OSA / OFC/NFOEC 2010
OTuD7.pdf

Fast Implementation of the Split-Step Fourier Method
using a Graphics Processing Unit

Stephan Hellerbrand and Norbert Hanik

Technische Universitat Miinchen, Institute for Commuinicest Engineering, D-80290 Munich, Germany
stephan.hellerbrand@tum.de

Abstract: We describe how simulations based on the Split-Step FoMigginod can be significantly
accelerated by using commodity graphics hardware. Refsulesbenchmark scenario are provided
to highlight performance and accuracy.

(© 2010 Optical Society of America
OCIScodes: (060.4510) Optical communications, (060.2330) Fiber optaramunications

1. Introduction

The simulation of optical transmission systems plays anomamt role both in research and link design. Solving
the nonlinear Schrédinger equation, which describes teasievolution in an optical fiber, is usually the most time-
consuming task. This holds in particular for long test signahich have to be used to account for the channel memory
in high-speed transmission systems [1]. Therefore thevopdition of optical communication links can take very long
even if effective optimization algorithms are used [2]. tddion to that, in modern phase modulated and polarization
multiplexed systems the nonlinear interaction of signal aoise as well as polarization mode dispersion (PMD) can
often not be neglected. For systems in which semi-analyticadels such as [3] are not applicable, Monte-Carlo
sampling has to be used. The corresponding large numbegrbfagions of the signal propagation can lead to a very
large time consumption. In this article we describe how tiragutation of the signal propagation in an optical fiber by
the Split-Step Fourier Method (SSFM) [4] can be significaaticelerated using graphics processing units (GPU). We
concentrate on commodity graphics hardware, which can dgr@mmed via the NVIDIA Compute Unified Device
Architecture (CUDA) [5].

2. Paralld Implementation of the Split-Step Fourier Method using a GPU

Over the past few years the increase of the raw computatpmvedr delivered by GPUs has exceeded that of central
processing units (CPU) by far [6]. The task of graphics reimgehas led to a highly parallel chip-architecture, which
provides this performance at comparably low clock rates.

A significant amount of the operations performed in the SSEMI$ itself to a parallel implementation. This has
already been highlighted in [7]. In particular, the paraheplementation of the linear operator in the Fourier damai
as well as the nonlinear parameter in the time domain isgstifairward. The signal vectan can be split up into
Noroc blocks containingV/Nproc elements. The element-wise multiplications can then béopeed in parallel by
Noroc processing units. In addition to that, the inherent paliaitein the FFT operation is exploited by optimized FFT
routines, which are available as part of the CUDA framew8ik [

In CUDA terminology, the CPU/RAM are referred to B®stand the GPU/VRAM adPevice The GPU based
SSFM is implemented in the following way. At the beginningleé program, the signal vector is stored on ltest
In order to offload the computation to the GPU in a first step wmnhas to be allocated and the signal vector is
then transferred onto tHaevice Now the step size for the first symmetric step has to be fowhith is done by the
maximum nonlinear phase rotatigmax [9]. After that the first nonlinear step ovérz /2 is computed, which involves
computation of the nonlinear operator and a subsequenteelewise multiplication with the signal vector. Then the
signal is transformed into the frequency domain for the elispe step oveAz by using [8]. After another element-
wise multiplication the signal vector is transformed bauoithe time-domain, where the second nonlinear step over
Az/2 concludes the symmetric step. This procedure is then éér@atd when the end of the fiber segment is reached
the signal is copied back onto thiost

3. Evaluation of Performance and Accuracy

In order to determine the achievable savings in computdiioae we have carried out simulations of an optical trans-
mission system for a program using only the CPU and for a pragwhich offloads the computation of the SSFM
onto the GPU.

OSA / OFC/NFOEC 2010
OTuD7.pdf

The test hardware was a workstation equipped with a Core & @uessor Q9650 (3 GHz, 6MB cache, 4 cores) and
8 GB RAM. The graphics hardware was a GTX285 graphics card®yAC, which features an NVIDIA GT200b
chip with 240 single precision cores and 30 double precisaes. The additional cost for the graphics hardware was
a small fraction of the cost for the workstation. The SSFMews implemented in C in both cases and the GPU
supported version also used CUDA [5]. The FFT on the CPU wadeimented by the FFTW library [10] and on the
GPU the CUFFT library was used. The other components of thelation were implemented in MATLAB. Both
implementations of the SSFM were called from MATLAB via thexrinterface.

We have simulated a 10.7 Gb/s RZ-DPSK system for compari$aheofunctions, in which RZ pulses ac-
cording to a de Bruijn pseudorandom binary sequence (DBBSjransmitted. The link comprises 80km spans of
SSMF (D=16ps/nm/kmy=1.3W-'km~!, a=0.2dB/km), the dispersion of which is fully compensatedising DCF
(D=-80ps/nm/kmy=4.8W 'km~1!, a=0.5dB/km, L=16km). After each span an ideal amplifier fidbmpensates the
loss the signal has experienced. The temporal resoluti®? ints per symbol.

The first series of simulations was performed to evaluateptitential time saving to be achieved by using the
GPU. The simulation of transmission ou¥k,,=30 spans was carried out for increasing order of the DBBS bath fo
the program using only the CPU and for the GPU assisted cadgvérsion of the GPU based function were tested:
one version uses single precision computations and the otteeuses double precision. After the simulation the time
consumed only by the SSFM program was measured and theveedgied-up is shown on the left side of Fig. 1.

100 [

400

300 Nepul /‘+ +
60 _ +¢,0--0
50 200+ NGPU_Z +_ -t e T il
E 40 150 b N g e - e_— ,x‘--x
’
5 Ty ool T et _
* A — X N._ =4 . ”* =
D sl AT e‘_..—,o.‘.,*,‘-. S eof GPUT |y e T ~H=~H8
-
) ’ zO' ,e- » S 60H =W noGPU L., 2 e T
; ,/0, —*_‘* S 50f)-F""" n_q
= -
2 10k TS P IR PP SRR % 4O F Pl d,’ TR S T
S Bb MO Y e T T o 30 A e N g
2 Gl PV 0’ o g Q7 * ‘
8 p RO T P —odB 8 20| Ao ge T e
[} ’ = m = g e
LT ¢ A AT in S gt ST e
© I < B #* ’ -
S sl el P,,=-2dBm g
g 3 7 in 10,)(‘.,5 ...
2l K4 ; P. =2 dBm 8 n/. ...
(¢4 " e Y
*' P =6dBm] S DS I
WL ; ; ; ; ; : : ‘ PP LT S SR Y Sy
7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15
Order of DBBS sequence Order of DBBS sequence

Fig. 1. Left: Acceleration of simulation versus order of thettsequence for transmission 0¥éypan= 30 spans an@émax=>5-10" 3. Right:
Number of blocks finished in unit time fd, =6dBm. (Dashed lines indicate single- preC|S|on and solidslineicate double- preC|S|0n)

The first observation to be made is that a significant speexhofe achieved. Longer signal vectors clearly result
in a larger advantage for the GPU assisted program sinceveoter elements lead to a better utilization of the GPU.
Higher input powerP,, on average implies a larger number of steps. Therefore theuof the operations carried
out on the graphics card in parallel more and more outweijlbscomputational overhead incurred on every span.
Therefore larger power levels giver higher speed-ups. Dube larger number of single precision cores the single
precision GPU assisted program provides much larger speéalctors. The highest recorded speed-up factors were
80 for single precision and 25 for double precision for areortb sequence and a span input poweP,pf=6dBm.

This comparison was based on a single threaded FFT implatimnmbn the CPU. A multi-threaded implemen-
tation (4 threads) for the CPU has only given a speed-up oFERby a factor< 1.5. If a series of simulations for
different parameter sets are to be performed then the 4 obtbe CPU can achieve a speed up factor close to 4 by
assigning one core to the simulation of one block. This tyfpgasallelization is useful e.g. for grid search parameter
optimization or the simulation of nonlinear signal-noisteraction. The speed-up for this kind of simulation is show
on the right side of Fig. 1 in terms of the number of configunasi which can be simulated in the time it takes one
CPU core to compute a single configuration. In a conservasignate we assume that one core is fully occupied
managing the GPU based simulation and the remaining CP$ carerun additional simulations.

The objective of the second series of simulations was tahite the computational accuracy of the GPU based
approach, in particular of the single precision SSFM. Tha&t raean squared error (RMSE) and the difference in
required OSNR (ROSNR) at BER 10~? as a measure of accuracy. Again the simulation of transomissier 30
spans was carried out both using the GPU assisted code apdadtpam, which uses only the CPU. The length of

OSA / OFC/NFOEC 2010
OTuD7.pdf

* T r 10 T R
h B ~H_ P =6dBm P, = 6dBm
\ N : B, "\ ° a| IZI(A
O Yk S| G w07 . RIERREHE
> 1 = = i B | P
o P =0dBm_is - ¥ * o- L
1072} . | El ul AN P, =0.dBm b 2 i
: ~ Ll ” -2 \ \
w [OME% s 2 5 100N *= '.* NER L
W ™ \ * -, = Q | ~ b
) % ** a4 E VA o "S-
b = © S ’ ©
= Py=-6dBmI @ P S ol Y W o0
h \e,’ ARV SERRE @'O.\ Y '3
- = A
07 , 1 g Oy] O
Z O- .
< 10°h: P =6 dBm E
CPU only / CPU+GPU [double prec]
=@® = CPU + GPU [single prec]
1074 ’ 3 : 4 - : 3 : 4
Fig. 2. Accuracy for the simulation of the 10.7 Gb/s RZ-DPSKteyn over 30 spans measured in terms RMSE (left) and the deviadim the

ROSNR) 1nm for a Bit-Error-Rate ofl0~? in dB (right). Reference waveform was computed on the CPU with = 106.

the DBBS was 64 an@max € [0.0008, ..., 0.05] was varied to tune the accuracy of the SSFM. The result indefm
RMSE is shown on the left side of Fig. 2.

For the program using only the CPU the accuracy improvesirgmiisly with increasingVeer, i.e. decreasing
¢max @and hence decreasing step-sixe[9]. The accuracy for the double precision GPU assistedrarogcompletely
overlaps with the CPU only program for the range of inveséid@max. The results for the single precision GPU
assisted program, however, become worse beyond a cegphsige. This is due to the accumulated error incurred by
the single precision FFT operation.

On the right side of Fig. 2 the corresponding results in tesffROSNR difference in dB are shown. A correlation
with the results in RMSE can be observed. The fluctuationgdoy smallAROSNR can be attributed to the accuracy
of the ROSNR estimation. However, the difference is fountbeécsmaller than 0.2dB in all investigated scenarios.
Hence, we believe that single precision will be sufficientrftany scenarios. Of course a suitable strategy has to be
applied to identify these scenarios.

4. Conclusion

We have shown that the SSFM can be significantly acceleratatiebuse of commodity graphics hardware. The
implementation of the SSFM on an off-the-shelf GPU by NVIDAAs compared to an implementation, which relied
upon a quad-core CPU. We have found substantial accelefatithe single and the double precision implementation
on the GPU compared to the CPU based program.

Simulations revealed that there is practically no diffeebetween the results of the double precision GPU pro-
gram and the simulation using only the CPU. Single precisiomputation is less accurate but gives sufficiently
accurate results in many scenarios.

References

(1]
(2]

(10]

L. Wickham, R.-J. Essiambre, A. Gnauck, P. Winzer, and Araplyvy, “Bit pattern length dependence of intrachanneilimearities in
pseudolinear transmissiorPhotonics Technology Letters, IEEEI. 16, no. 6, pp. 1591-1593, June 2004.

L. D. Coelho, O. Gaete, and N. Hanik, “An algorithm for bl optimization of optical communication system&EU - International Journal
of Electronics and Communicationsl. 63, no. 7, pp. 541 — 550, 2009.

L. D. Coelho, L. Molle, D. Gross, N. Hanik, R. Freund, C.<par, E. Schmidt, and B. Spinnler, “Modeling Nonlinear Phissése in
Differentially Phase-Modulated Optical Communication 8yss$,”Optics Expressvol. 17, no. 5, pp. 3226-3241, March 2009.

G. P. AgrawalNonlinear Fiber Optics4th ed. Academic Press, 2007.

NVIDIA CUDA - Programming GuideNVIDIA Corp., 2009. [Online]. Availablehttp://www.nvidia.com/cuda

D. Geer, “Taking the Graphics Processor beyond Graghicsirnal of the IEEE Computer Societyl. 9, no. 9, pp. 14-16, September 2005.
S. Zoldi, V. Ruban, A. Zenchuk, and S. Burtsev, “Parditeplementation of the Split-step Fourier Method for Solvingrinear Schrédinger
Systems,'SIAM Newspp. 1-5, 1999.

CUDA - CUFFT Library, Version 2.,INVIDIA Corp., April 2008. [Online]. Availablehttp://www.nvidia.com/cuda

O. V. Sinkin, R. Holzléhner, J. Zweck, and C. Menyuk, “@pization of the Split-Step Fourier Method in Modeling Opti¢=iber Commu-
nications SystemsJEEE Journal of Lightwave Technologyo. 1, pp. 61-68, January 2003.

M. Frigo and S. G. Johnson. (2008) Fastest Fourier Toamsin the West (FFTW). Webpage. [Online]. Availabletp://www.fftw.org/

