Estimating Ideological Locations IN
 Australian Political Institutions

Simon JACKMAN*
September 25, 2001

[^0]
Roll Call Analysis

- Use the recorded votes of deliberative bodies to infer the "revealed preferences" of their members.
- "Deliberative bodies" includes courts, committees, legislatures.
- Goal: generate measures of legislators' preferences.
- Measures of are used in subsequent analyses of legislative politics: party cohesion, effects of party discipline, evolution of coalitions over time, dimensionality of the policy space.

Roll Call Analysis in non-Westminster settings

- Critical in the study of the U.S. Congress; literally hundreds of articles relying on various measures of legislative preferences
- Measures of legislative preferences used to:

1. identify pivotal legislators: median legislators, filibuster pivots and veto pivots, the width of the "gridlock region"
2. assess party cohesion
3. effects of party switching
4. committee assignments

Other Settings

- Historical analyses: party cleavages in the pre-Civil War U.S. Congress; structure of the Confederate Congress
- European Parliament: party loyalty versus voting as national blocs
- United Nations General Assembly
- Russian Parliament; nascent party system

"Real-world" uses of

Preference Measures

- Interest-groups generate their own rankings of legislatures: e.g., Americans for Democratic Action (ADA), AFL-CIO, National Taxpayer's Union, Sierra Club, Chamber of Commerce, American Civil Liberties Union.
- Legislators themselves use these rankings to promote themselves as reliable conservatives or liberals; and to distinguish themselves from political opponents.

Is Roll Call Analysis Redundant in Westminster-Style Legislatures?

- Westminster legislatures characterized by

1. executive drawn from the legislature and hence strong party discipline;
2. single member districts; hence small number of parties

- Party discpline induces little or no variation in voting profiles for legislators of the same party

Is Roll Call Analysis Redundant in Westminster-Style Legislatures?

- If absolutely zero within-party variation, then each party can be treated as a unitary actor.
- If two perfectly disciplined parties, then only two unitary actors -- no unique scaling of the parties is possible (any two points will do, e.g., "left" and "right").

Australian Legislatures

- Both Senate and House of Reps characterized by strong party discipline
- Roll call analysis for the House is uninteresting; save for issue of locating the (growing) number of independents?
- Senate a slightly more interesting case: method of election ensures minor party representation; Colston defection; occasional lapses of party loyalty

Questions

- Does statistical apparatus (motivated by the spatial model of voting) yield more than less formal approaches?
- Direct inspection of voting patterns

1. Brown votes with the coalition: $7 / 52,13 \%$
2. Democrats vote with the coalition: $15 / 55,27 \%$.
3. Harradine (IND-TAS) votes with the coalition: $15 / 36,44 \%$
4. Labor and the coalition vote together to defeat Green or Democrat proposals: 25/55, 45\%.
5. Harris (QLD-PHON) votes with the coalition: 16/24, 67\%

- What is the dimensionality of the policy space?

Data: Australian Senate, 2001

- All recorded divisions in the Senate, for calendar year 2001 (up through Sept 20); gathered from Journals of the Senate and Hansard
- $n=77$; Cherry (DEM, QLD) replaces Woodley, but have non-overlapping voting histories for both.
- $m=55$ votes. Through September 21, the U.S. Senate has had 284 roll calls.
- High rates of missing data (see figure).
- 3,245 individual "Ayes" and "Noes" being modeled

Data

- Two rare lapses of party discipline, both by Democrats:

1. May 23: request for government documents relating to HIH Insurance; passed 33-32, with all Democrats except Murray (WA) voting Aye
2. June 28: Democrats split 3-5-1 on the third reading of the Interactive Gambling Bill 2001 (passed 34-28).

- No lapses of party discipline among ALP or Coalition.

"Measure with a Model"

- Use a Euclidean spatial voting model to analyze these data
- Contrast other approaches, such as factor analysis etc.
- Factor analysis not well suited for the analysis of binary data, and missing data.

The Euclidean Spatial Voting Model

- Legislators: $i=1, \ldots, n$
- Roll Calls: $j=1, \ldots, m$
- Data:

$$
y_{i j}= \begin{cases}1 & \text { legislator } i \text { votes "Aye" in } j \text {-th division } \\ 0 & \text { legislator } i \text { votes "No" in } j \text {-th division } \\ \text { NA } & \text { all forms of abstention }\end{cases}
$$

- $\mathbf{Y}=\left\{y_{i j}\right\}$, a n by m matrix of individual voting decisions

Spatial Voting Model

- each legislator has an "ideal point" \mathbf{x}_{i}, a location in Euclidean space. In onedimension the issue space is the left-right ideological continuum.
- each recorded vote is a choice between a proposal $\boldsymbol{\theta}_{j}$ and a reversion/status-quo point $\boldsymbol{\psi}_{j}$
- random utilities defined for each outcome, with quadratic loss:

$$
\begin{aligned}
u_{i}\left(\boldsymbol{\theta}_{j}\right) & =-\left|\mathbf{x}_{i}-\boldsymbol{\theta}_{j}\right|^{2}+\eta_{i j} \\
u_{i}\left(\boldsymbol{\Psi}_{j}\right) & =-\left|\mathbf{x}_{i}-\boldsymbol{\Psi}_{j}\right|^{2}+v_{i j}
\end{aligned}
$$

Spatial Voting Model

$y_{i j}^{*}$ denotes the latent utility difference between the proposal and status quo positions for the ith legislator,

$$
y_{i j}^{*}=u_{i}\left(\boldsymbol{\theta}_{j}\right)-u_{i}\left(\boldsymbol{\Psi}_{j}\right)
$$

$$
\begin{aligned}
& y_{i j}^{*}>0 \Longleftrightarrow y_{i j}=1 \Longleftrightarrow \text { 'Yea"' } \\
& y_{i j}^{*} \leq 0 \Longleftrightarrow y_{i j}=0 \Longleftrightarrow \text { 'Nay" }
\end{aligned}
$$

Statistical Model

Substituting for the utilities and re-arranging,

$$
\begin{aligned}
y_{i j}^{*} & =u_{i}\left(\boldsymbol{\theta}_{j}\right)-u_{i}\left(\boldsymbol{\Psi}_{j}\right) \\
& =-\left|\mathbf{x}_{i}-\boldsymbol{\theta}_{j}\right|^{2}+\left|\mathbf{x}_{i}-\boldsymbol{\Psi}_{j}\right|^{2}+\eta_{i j}-v_{i j} \\
& =2 \mathbf{x}_{i}^{\prime}\left(\boldsymbol{\theta}_{j}-\psi_{j}\right)-\left|\boldsymbol{\theta}_{j}\right|^{2}+\left|\boldsymbol{\Psi}_{j}\right|^{2}+\eta_{i j}-v_{i j} \\
\frac{y_{i j}^{*}}{\sigma_{j}} & =\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}-\mathbf{a}_{j}+\varepsilon_{i j}
\end{aligned}
$$

i.e., a latent linear regression model, where

$$
\begin{aligned}
\boldsymbol{\beta}_{j} & =2\left(\boldsymbol{\theta}_{j}-\boldsymbol{\Psi}_{j}\right) / \sigma_{j} \\
\mathrm{a}_{j} & =\left(\boldsymbol{\theta}_{j}^{2}-\boldsymbol{\Psi}_{j}^{2}\right) / \sigma_{j} \\
\varepsilon_{i j} & =\left(\eta_{i j}-v_{i j}\right) / \sigma_{j} \\
\sigma_{j}^{2} & =V\left(\eta_{i j}\right)-2 C\left(\eta_{i j}, v_{i j}\right)+V\left(v_{i j}\right)=1
\end{aligned}
$$

A Probit Model

Assume $\varepsilon_{i j} \sim N(0,1), \forall i, j$. Then the probability of a "Yea" vote is

$$
\begin{aligned}
\operatorname{Pr}\left({ }^{*} \text { Yea" }{ }_{i j}\right) & =\operatorname{Pr}\left(y_{i j}^{*}>0\right) \\
& =\operatorname{Pr}\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}-a_{j}+\varepsilon_{i j}>0\right) \\
& =\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}-a_{j}\right),
\end{aligned}
$$

where Φ is the standard normal CDF.

- This is a probit model, but with a significant complication: everything on the right-hand side of the model is unobserved.
- That is, we want estimates of both the bill parameters $\left(\boldsymbol{\beta}_{j}, a_{j}\right)^{\prime}$ and the unobserved "covariate" \mathbf{x}_{i}.

Meanwhile, in psychometrics...

In the educational testing literature, this model is known as a two-parameter itemresponse model.

$$
\operatorname{Pr}\left(" \text { Correct Answer"'}{ }_{i j}\right)=\Phi\left(x_{i} \beta_{j}-a_{j}\right)
$$

- The slope parameter β_{j} is an item discrimination parameter
- The intercept a_{j} is known as the item difficulty parameter
- x_{i} is the latent ability of the i-th test-taker

Estimation via Maximum Likelihood Is Usually Intractable

With n legislators, m roll calls and a dimensional policy space, direct MLE is a $n d+(d+1) m$ dimensional optimization problem

		Dimensions (d)			
	n	m	1	2	3
105th U.S. Senate	100	534	1,168	1,802	2,436
93rd U.S. House	442	917	2,276	3,635	4,994
U.S. House, 1789-1985	9,759	32,953	75,485	118,017	160,549
U.S. Senate, 1789-1985	1,714	37,281	76,276	115,271	154,266
Australian Senate, 2001	77	55	187	319	451

Estimation via Bayesian Simulation

- Moreover, the model is unidentified due to scale invariance -- require constraints for unique set of estimates
- Switch to Bayesian methods: prior distributions for all parameters parameters; in particular, $x_{i} \sim N(0,1) \forall i$ provides a reference scale.
- Sample repeatedly from the posterior distribution for the model parameters, by sampling from lower-dimensional conditional distributions

One-Dimensional Model

- Fits extremely well, especially for the major parties (see figure)
- With a classification threshold of $0.5,92.2 \%$ of 3,245 votes correctly predicted.
- See lack-of-fit figure
- Notable lack of fit for Democrats, Harradine and Harris (QLD, PHON).

Rank Ordering

Because we estimate the joint density of the ideal points for all legislators, we can perform inference: in particular, we can test conjectures about the recovered rank ordering

- Faulkner < Cooney: $p=.78$
- Cooney $<$ Brown: $p>.99$
- Cooney < Harradine: $p>.99$
- Brown < Harradine: $p=.81$
- Harradine $<$ Stott Despoja: $p=.97$
- Stott Despoja $<$ Murray: $p=.68$

Rank Ordering

- Woodley $<$ Cherry: $p=.55$
- Harris < lan Macdonald: $p>.97$
- Ian Macdonald $<$ Tchen: $p=.73$
- The Senate Median is a Democrat: $p>.99$.

Two-Dimensional Model

- Percent correctly classified goes up to 99.4%
- Harris 84.7\%; Harradine 89.1\%; Brown 97.5\%
- Poorest classification by division, 92.7\%, Interactive Gambling Bill (3rd reading, Dems split).
- Breakdown of divisions:

$$
\begin{array}{ll}
18(33 \%) & \text { purely "left-right", with Democrats pivotal } \\
25(45 \%) & \text { purely "vertical", Democrats vs major } \\
12(22 \%) & \text { mix of left-right, up-down. }
\end{array}
$$

- Visualization of feasible policy region (see figure)

[^0]: *Department of Political Science, Stanford University, Stanford, California 94305-6044, USA. E-mail: jackman@stanford.edu

