
Fast Implementation of the Split-Step Fourier Method
using a Graphics Processing Unit

Stephan Hellerbrand and Norbert Hanik
Technische Universität München, Institute for Communications Engineering, D-80290 Munich, Germany

stephan.hellerbrand@tum.de

Abstract: We describe how simulations based on the Split-Step FourierMethod can be significantly
accelerated by using commodity graphics hardware. Resultsfor a benchmark scenario are provided
to highlight performance and accuracy.
c© 2010 Optical Society of America

OCIS codes: (060.4510) Optical communications, (060.2330) Fiber opticscommunications

1. Introduction

The simulation of optical transmission systems plays an important role both in research and link design. Solving
the nonlinear Schrödinger equation, which describes the signal evolution in an optical fiber, is usually the most time-
consuming task. This holds in particular for long test signals, which have to be used to account for the channel memory
in high-speed transmission systems [1]. Therefore the optimization of optical communication links can take very long
even if effective optimization algorithms are used [2]. In addition to that, in modern phase modulated and polarization
multiplexed systems the nonlinear interaction of signal and noise as well as polarization mode dispersion (PMD) can
often not be neglected. For systems in which semi-analytical models such as [3] are not applicable, Monte-Carlo
sampling has to be used. The corresponding large number of evaluations of the signal propagation can lead to a very
large time consumption. In this article we describe how the computation of the signal propagation in an optical fiber by
the Split-Step Fourier Method (SSFM) [4] can be significantly accelerated using graphics processing units (GPU). We
concentrate on commodity graphics hardware, which can be programmed via the NVIDIA Compute Unified Device
Architecture (CUDA) [5].

2. Parallel Implementation of the Split-Step Fourier Method using a GPU

Over the past few years the increase of the raw computationalpower delivered by GPUs has exceeded that of central
processing units (CPU) by far [6]. The task of graphics rendering has led to a highly parallel chip-architecture, which
provides this performance at comparably low clock rates.

A significant amount of the operations performed in the SSFM lends itself to a parallel implementation. This has
already been highlighted in [7]. In particular, the parallel implementation of the linear operator in the Fourier domain
as well as the nonlinear parameter in the time domain is straightforward. The signal vectoru can be split up into
Nproc blocks containingN/Nproc elements. The element-wise multiplications can then be performed in parallel by
Nproc processing units. In addition to that, the inherent parallelism in the FFT operation is exploited by optimized FFT
routines, which are available as part of the CUDA framework [8].

In CUDA terminology, the CPU/RAM are referred to asHost and the GPU/VRAM asDevice. The GPU based
SSFM is implemented in the following way. At the beginning ofthe program, the signal vector is stored on theHost.
In order to offload the computation to the GPU in a first step memory has to be allocated and the signal vector is
then transferred onto theDevice. Now the step size for the first symmetric step has to be found,which is done by the
maximum nonlinear phase rotationφmax [9]. After that the first nonlinear step over∆z/2 is computed, which involves
computation of the nonlinear operator and a subsequent element wise multiplication with the signal vector. Then the
signal is transformed into the frequency domain for the dispersive step over∆z by using [8]. After another element-
wise multiplication the signal vector is transformed back into the time-domain, where the second nonlinear step over
∆z/2 concludes the symmetric step. This procedure is then iterated and when the end of the fiber segment is reached
the signal is copied back onto theHost.

3. Evaluation of Performance and Accuracy

In order to determine the achievable savings in computationtime we have carried out simulations of an optical trans-
mission system for a program using only the CPU and for a program which offloads the computation of the SSFM
onto the GPU.

 a1932_1.pdf

OSA / OFC/NFOEC 2010
 OTuD7.pdf

The test hardware was a workstation equipped with a Core 2 Quad processor Q9650 (3 GHz, 6MB cache, 4 cores) and
8 GB RAM. The graphics hardware was a GTX285 graphics card by ZOTAC, which features an NVIDIA GT200b
chip with 240 single precision cores and 30 double precisioncores. The additional cost for the graphics hardware was
a small fraction of the cost for the workstation. The SSFM code was implemented in C in both cases and the GPU
supported version also used CUDA [5]. The FFT on the CPU was implemented by the FFTW library [10] and on the
GPU the CUFFT library was used. The other components of the simulation were implemented in MATLAB. Both
implementations of the SSFM were called from MATLAB via the mex-interface.

We have simulated a 10.7 Gb/s RZ-DPSK system for comparison of the functions, in which RZ pulses ac-
cording to a de Bruijn pseudorandom binary sequence (DBBS) are transmitted. The link comprises 80km spans of
SSMF (D=16ps/nm/km,γ=1.3W−1km−1, α=0.2dB/km), the dispersion of which is fully compensated byusing DCF
(D=-80ps/nm/km,γ=4.8W−1km−1, α=0.5dB/km, L=16km). After each span an ideal amplifier fullycompensates the
loss the signal has experienced. The temporal resolution is32 points per symbol.

The first series of simulations was performed to evaluate thepotential time saving to be achieved by using the
GPU. The simulation of transmission overNspan=30 spans was carried out for increasing order of the DBBS both for
the program using only the CPU and for the GPU assisted code. Two version of the GPU based function were tested:
one version uses single precision computations and the other one uses double precision. After the simulation the time
consumed only by the SSFM program was measured and the relative speed-up is shown on the left side of Fig. 1.

7 8 9 10 11 12 13 14 15
1

2

3

4
5
6

8
10

20

30

40
50
60

80
100

Order of DBBS sequence

A
cc

el
er

at
io

n
by

 u
si

ng
 G

P
U

P
in

=−6 dBm

P
in

=−2 dBm

P
in

= 2 dBm

P
in

= 6 dBm

7 8 9 10 11 12 13 14 15

4
5
6
8

10

15
20

30
40
50
60
80

100

150
200

300
400

Order of DBBS sequence

pr

op
ag

at
ed

 b
lo

ck
s

N

GPU
=1

N
GPU

=2

N
GPU

=3

N
GPU

=4

no GPU

Fig. 1. Left: Acceleration of simulation versus order of the test sequence for transmission overNspan= 30 spans andφmax=5·10
−3. Right:

Number of blocks finished in unit time forPin =6dBm. (Dashed lines indicate single-precision and solid lines indicate double-precision)

The first observation to be made is that a significant speed-upcan be achieved. Longer signal vectors clearly result
in a larger advantage for the GPU assisted program since morevector elements lead to a better utilization of the GPU.
Higher input powerPin on average implies a larger number of steps. Therefore the number of the operations carried
out on the graphics card in parallel more and more outweighs the computational overhead incurred on every span.
Therefore larger power levels giver higher speed-ups. Due to the larger number of single precision cores the single
precision GPU assisted program provides much larger speed up factors. The highest recorded speed-up factors were
80 for single precision and 25 for double precision for an order 15 sequence and a span input power ofPin =6dBm.

This comparison was based on a single threaded FFT implementation on the CPU. A multi-threaded implemen-
tation (4 threads) for the CPU has only given a speed-up of theFFT by a factor< 1.5. If a series of simulations for
different parameter sets are to be performed then the 4 coresof the CPU can achieve a speed up factor close to 4 by
assigning one core to the simulation of one block. This type of parallelization is useful e.g. for grid search parameter
optimization or the simulation of nonlinear signal-noise interaction. The speed-up for this kind of simulation is shown
on the right side of Fig. 1 in terms of the number of configurations, which can be simulated in the time it takes one
CPU core to compute a single configuration. In a conservativeestimate we assume that one core is fully occupied
managing the GPU based simulation and the remaining CPU cores can run additional simulations.

The objective of the second series of simulations was to determine the computational accuracy of the GPU based
approach, in particular of the single precision SSFM. The root mean squared error (RMSE) and the difference in
required OSNR (ROSNR) at BER= 10−9 as a measure of accuracy. Again the simulation of transmission over 30
spans was carried out both using the GPU assisted code and theprogram, which uses only the CPU. The length of

 a1932_1.pdf

OSA / OFC/NFOEC 2010
 OTuD7.pdf

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

#FFT

|∆
 O

S
N

R
re

q,
0.

1n
m

| f
or

 B
E

R
=

10
−

9

10
3

10
4

10
−4

10
−3

10
−2

10
−1

R
M

S
E

 ε

#FFT

CPU only / CPU+GPU [double prec]
CPU + GPU [single prec]

P
in

=0 dBm

P
in

= 6 dBm

P
in

=−6 dBm

P
in

= 6 dBm

P
in

=0 dBm

P
in

=−6 dBm

Fig. 2. Accuracy for the simulation of the 10.7 Gb/s RZ-DPSK system over 30 spans measured in terms RMSE (left) and the deviation from the
ROSNR0.1nm for a Bit-Error-Rate of10−9 in dB (right). Reference waveform was computed on the CPU withφmax = 10

−6.

the DBBS was 64 andφmax ∈ [0.0008, . . . , 0.05] was varied to tune the accuracy of the SSFM. The result in terms of
RMSE is shown on the left side of Fig. 2.

For the program using only the CPU the accuracy improves continuously with increasingNFFT, i.e. decreasing
φmax and hence decreasing step-size∆z [9]. The accuracy for the double precision GPU assisted program completely
overlaps with the CPU only program for the range of investigated φmax. The results for the single precision GPU
assisted program, however, become worse beyond a certain step-size. This is due to the accumulated error incurred by
the single precision FFT operation.

On the right side of Fig. 2 the corresponding results in termsof ROSNR difference in dB are shown. A correlation
with the results in RMSE can be observed. The fluctuations forvery small∆ROSNR can be attributed to the accuracy
of the ROSNR estimation. However, the difference is found tobe smaller than 0.2dB in all investigated scenarios.
Hence, we believe that single precision will be sufficient for many scenarios. Of course a suitable strategy has to be
applied to identify these scenarios.

4. Conclusion

We have shown that the SSFM can be significantly accelerated by the use of commodity graphics hardware. The
implementation of the SSFM on an off-the-shelf GPU by NVIDIAwas compared to an implementation, which relied
upon a quad-core CPU. We have found substantial acceleration for the single and the double precision implementation
on the GPU compared to the CPU based program.

Simulations revealed that there is practically no difference between the results of the double precision GPU pro-
gram and the simulation using only the CPU. Single precisioncomputation is less accurate but gives sufficiently
accurate results in many scenarios.

References
[1] L. Wickham, R.-J. Essiambre, A. Gnauck, P. Winzer, and A. Chraplyvy, “Bit pattern length dependence of intrachannel nonlinearities in

pseudolinear transmission,”Photonics Technology Letters, IEEE, vol. 16, no. 6, pp. 1591–1593, June 2004.
[2] L. D. Coelho, O. Gaete, and N. Hanik, “An algorithm for global optimization of optical communication systems,”AEU - International Journal

of Electronics and Communications, vol. 63, no. 7, pp. 541 – 550, 2009.
[3] L. D. Coelho, L. Molle, D. Gross, N. Hanik, R. Freund, C. Caspar, E. Schmidt, and B. Spinnler, “Modeling Nonlinear PhaseNoise in

Differentially Phase-Modulated Optical Communication Systems,”Optics Express, vol. 17, no. 5, pp. 3226–3241, March 2009.
[4] G. P. Agrawal,Nonlinear Fiber Optics, 4th ed. Academic Press, 2007.
[5] NVIDIA CUDA - Programming Guide, NVIDIA Corp., 2009. [Online]. Available:http://www.nvidia.com/cuda
[6] D. Geer, “Taking the Graphics Processor beyond Graphics,” Journal of the IEEE Computer Society, vol. 9, no. 9, pp. 14–16, September 2005.
[7] S. Zoldi, V. Ruban, A. Zenchuk, and S. Burtsev, “ParallelImplementation of the Split-step Fourier Method for Solving Nonlinear Schrödinger

Systems,”SIAM News, pp. 1–5, 1999.
[8] CUDA - CUFFT Library, Version 2.1, NVIDIA Corp., April 2008. [Online]. Available:http://www.nvidia.com/cuda
[9] O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. Menyuk, “Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Commu-

nications Systems,”IEEE Journal of Lightwave Technology, no. 1, pp. 61–68, January 2003.
[10] M. Frigo and S. G. Johnson. (2008) Fastest Fourier Transform in the West (FFTW). Webpage. [Online]. Available:http://www.fftw.org/

 a1932_1.pdf

OSA / OFC/NFOEC 2010
 OTuD7.pdf

