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1. Introduction

The problem of physical topology design is to determine which nodes of the network should be connected by means
of physical optical links. One can note that the design of an optical network is a multiobjective optimization problem
over a multivariable design space [1]. It is multiobjective because the designer must satisfy, simultaneously, several
performance constraints such as: capital costs, blocking probability, profits, traffic capacity, etc. To accomplish
the design with these constraints, the designer must work in a multivariable design space in order to choose the
network devices, routing algorithms, physical topology, node places, node degrees, etc. For these reasons the network
topology design (NTD) is an extremely hard problem. Previous works in this field can be classified in two groups
according to the techniques employed to solve the problem: those using ILP (Integer Linear Programming) or MILP
(Mixed-Integer Linear Programming) formulations [2], and those using heuristics or metaheuristics [3], [4]. The
first ones offer optimal solutions but they are time consuming for medium and big size networks, while the others
are fast but only achieve suboptimal solutions. Besides, both groups can use either single optimization objective [4]
(which is clearly a poor approach for the NTD problem) or multiple optimization objectives [5].

In this paper we propose a multiobjective optimization algorithm for network topology design to solve the
physical network topology design problem for all-optical networks. To our knowledge, this is the first paper
proposing to solve the network topology design problem taking into account the physical layer impairments and
capital costs simultaneously.

2. Problem Description and Representation

We are concerned with the following problem: given the desired node locations, traffic matrix and RWA algorithm,
to find the physical topology layout and the proper specification of the optical devices that should be deployed in
the network in order to simultaneously minimize total network capital cost and network blocking probability. It
was assumed, as design variables, the following network parameters: topological layout, amplifier saturation power
and noise figure in Erbium doped fiber amplifier (EDFA) in a per link basis, the isolation factor of all OXC in the
network and the number of wavelength per link.

To represent the network topology we define the vector V as: V = [m1,2,m1,3,m1,4,m2,3...`S ,W ], where
mi,j = 0 if the network nodes i and j are not connected, otherwise they are connected using one of the pre-
determined available types of optical amplifier in each link, which are given by the integer numbers (1, 2, .., LA)
and they will be defined in section 3-B. The `S term represents the choice of the OXC isolation factor (ε) and the
W term represents the number of wavelengths per link.

3. Multiobjective Optimization Algorithm for Network Physical Topology Design

It has been shown that evolutionary algorithms can be used to efficiently solve multiobjective problems. To perform
the multiobjective optimization, we used a multiobjective evolutionary algorithm (MOEA) called NSGA-II. The
NSGA-II was proposed by Deb et al. [1] and is based on genetic algorithms (GA). Our MOEA uses the vector V
to form a population of possible solutions for the network, which means different network topologies with different
device specifications. Two objectives were considered during the optimization and it envolves the minimization of
the network blocking probability (BP) and capital cost (Capex). Each individual of the population is evaluated in
terms of BP and Capex. The best individuals are selected based on a dominance rule concerning the two objectives
involved in the optimization. The MOEA also performs crossover and mutation operations in the population.
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A. Blocking Probability Evaluation

To evaluate the network blocking probability we perform network simulations. Our simulation software uses Shortest
Path algorithm for routing and First Fit algorithm for wavelength assignment. It uses the physical layer model
described in [6], which takes into account the following effects: ASE noise, amplifier gain saturation effect, saturation
of ASE noise in EDFAs and homodyne crosstalk in optical switches. The four wave mixing (FWM) and polarization
mode dispersion (PMD) effects are not considered in the present work.

B. Capital Cost Evaluation

In our capital cost model we consider four different sources of costs: a fixed cost for each wavelength used in the
network; fiber cable cost and cable deployment cost, which depend on the link physical distance; optical amplifier
cost, which depends on the amplifier noise figure and saturation power; and OXC cost, which depends on the node
degree, the number of wavelengths in the network and the switch isolation factor. Then, we can define the total
network capital cost (COSTNet) as: COSTNet = COSTLambda + COSTAmplifier + COSTCable + COSTOXC .
COSTLambda = η · W , where W is the number of wavelengths per link and η is a constant value that can be
inferred from the OLT equipment price. COSTAmplifier =

∑N
i=1

∑N
j=1 Camp(mi,j), where N is the number of

nodes in the network. Camp(`) is depicted in Table I. COSTCable = 2β
∑N

i=1

∑N
j=i+1 di,j , where di,j is the

physical distance between the i and j nodes if they are connected and zero if they are not connected. β is an input
constant inferred from the equipment price. COSTOXC = γ · Csw(`S) ·W ·∑N

i=1 G(i), where γ is related to the
OXC equipment price, G(i) is the node degree of the i node and Csw(`) is related to the isolation factor and is
defined in Table II.

TABLE I
LABELS AND CAPITAL COST VALUES ADOPTED FOR EDFAS.

Label (`) Saturation Power Noise Figure Cost (Camp(`))
1 13 dBm 7 dB 1 m.u.
2 13 dBm 5 dB 2 m.u.
3 16 dBm 7 dB 3 m.u.
4 16 dBm 5 dB 4 m.u.

TABLE II
LABELS AND CAPITAL COST VALUES ADOPTED FOR OXC.

Label (`) Isolation Factor (ε) Capital Cost (Csw(`))
1 −30 dB 1 m.u.
2 −35 dB 2 m.u.
3 −40 dB 3 m.u.
4 −45 dB 4 m.u.

4. Results

The presence of multiple conflicting objectives in an optimization problem, in principle, implies in a set of optimal
solutions (known as Pareto-optimal solutions), instead of a single optimal solution. In the absence of any further
information, each point in these Pareto-optimal solutions cannot be said to be better than the other ones [1]. Fig. 1
shows the simulation results for the network cost as a function of the obtained network blocking probability. In this
case, we executed the NSGA-II algorithm for 5 different network loads. Each symbol represents a possible solution
with its cost and blocking probability, i.e. each point corresponds to different network topology with different device
characteristics. One can note that the cost increases for lower blocking probabilities and vice versa. Using this figure,
the network designer can choose the solution that meets his preferences, according to the project specification. One
can also note from the Fig. 1 that for a given blocking probability the cost becomes higher as the network load
increases.

Figs. 2(a), 2(b) and 2(c) show examples of the network topologies and devices parameters found by the
multiobjective algorithm for a network load of 60 Erlangs. The numbers in parenthesis separated by semicolon
represent the link length, output saturation power and noise figure of the amplifiers to be used in the link, respectively.
We show three different cases: the best network in terms of blocking probability (Fig. 2(b)), the lowest cost network
found (Fig. 2(c)) and the one with a blocking probability of around 1% (Fig. 2(a)). The switch isolation and the
number of available wavelength per fiber found for each topology is given in the figure caption. Fig. 2(c) shows
that lowest cost network found has a ring topology, as expected. One can also note that to reduce the blocking
probability from 1.32% (Fig. 2(a)) to 0.058% (Fig. 2(b)) our algorithm found that it is necessary the addition of 5
more links and 5 more wavelengths (W = 17 to W = 22) in each link of the network.

5. Conclusion

In this paper we proposed a multiobjective algorithm to solve the physical network topology design problem for
all-optical networks. We considered capital cost and network performance in terms of blocking probability as the
optimization objectives. The network performance is infered considering physical layer impairments. A case study
was performed and the simulation results show that the methodology was successful in obtaining the network
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Fig. 1. The optimal Pareto found for five different network loads.

(a) (b) (c)

Fig. 2. The best Network topology and devices parameters found for: (a) a network blocking probability around 1%(BP = 1.32%, COST =
1706.7 m.u., W = 17, ε = −45 dB) point number 1 in Fig. 1; (b) for network lowest blocking probability (BP = 0.058%, COST =
2618.9 m.u., W = 22, ε = −45 dB) point number 2 in Fig. 1; (c) a lowest network cost (BP = 71.14%, COST = 675.84 m.u., W = 4,
ε = −35 dB) point number 3 in Fig. 1.

topology and optical devices parameters for different scenarios. Furthermore, it allows the network designer to
choose, among an optimized set, which specific network should be implemented. It is a very powerful tool to
analize an important network design trade-off (cost versus network performance). It is worth noting that the
proposed methodology and algorithm for multiobjective optimization presented here can be used with other capital
cost models and other network performance metric. It is not limited to the ones presented here.
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