a 3-story and a 20-stdnycture illustrate the feasibility of the
different decentralized control strategies. Thaults also demonstrate that when realistic
semi-active control devices are used in combinatidtn the decentralized?, control
solution, better performance can be gained ovep#ssive control cases. It is shown that
decentralized control strategies may provide edeintaor better control performance,
given that their centralized counterparts couldesuirom longer sampling periods due to
communication and computation constraints.

Keywords. H-infinity control, feedback structural contralecentralized control, smart
structures.

1. INTRODUCTION

Real-time feedback control has been a topic oftgréarest to the structural engineering
community over the last few decades [1-4]. A femaikbostructural control system includes
an integrated network of sensors, controllers, @ntrol devices that are installed in the
civil structure to mitigate undesired vibrationsridg external excitations, such as



earthquakes or typhoons. Under an external ekwitathe dynamic response of the
structure is measured by sensors. Sensor datamsgnicated to a centralized controller
that uses the data to calculate an optimal coswhition. The optimal solution is then
dispatched by the controller to control devices clhdirectly {(.e. active devices) or
indirectly (.e. semi-active devices) apply forces to the structuiléhis process repeats
continuously in real time to mitigate, or even ehate, undesired structural vibrations. It
was recently reported that more than 50 buildingd towers have been successfully
instrumented with various types of structural cohlystems from 1989 to 2003 [5]. In
practice, semi-active control is usually preferoe@r active control because it can achieve
at least an equivalent level of performance, coresuarders of magnitude less power, and
provides higher level of reliability. Exampless#mi-active control devices include active
variable stiffness (AVS) devices, semi-active hydiadampers (SHD), electrorheological
(ER) dampers, and magnetorheological (MR) dampéis [Additional advantages
associated with semi-active control include adaptalio real-time excitation, inherent
Bounded Input/Bounded Output (BIBO) stability, andulnerability against power failure.

Traditional feedback structural control systems leygentralized architectures. In such
an architecture, one central controller is resgmador collecting data from all the sensors
in the structure, making control decisions, andpalishing these control decisions to
control devices. Hence, the requirements on concatian range and data transmission
bandwidth increase with the size of the structund with the number of sensors and
control devices being deployed. The communicati@guirements could impose

economical and technical difficulties for the implentation of feedback control systems
in increasingly larger civil structures. The catied controller itself represents a single
point of potential failure; failure of the contretl may paralyze the entire control system.
In order to overcome these inherent challengesrdeadized control architectures could
be alternatively adopted [7-9]. For example, acttrral control system consisting of 88
fully decentralized semi-active oil dampers hasnbestalled in the 170m-tall Shiodome

Tower in Tokyo, Japan [10; 11].

This paper examines both fully decentralized schemmere the controller on a floor only

has local sensor data from that floor, and paytiglecentralized scheme, where the
controller also receives sensor data from neiglnigofioors (or substructures). In a

decentralized control system architecture, multigdatrollers are distributed throughout

the structure. Acquiring data from a local subokesensors, each controller commands
control devices in its vicinity. The benefits aichlizing a subset of sensors and control
devices to each controller include shorter commatioa ranges and reduced data
transmission rates in the control system. Deckrataon also eliminates the risk of global

control system failure if one of the controllersoshd fail. For large-scale structures,

occasional failure of decentralized controllers noeyy cause minor degradation to the
control performance.

Decentralized control design based on the lineadratic regulator (LQR) optimization
criteria has been previously explored by the awthorstudy the feasibility of utilizing
wireless sensors as controllers for feedback stralctcontrol [12; 13]. This paper
investigates a different approach to the desiga décentralized control system based on



H.. control theory, which is known to offer excellezdntrol performance when “worst-
case” external disturbances are encountered. ®tleetmultiplicative property of th#.,
norm [14], H., control design can also consider modeling unaarés (as is typical in

most civil structures). Centralized., controller implementation in the continuous-time
domain for civil structural control has been exteely studied [15-21]. When compared
with traditional linear quadratic Gaussian (LQGntollers, H,, controllers can achieve
either comparable or superior performance [22; Z3)r example, it has been shown that
‘H., control design may achieve better performancéténaating transient vibrations of the

structure [24]. However, decentraliz&f), controller design, either in the continuous time
domain or discrete time domain, has rarely beetoesg in structural control.

The H, control solution can be readily formulated as aninogation problem with

constraints expressed in terms of linear matriguradities (LMI) [25]. For such problems,
sparsity patterns can be easily applied to therobbet matrix variables. This property
offers significant convenience for designing deraied controllers, where certain
sparsity patterns can be applied to the gain nestriconsistent with certain desired
feedback architecture. This paper presents piladiss investigating the feasibility of

decentralizedH,, control that may be employed in large-scale stmattoontrol systems.
More specifically, decentralizeH., controller design is presented in both the contirsdo

time and discrete-time domains. Using propertiekMlI, the decentralized., control

problem is converted into a convex optimizationigheon that can be conveniently solved
using available mathematical packages.

Numerical simulations are conducted to validategbgormance of the decentralizéd.,
controller design. In the first example, a 3-statyucture is used to demonstrate the
detailed procedure for the design of the decemtdliH, controller. The control

performance of decentralized.. controllers is then compared with the performante o

decentralized LQR-based controllers [12; 13]. ha $econd example, simulations of a 20-
story benchmark structure are conducted to illtssttae efficacy of the decentralized

‘H., control solution for large-scale civil structuresDifferent information feedback

architectures and control sampling rates are engpl®@p as to provide an in-depth study of
the proposed approaches. Control performance udew) actuators and large-capacity
semi-active hydraulic (SHD) dampers are presented the 20-story structure.
Performance of the decentralized control systermomspared with passive control cases
where the SHD dampers are fixed at minimum or marindamping settings.

2. FORMULATION OF DECENTRALIZED H., CONTROL

This section first discusses the design of a deakrgd ., controller for structural
control in the continuous-time domain. The comémd counterpart in the discrete-time



domain is then derived. In both derivations, prope of linear matrix inequalities are
utilized to convert the formulation of the decehned control design problem into a
convex optimization problem.

2.1. Continuous-time decentralized ., control

For a lumped-mass structural model withdegrees-of-freedom (DOF) subjectedng
external excitations, and controlled twy control devices, the equations of motion can be
formulated as:

Mq(t)+Cq(t)+Kq(t)=Tu(t)+T,w(t) (1)

whereq(t)OR™ is the displacement vector relative to the groid,C, KOR™ are the
mass, damping, and stiffness matrices, respectivlyOR™* and w(t) DR™" are the
control force and external excitation vectors, eespely; andl ,OR™™ andT,0R™™ are
the control and excitation location matrices, resipely.

For simplicity, the discussion is based on a 2-[RasHrame structure subjected to
unidirectional ground excitation. In the exampleisture shown in Figure 1, it is assumed
that the external excitatiow(t), is a scalar functionng = 1) containing the ground

acceleration time history, (t); the spatial load patterm,, is then equal to-M{1} .

Entries inu(t) are defined as the control forces between neigh@pdloors. For the 3-
story structure, if a positive control force is idefl to be moving the floor above the
device towards the left direction, and moving tlo®if below the device towards the right
direction (as shown in Figure 1), the control fol@eation matrixT , is defined as:

-1 1 0
T,=[0 -1 1 (2)
0 0 -1

The second-order ordinary differential equation E)CEQ. (1), can be converted to a first
order ODE by the state-space formulation as follows

%, (t) =Ax, (1) +Bu(t) + E,w(t) 3)

Figure 1. A three-story controlled structure exttiby unidirectional ground motion.



wherex, =[q(t);q(t) JOR*™ is the state vectorA;ORr?>™*, Bjor?™™, andE,QR>™" are
the system, control, and excitation matrices, resypay:

TR .

In this study, it is assumed that inter-story drifind velocities are measurable. The
displacement and velocity variables xn, which are relative to the ground, are first
transformed into inter-story drifts and velociti€se. drifts and velocities between
neighboring floors). The inter-story drifts andoaties at each story are then grouped
together as:

Xz[ql ou 0 -4 Q2_C]1 e 0700 qn_qn-l]T (5)

A linear transformation matrix OR*™* can be defined such thatTIx,. Substituting
x, =I''x into Eq. (3), and left-multiplying the equation tviT , the state space
representation with the transformed (inter-stotgjesvector becomes:

x(t) = Ax(t) +Bu(t) + Ew(t) (6)

where
A=TA T, B=IB,, E=TE, (7)

The system output(t)OR™ is defined as the sum of linear transformationshto state
vectorx(t) and the control force vectaft):

z(t)=Cx(t) +D,u(t) (8)

where C,O0R™" and D,OR™™ are the output matrices for the state and coritrale
vectors, respectively. Assuming static state faeklpthe control force(t) is determined
by u(t) = Gx(t), whereGOR™*" is termed the control gain matrix. Substituti®g(t) for
u(t) in Eq. (6) and Eq. (8), the state-space equatanthe closed-loop system can be

written as:
x(1) = Aqx(t) + Ew(1)
_ 9)
z(t) =Cex(t)
where
A, =A+BG 10
C,.=C,+D,G ( )

In frequency-domain, the system dynamics can beesepted by the transfer function
Ha(s) OCP™ from disturbancev(t) to outputz(t) as [26]:
sz(s) =Cq (SI _ACL)_lE (11)

wheres is the complex Laplacian variable. The object¥e{, control is to minimize the
H_, -norm of the closed-loop system, which in the fiestry domain is defined as:



[ (S)]. = supaH,, ()] (12)

where w represents angular frequency, j is the imaginany, @[-] denotes the largest
singular value of a matrix, and “sup” denotes theremum (least upper bound) of a set of
real numbers. The definition shows that in theyjdency domain, the{ -norm of the
system is equal to the peak of the largest singedéwe of the transfer functior,, (s)

along the imaginary axis (where = jo). The H_, -norm also has an equivalent
interpretation in the time domain, as the suprenafirthe 2-norm amplification from the
disturbance to the output:

IRCISETRCONON @)

w)| w(t)H2¢0

where the 2-norm of a signft) is defined agf (t)|, =\/j:_:_+:fT(t)f (t)dt , which represents

the energy level of a signal. In this study, #iie-norm can be viewed as the upper limit

of the amplification factor from the disturbang¢e.(seismic ground motion) energy to the
output {.e. structural response) energy. The disturbance aitect a “worst-case”
disturbance when this upper limit is reached. Bwimizing the +_-norm, the system

output (which includes structural response mea¥uaes be greatly reduced when a worst-
case disturbance (which is the earthquake exaiaisoapplied.

According to the Bounded Real Lemma, the followiwp statements are equivalent for a
H, controller that minimizes the smallest upper boohdhe 7, norm of a continuous-
time system [25]:
1. |H.ll, <y andAc_ is stable in the continuous-time sense. the real parts of all
the eigenvalues k¢ are negative);
2. There exists a symmetric positive-definite ma#®@xIR*™**" such that following
inequality holds
T T T
{Aa®+®A? +EE"/y? GCT}<O (14)
where * denotes the symmetric entry (in this cake® ), and “< 0” means that the matrix
at the left side of the inequality is negative diéd. Using the closed-loop matrix
definitions in Eq. (10), Eq. (14) becomes:
A®+OA" +BGO+0OG'B" +EE' oC,' +0G'D,’
|: . /y2 z _I 4 :|<0 (15)
The above nonlinear matrix inequality can be cot@geimto linear matrix inequality (LMI)
by introducing a new variablg OR™*" whereY =GO :
{A@HDAT +BY +Y'BT +EE"/)? @©C, +YTDZT} <0

* -

(16)



In summary, the continuous-tinté, control problem is now transformed into a convex
optimization problem:

minimize y (17)
subjectto ® >0 and the LMI expressed in Eq. (16)
HereY, ®, andyare the optimization variables. Numerical solusido this optimization
problem can be computed, for example, using thdalddiMI Toolbox [27] or the convex
optimization package CVX [28]. After the optimizat problem is solved, the control
gain matrix is computed as:

G=YO™ (18)

In general, the algorithm finds a gain matrix with@ny sparsity constraints; in other
words, it represents a control scheme consistetih &i centralized state feedback
architecture. To compute gain matrices for deedimed state feedback control,
appropriate sparsity constraints can be appliegddmptimization variable¥ and® while
solving the optimization problem of Eq. (17). Fuopst available software packages, the
sparsity constraints can be conveniently defineddsigning corresponding zero entries to
theY and® optimization variables. For example, gain matrioeshe following sparsity
patterns may be employed for a 3-story structure:

= 00 = =

G, {0 . 0], andG, =[- = -} (19)
0O O = (oL I |

Note that each entry in the above matrices repteserix 2 block. According to the
linear feedback control law(t) =Gx(t), when the sparsity pattern @ is used, only the
inter-story drift and velocity at theth story are needed to determine the control foycat
the same story. When the sparsity patteriGjnis adopted, the inter-story drifts and
velocities from both theth story and the neighboring stories (story) areded in order to
determine the control forcg at thei-th story. Considering the relationship betwé&n
andY as specified in Eqg. (18), in order to find the ttohgain matrices satisfying the
shape constraints i@,, the following shape constraints may be applieth&ooptimization

variablesy and®:

= 00 = 00

Y,=|0 = 0|,and®, =|0 = 0 (20)
0 0 = 0O O m

Similarly, to compute control gain matrices satisfy the shape constraints G, the
following shape constraints may be applied to thinuzation variables:

m n ( = 00
Y, :{- = -], andeo, :{0 = 0] (21)
O = = O 0=

It is important to realize that due to the constisimposed on th¥ and® variables, the
presented decentralizeld, controller precludes the possibility that a decaited gain



matrix may exist withY and ©® variables not satisfying the corresponding shape
constraints. For example, it is possible that ia gaatrix may satisfy the sparsity pattern
in G, while the correspondiny and® variables do not conform to the sparsity patterns
shown in Eq. (20). The application of sparsitytg@ais toY and® variables makes the
gain matrix easily computable using existing sofewvpackages, although the approach
may not be able to explore the complete soluticaicepof decentralized gain matrices.
That is, the approach for decentralizag controller design may not guarantee that a
minimum H,, -norm is obtained over the complete solution speater, only a minimum
H,-norm is obtained for the solution space contawvétin the boundary imposed by the

shape constraints 0hand®.

2.2. Discrete-time decentralized H.. control

For implementation in typical digital control syste, the decentralizett, control design

in discrete-time domain is needed. Using zero+ordeld (ZOH) equivalents, the
continuous-time system in Eg. (9) can be transfdrmmto an equivalent discrete-time

system [29]:
{xd [k+1] = Aye X [K] + Eqw, [K] (22)

z4[K] = CyeXq [K]

where the subscript “d” indicates that the variabsge expressed in the discrete-time
domain, and the closed-loop system matrigs andCqyc. are defined accordingly:

Ay =A4 +BG, (23)
CdCL = Cz + DzGd

For linear state feedback, the control fonggk] is determined asi,[k]=G.x,[k] .

According to the Bounded Real Lemma, the following statements are equivalent for
discrete-time systems [26]:
1. TheH,-norm of the closed-loop system in Eq. (22) is ldsn ), and AgcL IS
stable in the discrete-time sense.(all of the eigenvalues & qyc. fall in the unit

circle on the complex plane);
2. There exists a symmetric mat, >0 such that the following inequality holds:

|:AdCLT CdCLT/y:H:(T)d 0:||: Adel Ed:| —|:(:)d 0} <0 (24)

ES' 0 0 I||[Cuq/y O] |0 I

Replacing ®, with @,/y* and using the Schur complement [25] and congruence
transformation, it can be shown that the matrixjuadity in Eq. (24) is equivalent to:

G)d 0 AdCLTMG)d C:dCLT

* 1 ESO, 0
. .

>0
. o, . (25)

* * * I



Left-multiplying and right-multiplying the matrixkeve with a positive definite block-
diagonal matrixdiag(©,™,1,0,,1 ), and lettinge, =0,™, the following matrix inequality
is obtained:

0, O ®dAdCLT ®dCdCLT
* A ES 0
* * ®d O

* * * I

>0 (26)

Similar to the continuous-time system, by replacihg closed-loop matrice&qc. and
CacL in Eq. (26) with their definitions in Eq. (23), égtetting Y, =G0, , the above matrix
inequality can be converted into:

®, 0 OA!+Y/B] O,CI+Y;D!

* T
) VZ ! I:)d 8 >0 27)
d

* * * I

Therefore, the discrete-timé{, control problem can be converted to a convex
optimization problem with LMI constraints:

min?mize y . (28)
subject to @, >0 and the LMI expressed in Eq. (27)

Here againy g4, ©4, andy are the optimization variables. After the optintiaa problem is
solved, the control gain matrix is computed as:

G, =Y,0; (29)

Furthermore, the sparsity pattern of the gain matan be obtained by specifying
appropriate zero entries to the LMI variab¥esand®y, following the same procedure as
described in the continuous-time case.

3. NUMERICAL SIMULATIONS
Since the discrete-time formulation is suitable forplementation in modern digital
controllers, numerical simulations are conductedet@luate the performance of the

discrete time decentralizéd,, control schemes described in Section 2.2. In Se&ib, the
procedure for designing the decentralizéd controller is illustrated in details using a 3-

story structure. Performance of th& controllers is compared with the performance of

controllers based on the LQR optimization criteria.Section 3.2, simulations using a 20-
story benchmark structure are conducted to illtssttae efficacy of the decentralized

'H. control solution for large-scale civil structureResults using both ideal actuators and

large-capacity semi-active hydraulic (SHD) damperge presented for the 20-story
structure.

3.1. Numerical simulation of a 3-story structure



3.1.1. Decentralized ., control

Simulations of a 3-story shear-frame structurefiase presented to illustrate the procedure
employed in decentralizedt, control design. The frame structure is modelecrasn-

plane lumped-mass shear structure with one actuallocated between every two
neighboring floors. It is assumed that both theristory drifts and inter-story velocities
between every two neighboring floors are measuralBlech an assumption is reasonable
considering that modern semi-active hydraulic dasgentain internal stroke sensors and
load cells that measure real-time damper displangsnand forces, respectively [11].
Assuming V-brace elements are used as shown inrd-iguthe displacement and force
measurements can be used to estimate inter-stfiy @ind velocities. The following mass,
stiffness, and damping matrices are adopted foexaenple structure:

6 3.4 -1.8
M=| 6 |x10kg, K =|-1.8 3.4 - 1.6 x10°N/m,
6 -16 1.6
(30)

12.4 -5.16
C=
-4.59 7.20

-5.16 12.4 - 4.5%@ x10° N/(m/s)

For unidirectional ground excitation, the contingdime system matrices, B andE can
be obtained via Eqg. (7) as:
0 1 0 0 0 0

-266.7 —-1.2 300 0.8603 O 0
0 0 0 1 0 0

A=l 266.7 0.7647- 600- 2.156 266.7 0.76¢"
0 O 0 0 0 1
0 0 300 0.8603- 533.3 1.9
(31)
0 0 0 0
1667 1667 0 ]
| o 0 0 L, _lo
B=l 1667 -3333 1667719 E=|¢
0 0 0 0
0 1667 -333 0

Note that the state-space vector correspondinghéset matrices no longer contains
displacements and velocities relative to the grounthstead, the vector has been
formulated to contain inter-story drifts and vetas that are grouped by floors as given in
Eq. (5). The system matrices in Eq. (31) candaglity converted into their discrete-time
equivalents for a given sampling frequency [28].or Ehe results presented here, a
sampling frequency of 100 Hz is employed. The outpatricesC, andD, shown in Eq.
(23) are defined as:

500000 0 0 0
00500 0 O 0 0
o 00 050 1o o o0 .
C.=|lo0 0000 P36 0" o |*10 (32)
000000 0 3162 0
000000 0 0 3162

10



The above assignments f@, and D, make the 2-norm of the output vectyfk] a
guadratic function of the inter-story drifts anchtol forces:

[z, (K] =l(c. + D8 ]
=|szd [k] +D,u, [k]"i
=250 [+ (0, - [K) (e -0, )]

+1O‘9(u12[k] +uZ[K] +u32[k])

(33)

The decentralizedt, controller design aims to minimize the closed-lagp-norm, which

is defined as the system norm from the excitatigpui to the outpukzy. The relative
weighting between the structural response and thera effort is reflected by the
magnitude of the output matricé&3; andD,. If higher attenuation of structural response is
needed, larger magnitude should be assign€j;ton the contrary, if less control effort is
available, larger magnitude should be assignedd,toUsing the matrices defined in Egs.
(31) and (32), the convex optimization problem lasvwa in Eq. (28) can be posed with
different sparsity patterns imposed on tfig and ®4 matrices. For the two sparsity
patternsl andll defined in Eqg. (20) and (21), the solutions to dpeimization problem
result in the following two decentralized contralig matrices, respectively:

-1.578 5.608
Gy = -5.383 3.195 x 1T (34)
-4.109 3.01
-4.246 10.12 10.59 11.86
G, =| 4747 4.141 - 7.363 11.77- 0.1178 0.0788 ° (35)
5.106 6.320 - 9.763  4.06

When no sparsity pattern is applied Yg and ©q4, a full gain matrix representing
centralized feedback is generated:

2.354 1524 - 0.6553 1152 1505 6]281
Gy =|-3.719 10.04  3.358 8539.125 4.499x K (36)
-3.954 5742 - 1599 4726 5687 3.

69

The open-loopH, -norm of the uncontrolled structure and the cloleeg 7, -norms of
the controlled structure using the above gain medrare listed in Table 1. Thg&, -norm

of the uncontrolled structure is computed usingdiserete-time system defined in Eq. (22)
with the gain matrixGq set as a zero matrix. Comparing the four casegalile 1, the
uncontrolled structure has the higheégt-norm (8.4366), which indicates the largest
“worst-case” amplification from the excitation irtpugy to the outpukzg. Among the three
controlled cases, because the centralized casegaitthmatrixGgy assumes that complete
state information is available for control decisprthe lowestH, -norm (0.7045) is
achieved (which means best control performancdje fllly decentralized case with gain
matrix Gg has the largest norm (0.8521) among the titgeontrollers; this is somewhat
expected because the fully decentralized contrdibes the least amount of information
available for calculating control decisions for leaontrol device.

11



Table 1. H, and H,_ -norms of the open-loop transfer functier), and the closed-
loop norms using both th&,, controllers and LQR controllers

Closed-loop
i Fully Partially .
Open-loop decentralized decentralized Centralized
(Uncontrolled)

GLQR Gdl GLQR Gdll GLQR Gd|||

dl (Hoo) dlil (Hoo) dill (Hoo)
H, norm 8.4366 1.2836 0.8521| 1.0462 0.707¢ 0.9922 0.7045
H, norm 0.4657 0.1874 0.3020| 0.1786 0.5027 0.1772 0.6108

The 1940 EI Centro NS (Imperial Valley IrrigationsiDict Station) earthquake record with
its peak acceleration scaled to 1higsused as the ground excitation. Three idealadots
that generate any desired control force are degl@yehe three stories. In contrast to a
realistic semi-active or active control device, ideal actuator offers unlimited force
capacity, and has zero time delay while delivetimg force. Maximum inter-story drifts
and control forces during the dynamic responsepéotted in Figure 2. The inter-story
drift plots in Figure 2(a) include the results the uncontrolled structure and the structure
controlled using the three different gain matricedJsing ideal actuators, all three
controlled cases achieve significant reduction nter-story drifts compared with the
uncontrolled case. Among the three controlled satiee fully decentralized case using
gain matrixGg achieves the smallest reduction in inter-storytgriwhich is consistent
with the performance comparison indicated by #H)enorms in Table 1. The difference

between the cases using gain matri@gs andGy;, is minor, withGg,;; achieving slightly
better performance.

Figure 2(b) presents the peak control forces liar three controlled cases. The fully
decentralized controller imposes the lowest requénets on the control force capacity.

Maximum Inter-story Drifts
3 - - — - — a1 — -
‘ ‘ —e—GainG
—B— Gain Gd"
—6— Gain G,

—— No Control

Story
N

|

| |
- 4 — -

| |

| |

1

0 0.002 0.004 0.006

Drift (m)

(@)

0.008

Maximum Actuator Force

—g— Gain Gy
—— Gain Gy,

—- - -
I

Force (N)

x 10

(b)

Figure 2. Simulation results when ideal actuatwesdeployed on the 3-story structure.
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The peak control forces are similar between théiglgr decentralized cas&y, and the
centralized cas&gq;. The largest sum of the three peak actuator $oiseabout 35kN,
which represents the total capacity of all the aicits. This amount of total actuator
capacity is about 19% of the building weight (18Qki realistic ratio as suggested by
most references [30-32].

Further illustration of the trade-off between stwnal response attenuation and control
effort is shown in Table 2. The table first lishe RMS (root-of-mean-square) values of
the inter-story drifts at all three floors when #teucture is uncontrolled, i.e. 2.9mm, 2.1
mm, and 1.4mm, respectively. For the three coletlotases, changes in RMS drifts are
listed in percentages relative to the uncontrollatles, i.e. negative numbers represent
reduction from the uncontrolled value. For exampbseGy offers 96% reduction to the
RMS drift at the first story. RMS values of thraetuator forces are also listed for the
three controlled cases. For each controlled ddeepottom row of Table 2 provides
average drift changes and RMS forces across tke #iories. It is again shown that cases
Ga andGyy), offer greater reduction to structural responseugh larger control effort.

3.1.2. Comparison with decentralized L QR control
It could be instructive to compare the decentrdlize, controller design with the

decentralized LQR controller design that was presip studied [12]. The LQR control
algorithm aims to select the optimal control fon@gectoryuy by minimizing the expected
value of a quadratic cost functiah;

J= i(xdT [K]Qx, [K]+u," [K]Ru, [k]) Qumz0andR . > ( (37)

Using the same definition of the output matricesdascribed in Eq. (32), the following
weighting matrices are employed for the LQR comerailesign:

Q=C,'C, (38)
R=D,'D, (39)

As a result, the LQR optimization indekis proportional to the signal 2-norm of the

Table 2. RMS values of control forces and the gearin RMS inter-story drifts
(H, control cases)

RMS of Controlled
uncontrolled Gul Gan Gaui

inter-story | Drift | Force| Drift | Force| Drift | Force

drift (mm) | change| (kN) | change| (kN) | change| (kN)
Story-1 2.9 -85%| 2.06 -950 3.08 -96% 3.09
Story-2 2.1 -78%| 1.35 -950 208 -96% 2.06
Story-3 1.4 -82%| 0.69 -950 1.06 -94% 1.09
Average N/A -82% | 1.37| -95%| 2.07 -95% 2.08
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system output:
J= Z::l(xdT [kK]C,"Cx,[K] +u,"[K]D,"D,u, [k])
= Cxa [k + Dug [K][;

=Xzl
=za[; /s

where At is the sampling period, and note th@af'D,=0 and D,'C,=0 using the
definitions in Eq. (32). The design of the LQR toter iteratively searches for an
optimal control gain matrix by traversing along thgimization gradient. Sparsity shape
constraints are iteratively applied to the searchdignt in order to compute the
decentralized gain matrices. The following threzcahtralized/centralized LQR gain
matrices are obtained:

[4.4137 1.2649

(40)

GLoR = 4.6383 0.9489 i (41)

x
5.1068 0.6961

5.4594 1.2150 -0.3170 0.4404
G.> =10.5689 0.5262 4.0575 0.8687 0.2693 0.2982 °
8

-0.1671 0.2163 5.0089 0.68
{5.2399 1.2321 0.8256 0.5676 0.1599 0.2}38

(42)

GL9% =1 05157 0.5230 4.1441 0.8631 0.4141 0.2975° (43)

0.1322 0.2427 0.6449 0.3228 4.5696 0.6y14

Table 1 also lists the/, and H,, -norms of the open-loop transfer functiér, and the
closed-loop norms using both the controllers and the LQR controllers. Since theRLQ
control approach is equivalent to & control design that minimizes the closed-logp
norm, LQR controllers are expected to perform welleducing the closed-loof,-norm
[14; 33]. Similar to ther{, norm, definition of the systeri,-norm can also be written in
terms of the singular values of the transfer fuorctnatrix:

Mo (5, = | [~ Tt ] o ()

As expected, Table 1 shows that the LQR contrqllers matter decentralized or
centralized, consistently perform better than thejr counterparts in reducing th, -

norm, while theH,, controllers consistently perform better than th&)R counterparts in
terms of reducing thet, -norm.

In this example, the second dimension of the teméinction matrixH,, (jw) is one,
because the disturbange is a scalar that represents the ground excitatidherefore,
H,,(jw) has only one singular value at each frequescyvhich is the largest singular
value. Figure 3 plots the singular value of thesed-loop system transfer function
H,, (jw) using the decentralizet, controllerGy and the decentralized LQR controller
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Figure 3. Singular values of the closed-loop systeansfer functiorH,, (jw) using
the decentralizedt, controllerGy and decentralized LQR controll&;

G.®. The definition of the syster, norm in Eq. (12) shows that th¢, norm should
be equal to the peak of the largest singular vabwer the frequency span.
Correspondingly, Figure 3 shows that the peak of #ingular value using the
H,, controllerGq is about 0.85, while the peak for the LQR controfie™ is aboutl1.28;
both of which are consistent with tlt¢, norms listed in Table 1. Figure 3 also illustsate
that the decentralized{, controller excels at “pushing down the peak of thegest

singular value”. In comparison, the decentralit€dR controller is shown to excel in
reducing all singular values over the entire fremyespan, which agrees with the objective
of minimizing the’®, norm (as defined in Eq. (44)).

Simulations are conducted using the LQR contralleith the same 1940 El Centro NS
earthquake excitation scaled to 1m/Shree ideal actuators are again deployed ahtiee
stories. Maximum inter-story drifts and controfdes during the dynamic response are

Maximum Inter-story Drifts Maximum Actuator Force

I\ N A N Py
—e— Gain G, —e— Gain G4 |
I
‘ —B— Gain G'&I?R B— Gain Gl&I?R i
‘ —— Gain Glaﬁl)R 60— Gain GI&I(I:I)R |
‘ —— No Control ‘ ‘
S — - S — - — - - — =
n 7}
| | |
I I I
| | |
I I I
1 VE-O ‘ ‘
0 0.002 0.004 0.006 0.008 0.01 0.012 15 2
Drift (m) Force (N) X 104
(a) (b)

Figure 4. Simulation results when ideal actuatwesdeployed on the 3-story structure.
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plotted in Figure 4. Comparison between Figure dl &igure 2 shows that LQR
controllers generally achieve less reduction tokpager-story drifts. On the other hand,
the advantage of the LQR controllers in this exam@ that they impose lower
requirements to the force capacity of the struttcoatrol devices. For the LQR control
cases, the total actuator capacity is approxima2€kN, i.e. about 11% of the building
weight. This ratio is much lower than the ratidl&®6 for theH,, control cases.

Similar to Table 2 for the{, control cases, further illustration of the tradé{metween
structural response attenuation and control effoshown in Table 3 for LQR control. For
the controlled cases, changes in RMS drifts aréndgded in percentages relative to the
uncontrolled values. The table shows that as coedpwith casez;>**, casesG." and

G.>* offer greater reduction to structural responsthatexpense of larger control effort.

Comparing the bottom rows of Table 3 and Tablet &5 again illustrated that the LQR
cases achieve less attenuation to structural resperhile demanding less control effort.

3.2. Numerical simulation of a 20-story benchmark structure
3.2.1. Simulation using ideal actuators

To explore the performance of decentralizéd control for a larger-scale structure, a 20-

story benchmark building designed for the Strudttregineers Association of California
(SAC) project is selected [34]. Same as the Jystaample, discrete-time controllers are
adopted in the simulation. The building is modetedan in-plane lumped-mass shear
structure with control devices allocated betweeargwset of neighboring floors. Figure
5(a) shows the mass, stiffness, and damping paeasnet the structure. In the numerical
simulations, it is assumed that both the interystbifts and inter-story velocities between
every two neighboring floors are measurable. Aewshin Eq. (5), the state-space
equations are formulated such that the state-spac®r contains inter-story drifts and
velocities. Simulations are conducted for difféardacentralization schemes as shown in
Figure 5(b). The degree-of-centralization (DC)laefs the different communication
architectures, with each communication subnet @wotkd by channels Chl, Ch2, etc.)

Table 3. RMS values of control forces and the gearin RMS inter-story drifts
(LQR control cases)

RMS of Controlled

uncontrolled GLR Gy Gar

inter-story | prift | Force| Drift | Force| Drift | Force

drift (mm) | changel (kN) | change| (kN) | change| (kN)
Story-1 2.9 -66%| 1.20 -719 1.3 -73% 1.42
Story-2 2.1 -65%| 0.7q -719 1.04 -72% 1.01
Story-3 1.4 -67%| 0.44 -72% 0.4p -75% 0.59
Average N/A -66% | 0.79| -71%| 0.94 -739 1.0
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Damping

\5% Natural Damping
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J

(a) (b)
Figure 5. Twenty-story SAC building for numericahslations: (a) model parameters of
the lumped mass structure; (b) communication supastitioning for different degrees-
of-centralization (DC).

covering a limited number of stories. The con&ndlcovered by a subnet are allowed to
access the sensor data within that subnet. Fongeathe case where DC = 1 has each
subnet covering only five stories with a total ofif subnets utilized. For DC = 2, each
subnet covers ten stories and a total of threeedalare utilized; meanwhile, overlaps exist
between subnets for DC = 2. For stories coveredanbitiple overlapping subnets, each
controller at these stories should have commumicaticcess to data within all the
overlapping subnets. Although each controller maymand multiple control devices, in
this example, a control device can only be commdnilz one controller. The gain
matrices for the decentralized information struesuwith DC = 1 and DC = 2 have
following sparsity patterns:

(45)

Each entry in the above matrices representsxal®b block submatrix. To achieve the
sparsity patterns in gain mati®q, the matrix variabléy 4 in Eq. (28) is defined to have the
same sparsity pattern &g, and®, is defined to be always block-diagonal. For thees
where DC = 3 and DC = 4, the number of stories mVdy each communication subnet
increases accordingly, which result in fewer zdozks inGg4. Clearly, the case where DC
= 4 corresponds to a centralized feedback struetitreall devices in the same subnieg.(
Ch 1).

To investigate the effectiveness of the proposeckmtealized control design, we first

assume the 20-story structure is instrumented wliglal actuators that can produce any
desired force. Output matric€ andD; in Eq. (23) are defined as:
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C, =[102|40x4o}, D, =[ 04:20 } (46)

12
20x 40 1071 20x20

Simulations are performed for different degrees@itralization (DC = 1,...,4) and
sampling periods (ranging from 0.01 s to 0.06 a a¢solution of 0.01 s). Additionally,
three ground motion records all scaled to a peakmyt acceleration (PGA) of 1 ri/are
used for the simulation: 1940 El Centro NS (Impe¥ialley Irrigation District Station),
1995 Kobe NS (JMA Station), and 1999 Chi-Chi NS (FQ76 Station). Two
representative performance indicds,and J,, as proposed by Spencet, al. [34] are
adopted:
J, = max [ma>di [k]/ maxj [k]] (47)

Earthquakeg ki,

2 A 12
3, = _max {z,/2.I]) (48)
HereJ; andJ, correspond to maximum inter-story drifts and otitgectorzy, respectively.
In Eq. (47),d, [k] represents the inter-story drift between flo@r= 1, ...,n) and its lower

floor at time stegk, and mkaxdi [k] is the maximum inter-story drift over the entinme

history and among all floors. The maximum inteyrgt drift is normalized by its
counterpartrrllaxdi [k] , Which is the maximum response of the uncontradiedcture. The

largest normalized ratio among the simulationgiierthree different earthquake records is
defined as the performance indgx Similarly, the performance indéyx is defined in Eq.

(48) based on the 2-norm of the output veaigri.e |z, =AY " zi[k]|z, K], with K

being the last time step of the simulation. Whemputing the two indices, a uniform
sampling period of 0.001 s is used to collect tinectural response data points fd}l{k]

and zd[k], regardless of the sampling period of the feedbamhtrol scheme. Because

these indices have been normalized against therpgahce of the uncontrolled structure,
values less than one indicate that the closed-bomrol solution is effective with smaller
index values indicating better overall control penfiance.

Figure 6 shows the control performance indicesdftierent degrees-of-centralization and
sampling rates. Generally speaking, control peréorce is better for higher degrees-of-
centralization and shorter sampling periods. Thaspshow that all control schemes
achieve obvious reduction in structural responsenmtompared to the uncontrolled case,
i.e. the normalized performance indices are much lbas bne. To better review the
simulation results, the performance indices for fing different control schemes are re-
plotted as a function of sampling period in Fig@g) and (d). Figure 6(d) clearly
illustrates the expected comparison among the ¢outrol casesi.e. for each sampling
time, the achieved output norm generally decreasesthe degree of centralization
increases.
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Figure 6. Simulation results for the 20-story SAGilding instrumented with ideal
actuators. The plots illustrate performance inditms different sampling steps and
degrees-of-centralization (DC): (a) 3D plot for fpemance indexJ;; (b) 3D plot for
performance inded; (c) condensed 2D plot fdi; (d) condensed 2D plot fds.

While it may appear from Figure 6 that a centralizentrol architecture always performs
better than decentralized ones operating at the sampling frequency, such a centralized
system with high nodal counts might be economicallyd technically difficult to
implement in large-scale civil structures. For rapée, significant communication and
computation resources are usually required to implda a large-scale centralized control
system. As a result, longer sampling periods nedae adopted, which in turn, reduces
the effectiveness of the centralized solution.cdntrast, if a decentralized architecture is
implemented, the control system would be capabkhofter sampling periods that lead to
potential improvement in the control performandecan be observed from Figure 6 that if
shorter sampling periods are adopted in partiadigeditralized control systems (DC2 or
DC3), smaller performance indices can be achievedmwcompared with a centralized
system (DC4) that adopts a longer sampling peridde trade-off between centralization
and sampling period will be further explored in tiext simulation analysis.

3.2.2. Simulation using semi-active hydraulic dampers (SHD)
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To investigate the performance of decentraliZéd control using realistic structural

control devices, semi-active hydraulic dampers (pH@ employed in the simulations for
the 20-story structure. The arrangement of SHD mamin the building is shown in
Figure 7(a). From lower to higher floors, the namlof instrumented SHD dampers
decreases gradually from 4 to 1. Figure 7(b) shtvesinstallation of a SHD damper
between two floors using a V-brace, together widly lparameters of the damper. To
accurately model the damping force, the Maxweliredat proposed by Hatadet,al. [35]

is employed. In a Maxwell element, a dashpot artiftness spring are connected in
series, which result in a damping force describethb following differential equation:

Ker Y
o ® u(t) = ks A4(t) (49)

u(t) +

whereu(t) andAg(t) denote the damping force and the inter-story wglpocespectively,
ket represents the effective stiffness of the dampeeries with the V-brace, arg,, (t) is
the adjustable damping coefficient of the SHD dampe

When the SHD damper is deployed in a feedback abaystem, if the desired damping
force u(t) is in an opposite direction to the inter-storyoegty Ag(t), as shown in Figure
7(b), the damping coefficient,(t) is adjusted so that the damper generates a force
closest to the desired force. If the desired fosce the same direction to the inter-story
velocity, the damping coefficient is set to its mam value at 1,000 kiS/m.

An important criterion to consider in evaluatingegdback control system, whether being
centralized or decentralized, is that the feedlwackrol system should perform better than
a passive control system. When the SHD dampersm@oyed, fixing the damping

FFllof)::SS FEISOFF:SLS FFllof::SS .Upper flgor moves towards
o 0 o 0 o ) right relative to the lower floor
—
2q(t)
C al
= 0 0 0 0 | u(?)
| M
m} {} {} il Force generated by the SHD damper
FIoors{ attempts to move upper floor towards left
F16 ~ F20
o o D D o Maximum Control Force 1,000 kN
I Maximum Displacement +/-6 cm
4 4 Stiffness of the SHD 400,000 kN/m
Maximum Damping Coefficient 200,000 kN-s/m
I Minimum Damping Coefficient 1,000 kN-s/m
u} {3} 3 L} 3 u Maximum Shaft Velocity 25 cm/s
Floors Floors Floors Power Consumption 70 Watts
F1~F5 F6 ~ F15 F1~F5
(@) (b)

Figure 7. Instrumentation of semi-active hydrauli@mpers (SHD) in the 20-story
structure: (a) layout of dampers on the floor plébskey parameters of the dampers.
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coefficients of all dampers at either minimum (DOKNIS/m) or maximum (200,000
kN[S/m) values constitutes a passive control systdfigure 8 presents the simulated
maximum inter-story drifts when the structure isited using the three ground motions
with the PGA (peak ground acceleration) scalednigst 1940 El Centro NS, 1995 Kobe
NS, and 1999 Chi-Chi NS. Four cases are plotteccéeh earthquake: the case without
control, the passive case with minimum damping, passive case with maximum
damping, and a decentralized semi-active contreé.caFor the decentralized semi-active
control case, the DC (degrees-of-centralizatior® (Eigure 5) and the sampling frequency
is 100 Hz. It is found that the decentralizegd controller with the following output

matricesC, andD:
Cz - |:105| 40><40:|’ DZ :|: 040><20 :| (50)

5.5
20x40 10 I 20x20

achieves satisfactory results. As shown in Figyrall three control schemes, including
two passive and one semi-active, reduce the maximtenstory drifts compared with the
uncontrolled case. The passive control case wakimum damping generally results in
less inter-story drifts than the passive case withimum damping, except at a few higher
floors for the El Centro and Kobe earthquakes. déeentralized semi-active control case
not only effectively reduces drifts at lower floptsut also achieves greater mitigation of
drifts at the higher floors compared to the twospses cases. Better performance of the
decentralized semi-active control case is obsefwedll three earthquake records. For the
Kobe earthquake, decentralized semi-active comedlices the drift at the $&story by
about 75% compared with the uncontrolled and the gassive control cases. This shows
that in the passive case with maximum damping, daspt each story may only attempt
to reduce local responses and results in confireirey damper efforts at different stories.

El Centro, PGA = 1m/s? Kobe, PGA = 1m/s? Chi-Chi, PGA = 1m/s?
zo——ﬂff‘f‘—f—[ 20— - - —

18— & Y - — 18— -
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Figure 8. Maximum inter-story drifts for cases withh control, with passive control
(damping coefficients of all SHD dampers fixed ahimum or maximum), and with
decentralized semi-active control (DC = 2 and 1@G&impling frequency).
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Figure 9. Simulation results for the 20-story SAf@lding instrumented with semi-active
hydraulic dampers (SHD). The plots illustrate perfance indices for passive control
cases and semi-active feedback control cases widremt degrees-of-centralization
(DC) and sampling frequencies: (a) performancexidgeb) performance inde.

Performance Index J2

While in the semi-active control case that aimsmimimize the overallH, norm of the

global structural system, efforts from dampersifi¢ent stories can be better coordinated
to reduce overall structural response.

Figure 9 compares the performance indices for Bst@ry structure instrumented with
semi-active hydraulic dampers, when different agntchemes are adopted. The two
passive control schemes include the maximum andhmwaim damping cases. To illustrate
the effect of faster sampling frequendye( shorter sampling periods) in decentralized
feedback control, feedback control cases with bffié centralization degrees (DC =
1,...,4) are associated with different sampling fiesggies. For each centralization degree,
the sampling frequency is selected in reverse ptigooto the number of stories contained
in one communication subnet (shown in Figure 5)r éxample, a sampling frequency of
100 Hz is associated with case DC2, while a samgiiaquency of 50 Hz is associated
with the centralized case DC4 due to larger compaititin and computation burdens. The
same three ground motion records scaled to a peadesation of 1 mfsare used in the
simulation: 1940 El Centro NS, 1995 Kobe NS (JMAt®Bin), and 1999 Chi-Chi. As
shown in Figure 9, the feedback control cases gdigeachieve better performance when
compared with the two passive control cases. Euribre, the figure illustrates that
although decentralized feedback control cases ddaee complete sensor data available
when calculating control decisions, they may outgen the centralized case due to the
faster sampling frequencies that are availableutjinodecentralization. For example,
compared with the centralized scheme DC4 (at 50the) partially decentralized scheme
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DC2 (at 100Hz) can provide larger reduction to bo#ximum inter-story drift and the 2-
norm of the output vectay.

4. SUMMARY AND CONCLUSION
This paper presents pilot studies in exploring deedized structural control design that

minimizes the closed-loop, norm. The decentralized control design offers psarg
solutions to large-scale structural sensing androbgsystems. Solutions are developed for
both continuous-time and discrete-time formulation$he properties of linear matrix
inequalities are utilized to convert the complicatkecentralized, control problem into

a simple convex optimization problem. For such anvex optimization problem,
decentralized architectures can be easily incotpdréo yield decentralized, control

solutions. Such solutions are necessary to praxaérol systems with the ability to scale
with the number of sensors and actuators implendeimethe system. Nevertheless, it

should be noted that the shape constraining appréac decentralized+,, controller
design is heuristic. The approach may not guageattie minimum?,_ -norm over the
complete solution space.

Numerical simulation results using a 3-story and2@story structure illustrate the
feasibility of the different decentralized contmichitectures. Comparison between the
performance of the decentralizé¢, controllers and the performance of decentralized
LQR-based controllers illustrates that both comdrsl deliver expected performance.
Using the simulation results for the 3-story stmet the trade-off between structural
response attenuation and control effort is dematedr for both the+, controllers and
LQR controllers. The ratio of the required totelumtor capacity over the building weight
appears realistic for both types of controllersor Ehe 20-story structure, the simulation
results demonstrate that when realistic semi-actioetrol devices (such as the SHD
dampers) are used in combination with the decem#ihl’, control algorithm, better
performance can be gained over the passive cona®és. It is also illustrated that
decentralized control strategies may provide edentaor even superior control
performance, given that their centralized counteéspeould suffer longer sampling periods
due to communication and computation constraifita.the other hand, since the proposed
control design is based on the assumption of sy$iterarity, further investigation on how
to improve the control performance with non-lineami-active control devices is needed.

The drawbacks of the presented decentralizgedtontrol design include the inability to
consider the effect of time delay in the feedbambpl and the requirement for inter-story
drift and velocity data for feedback. Future reskain decentralized?, control may

consider time delay effects in the control algontland utilize system output feedback.
Furthermore, dynamic output feedback will be expibinstead of static feedback, to
capitalize on a much larger controller parametpace. Comparative studies will then be
conducted between the decentralizegd and decentralized LQR control designs with

consideration of time delay effects [12]. Futuredastigation may also include developing
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a systematic method for the design of decentralaetiitectures, e.g., the delineation of
overlapping subnets, as well as the selection pfapiate degrees of centralization.
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