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Abstract. Previous theoretical (McCartin 1989a) and computational (McCartin 1989b) results on exponential splines are 
herein applied to provide approximate solutions of high order accuracy to nonlinear hyperbolic conservation laws. The 
automatic selection of certain "tension" parameters associated with the exponential spline allows the sharp resolution of 
shocks and the suppression of any attendant oscillations. Specifically, spatial derivatives are replaced by nodal derivatives 
of interpolatory splines and temporal discretization is achieved via a Runge-Kutta time stepping procedure. The fourth order 
accuracy of this scheme in both space and time (for uniform mesh and tension) is established and a linearized stability 
analysis is provided. The Lax-Wendroff theorem on convergence to weak solutions (Lax and Wendroff 1960) is then extended 
to spline approximations in conservation form. An implicit artificial viscosity term (Anderson et al. 1984) is included via 
upwinding in conservation form in order to assure convergence to the physically relevant weak solution. The efficacy of this 
procedure is illustrated on the inviscid Burgers' equation where the accurate capture of a travelling shockwave is demonstrated. 

1 Introduction 

In this paper, we take up the application of prior work on exponential splines (McCartin 1981, 
1983, 1989a, b) to the numerical solution of nonlinear hyperbolic conservation laws. Many 
physical phenomena, particularly in fluid dynamics, are governed by such laws. For reasons to 
be discussed subsequently, spline approximations have hitherto not been successfully applied to 
such problems. 

McCartin 1989a presented the exponential spline as a generalization of the semi-classical 
cubic spline in which the presence of certain tension parameters provides for the adjustment of 
the tautness of individual spline segments. The interpolant so constructed allows the replication 
of convexity and monotonicity properties of the function being approximated, i.e. the interpolant 
is shape preserving. A wealth of theoretical results concerning exponential splines can be found 
in McCartin 1989a. 

The existence of tension parameters fulfilling the shape preservation capabilities of exponential 
splines was originally established in a non-constructive fashion. The lack of a suitable tension 
parameter selection scheme thus hindered the widespread use of exponential splines. Conse- 
quently, with few exceptions (Flaherty and Mathon 1980; Rubin and Graves 1975; Smith and 
Wiegel 1980), the subject of the application of exponential splines has been largely neglected in 
the literature. However, McCartin 1989b presented such a reliable algorithm. The removal of 
this stumbling block has led to the application of exponential splines to a wide variety of 
geometric and data fitting problems in computational fluid dynamics (McCartin 1983). A 
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thorough treatment of computational issues concerning exponential splines is available in 
McCartin 1989b. 

Herein, we embark on an investigation of the possibility of using the shape preservation 
properties of exponential splines to inhibit the emergence of wiggles and overshoots/undershoots 
in the numerical simulation of flows with shock waves, while retaining a high order of accuracy. 
The proposed scheme replaces spatial derivatives by derivatives at the nodes of interpolatory 
exponential splines and temporal discretization is provided by a Runge-Kutta time stepping 
procedure. 

We commence with a linear model problem. Here, we demonstrate the fourth order accuracy 
of the scheme for uniform mesh and tension. A v o n  Neumann stability analysis provides the 
C-F-L condition. The dissipative and dispersive properties of the scheme are then established. 

Nonlinearity is introduced via the inviscid Burgers' equation. At this juncture, we generalize 
the Lax-Wendroff theorem (Lax and Wendroff 1960) concerning convergence of approximations 
to weak solutions to the case of our spline scheme. As Lax 1973 has pointed out, since there are 
in general an infinite number of weak solutions, we need to impose an entropy inequality to 
extract the physically correct solution. This is accomplished by the inclusion of an implicit 
artificial viscosity term via upwinding in conservation form (Jameson 1978) that is compatible 
with the spatial discretization error. The accurate simulation of shock fronts is illustrated 
numerically. 

The significant achievement of this technique is that the proposed scheme yields a numerical 
solution that is third order accurate (fourth order accurate for uniform mesh and tension) in 
smooth regions of the flow, while accurately capturing any discontinuities that arise without 
introducing significant wiggles or overshoots/undershoots. 

2 Review of theory 

In this section, we review the theoretical results on exponential splines (McCartin 1989a) that 
will be of service to us in the remaining pages. We begin with some notation. Below, first/second 
derivative formulation refers to which derivative of the spline is the unknown. 

-- spline nodes 
-- spline interval lengths 
= spline interval tensions 
= data 
= cubic spline interpolant 
= exponential spline interpolant 

[ = P l - - - -  P2i 
Si 

a = x l  < ... <XN+I = b  
hl = Xi  + 1 - -  Xi  (i  = 1 , . . . ,  N) 
Pi ( i=  I , . . . ,N )  
f 
S 

f 2  - -  f l  
b 1 - - -  f ' (a)  

hi 

b~ _ f ~ + ~ - f ~  f i - f ~ - ,  ( i=  2, . . . ,N) ,  
hi hl-  x 

f N + ,  - f , ,  
bN + 1 = f ' (b)  

hN 

si (i = 1,. . . ,  N) = sinh (Pihi) 
c i (i = 1,. . . ,  N) = cosh (pihi) 

di ( i=  I , . . . , N )  

(2.1) 

e~ (i = 1 . . . .  , N) 
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We then have the second derivative formulation on [xi, xi+ 1]: 

1 ,, 
z(x) = pZs~. {z'/sinh pi(xi+ l - x) + h +1 sinh pi(x - xi) } 

+ ~ -  p~j /,; + J}+1 p,~ J h, 

where z'i'(i = 1 , . . . ,  N + 1) are the solution of the tridiagonal system 
r 

daz'~ + elz2 = bl 
it v! tl e i - l z i _ l  + ( d i - l  +di)z i  + e i z i + l = b i  ( i = 2 , . . . , N )  

tt tv = bu + 1" euZs + dNZN+ 1 

(2.2) 

(2.3) 

In the above, we have used specified first derivative end conditions. 
We also have the first derivative formulation on [xl, xi+ ~]: 

T ( X ) =  [ " ' X i +  l - -  X-~-  f i +  l X - -  X i  1 

"' hi " ~  + - - "  ei -- dl 

�9 [sinh pi(x - xi) - sinh pi(xi + i - x) 
I p2 s i 

di [ s i n h p i ( x i + l - X )  
"-}- "r'ti e 2 2" 

- -  d i  L Pi Si 

, ~ el Fsinhpi(xi+l-X) 
+zi+ 1 ~ "  ~ -  

[ei - di m Pi Si 

fi+~ - J} 
hi 

xi+1 - 2x + x i l  + 
p2h i J 

~ e~ - d  2 p~si Pi~- ~i J 

x i + l _ - x l _  di . [ s i n h p i ( x - x i ) x - x i l "  ~ 
p~hi J e 2 - d ~  L p~si - ~  Pi i J )  

(2.4) 

where z'i(i = 1,.. . ,  N + 1) are the solution to the tridiagonal system 

: e, 

F e i-~ ] ,  [ 2 di -, zdi ] ,  [ e, ] , [ 1 ][f i:_fL_,l 
z = z i _ ~ +  - ~- z / +  - - e  2 " q + 1 =  La,_,-e,_, d,_-,-eb, d,--# d~ d,-,-e,-,Jm h,_, j 

1 f ~ + ' - f ~  d 2 e d2~e~v du eNdL h# + hi Z'N + T'N + 1 : TN + 1 -{- - " 

(2.5) 

In the above, we have used specified second derivative end conditions. 
We note that, although the second derivative formulation is more compact, the first derivative 

formulation is sometimes preferred. For example, this occurs when using exponential splines to 
approximate the solution of a first order differential equation, as is the case in this paper. 
Algorithms for the automatic selection of the exponential spline tension parameters are presented 
in Appendix A. 

3 Stability, dissipativity, and dispersivity 

In the following section, we will apply spline approximations to the numerical solution of nonlinear 
hyperbolic conservation laws. The stability, dissipativity, and dispersivity properties of such a 
scheme can most easily be studied by considering model equations with constant coefficients�9 
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Therefore, in this section we investigate the prototypical equation 

u, + cu~, = 0, (x, t)e( - 0% oo) x [0, oo) (3.1) 

with u(x,O) = qS(x). All calculations are to be performed on a mesh with uniform Ax and At. 
Consider the Runge-Kut t a  scheme of fourth order 

U ( 0 )  = /A n 

U ( 1 )  = / , /(0) __  
cAt 

Dx u(~ 
2 

/ , /(3) = b / (o)  _ cAtDxu(2) 
cAt 

U (41 = U (01 __  Dx(u (~ + 2u (x) + 2U t21 + U (31) 
6 

/ / ( 2 )  = u ( O )  _ _  CAt Dxu(~) u.+ x = u(,). 
2 

If we use the spline approximation to Dx we obtain the expression for the amplification factor 
(Vishnevetsky and Bowles 1982) as follows. 

Let 

At 
. �9 . +  1 " ( 3 . 3 )  uj = e 'qx~, uj = 9e 'q~, ~ = qAx, 2 = c - - .  

Ax 

Then 

g =  1 -  2pi--  2p2 + ~p3i + 2 '* ~p , (3.4) 

where 

2(d + e) sin 
P = 2(e cos ~ + d)" (3.5) 

Thus 

1912 = (1 - 2p 2 + 2p4)2 + 4p2(}p2 _ 1)2. (3.6) 

The C-F-L condition for stability requires that the magnitude of the amplification factor, O, 
be less than unity. Accordingly, we restrict 

]Pl < x ~ ,  (3.7) 

which requires the following t ime-step restriction 

~ / 2 d  1. (3.8/ 
121 < 2x/~" d + e  

Hence, for the cubic spline (p = 0, e/d = 1/2) we have 

121 < 2x//~ ,-~ 1.633, (3.9) 

while for the linear spline (p = 0% e/d = 0) we have 

121 < 2x//2 ~ 2.828. (3.10) 

Our explicit expression for g can also be used to study the dissipative and dispersive properties 
of the spline-based Runge-Kut t a  scheme. This is accomplished by studying polar plots of its 
amplitude and phase versus the frequency, 4- Complete details of this brand of analysis are 
available in Anderson et al. (1984). 

Figure 1 displays the locus of the amplification factor, g, in the complex plane as the frequency, 
4, varies. Curves are shown for both maximum and mid-range Courant  numbers (the curves 
overlap). We observe that the mid-range choice clearly results in less numerical distortion of the 
initial wavefront. 
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Figs. 3 and 4. 3a-e Modulus of amplification factor; 4a-e phase error, a ph = 0; b ph = 5; e ph = ov 

Figure 2 presents the maximum Courant  number as a function of normalized tension. Note 
that the addition of a small amount  of tension substantially improves the maximum permissible 
time step and that the combination ph is the relevant parameter. However, for ph > 5 we have 
clearly reached the point of diminishing returns. 

Figure 3 is a polar plot of the modulus of the amplification factor as a function of frequency 
for various values of applied tension. The dissipative properties of our scheme are readily apparent. 
Firstly, we again see that the mid-range Courant  number prevents heavy damping of the 
Fourier modes. Secondly, we observe a shift of the damping to lower frequencies as the tension 
is increased. 
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Figure 4 is a corresponding plot of the phase error. The dispersive properties of our  scheme 
are thus revealed. Firstly, the upper-range Couran t  number  results in leading phase errors while 
the mid-range produces strictly lagging phase errors. Secondly, we see that  increased tension 
results in increased phase error in the low frequency modes. 

The above results are not  too surprising since at the nodes (Appendix B) 

h 4 
DxT = u~ + ~ ( p Z u ~ , x x  --  uxx~xx) + O(h6), (3.11) 

so that  approximat ion by spline derivatives is seen to be primarily dispersive as is evidenced by 
the leading order odd derivatives in the t runcat ion error (Anderson et al. 1984). 

Because of the accuracy (fourth order temporal  and spatial on a uniform mesh with uniform 
tension) and stability of this exponential sp l ine /Runge-Kut ta  scheme, it is used exclusively in 
our subsequent  calculations. In addition, no modifications are needed at the boundaries since 
the spline is fourth order accurate over the full range of interpolat ion and no loss of accuracy 
results. 

4 Convergence 

Consider the scalar conservation law (Lax 1973) 

u, = f x ( u )  

subject to the initial condit ion 

u(x, O) = 4)(x). 

This .can be rewritten as 

(4.1) 

(4.2) 

~ ( w t u - w x f ) d x d t  + ~ w ( x , O ) O ( x ) d x = O ,  (4.5) 
0 - oo  - o r  

for all smooth  test functions, w, which vanish for I xl + t large enough. 
One must  consider whether  a numerical solution technique has the capability of capturing 

such a weak solution. We next present the following convergence result which is a generalization 
of a theorem of Lax and Wendroff  1960. First, recall that  the exponential spline, -c(x), can be 
defined in terms of its first derivatives at the knots. These values are determined by the tridiagonal 
system of linear algebraic equations 

A i "c'i _ l + B (r 'i + C i "c 'i + 1 = ~z i " f i + ~ - f ~ + t~ ~ f ~ - f ~ - 1 (4.6) 
hi  h i -  1 

where A~, Bi, C~, e~, fl~ were provided in our  review of theory. What  is of key importance to us 
here is that  

Ai  + Bi + Ci = ~i + fl, = 1. (4.7) 

In what  follows, we use the nota t ion Ag" = g" + 1 _ g" and avail ourselves of the summat ion  by 

df a = - - .  (4.4) 
du  

As such, we recognize it as a nonlinear  analogue of the linear model  problem of the previous 
section. 

Since f ( u )  is in general nonlinear,  we cannot  guarantee the existence of a smooth  solution 
for all time. Instead, we seek weak solutions satisfying 

ut = aug (4.3) 

with 
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parts formula 

oo oo 

Z u"Av"=-u~ ~  y' au"v "+1 (4.8) 
n = 0  n=O 

Theorem 4.1. If we approximate u~ = fx by 
Avn 

- "c x ( 4 . 9 )  
k, 

and if v converges boundedly almost everywhere to some function u(x, t) as k = max i ki and 
h = maxi hi tend to zero with uniformly bounded tension parameters, then u(x, t) is a weak solution. 

Proof. We have by assumption 

V n + 1 __ V n 
.~ n i i (x),, v ~  

k. 

and hence 

(4.10) 

i = - - c o  

i = - - o o  

Thus, 

L H S ~ - ~  ~ w,udxdt -  
0 - - o o  

A7 vT+-t -v~ Fv"+l-v7 + i-1 +B~ i C " |  i + 1 -  i+1 = c d f i + l - f i +  i-1 (4.11) 
k. k. 'L ~ i hi h,_, 

Multiplying both sides by w~kn((h i_ x + hi)/2) and summing over all grid points yields 

i [ -An(  n + l  __ V n 1) -It- BT(v7 +1 - v~) + C"(v "+' - v" , : o i : _ o o ~ - - " i , v i - 1  i- i, i+1 i+l)](hi-1 +hi) 

" " i f - f "  q = ~ ~ ~_Lc~iwTk, F , f i + ~ - f i + f l  , ihi_~z___i-tj|(hi_~+hl) (4.12) 
n = O i = - o o  

or LHS = RHS for convenience. 

LHS= • hi- '  +h i  [(wTA~)AV~_l +(W~B~)AvT +(w~C~)Av~+,] 
i 2 = - - o o  . = 0  

hi-l-Fhi ~ [-A(w,A,]v.+I+A(wnB,Iv.+I , . .+1 2 ,- " i i"  i - 1  " i i"  i - { - A ( w i C i ) v i + l ]  
. = 0  

h i - l - l - h i  0 0 o 0 o 0 o 0 0 
- -  (W i A i V i -  1 "F W i B i V i "-1- W i C i Vi+l). ( 4 . 1 3 )  

2 

oo 
j w(x, o)4~(x ) dx. 

- -00  

ook oo I RHS= ~=o= ~,.=_2 w'y~hi-'h, + hi f,~+ + w"( ff] 
1 i k h i _  1 

~o k ~ . . [ -  . hi_2 +hi_ w"( fl~ e--i~i) 
Y J'L ;-  ~o \ , _ ,  ' h~ J" 

(4.15) 

As shown in Appendix B, as h - ,  0 with uniformly bounded tension 

hi h i . 
o~n"'~ ' f i r - *  - 1  (4.16) 

i h i -  1 q- hi  h i -  1 + hi 

( 4 . 1 4 )  

of~(hi_l +hi)fT_wTflTh,_~ +h~ fT_ 1 
hi  / h i _ l  1 
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Thus, 

7 swxa a,. 
0 --oo 

That is, u(x,  t) is a weak solution. 

Computational Mechanics 6 (1990) 

(4.17) 

[] 

5 Invisc id  Burgers '  e q u a t i o n  

In this section, we provide our treatment of nonlinear hyperbolic conservation laws using splines. 
The subject of discussion is a nonlinear analogue of our model problem, namely the inviscid 
Burgers' equation (Sod 1985) 

u t + uu x = O, ( x , t ) e ( -  ~ ,  or) x [0, oo). (5.1) 

This equation, which is in quasilinear form, can be put into the conservation form 

u t + = 0. (5.2) 
x 

This equation admits travelling shock wave solutions (Lax 1973). We consider the following 
initial data 

1 , x < 0  

~b(x)= l - x ,  0 < x < l  (5.3) 

0 , l < x  

This wave front steepens until at t = 1 a discontinuity develops. Specifically, for t < 1 

1 , x < t  

x - - i  
u ( x , t ) =  - - ,  t < x < l  (5.4) 

t - 1  

0 , l__<x 

while for t > l 

l + t  
1, x < - -  

2 
u(x,  t) = (5.5) 

0, l + t  
- - <  x 

2 

The physically relevant solution is the one satisfying the so-called entropy inequality. This 
condition stipulates that the characteristics issuing from either from either side of the discontinuity 
curve in the direction of increasing t should intersect the line of discontinuity. 

The task before us is now clear. We must devise a numerical scheme that will capture 
discontinuities as well as select the physically relevant solution from the, generally infinite, 
collection of weak solutions to an initial value problem. 

This is accomplished by adding a suitable implicit artificial viscosity term (Jameson 1978) to 
the exponential spl ine/Runge-Kutta scheme as previously applied to the model problem. This 
is achieved by shifting the spatial derivative evaluation upstream thus modelling the correct 
domain of dependence while prohibiting expansion shocks. 

Specifically, we solve 

u t = f x ( u ( x  + s g n ( f ' ( u ) ) ~ h ,  t))  (5.6) 
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Fig. 5. Shock wave computation 

where 

e = min (~h3[ux[ 4 + flh3luxxt 2, 1/2). (5.7) 

Expansion in Taylor series reveals that 

u, = fx(U) + sgn(f '(u))ehfxx(u) + O(&). (5 .8 )  

Several observations should be made. Firstly, the artificial viscosity so introduced is O(h 4) 
so that fourth order accuracy is retained. Secondly, the modified equation is still in conservation 
form so that weak solutions are still captured. Thirdly, the specific form for e was selected to 
switch on in regions of high gradient or curvature and the diffusion parameters ~ and/~ were 
included to allow control of the width of the shock transition region. Finally, the above scheme 
should reduce the dispersion errors previously observed since the artificially induced diffusivity 
should serve to attenuate the higher order modes. 

Figure 5 shows our computed solution together with the exact solution. In this calculation, 
values of At = Ax = 0.02 were used. These parameters were selected to be compatible with those 
of Sod 1985 where several other schemes are presented for comparative purposes. Also, ~ =/~ = 0.5 
were used. Evident from these numerical results are the correct shock location, the sharp shock 
resolution, and the conspicuous lack of overshoots and undershoots at the shock. 

6 Conclusions 

Building upon previous theoretical and computational work on exponential splines, we have 
introduced a numerical scheme for highly accurate approximation to nonlinear hyperbolic 
conservation laws. In addition to its high order of accuracy, this scheme provides numerical 
simulation of discontinuities without any attendant oscillations. Numerical results have been 
presented illustrating the efficacy of this technique. 

The analysis presented in this paper can be extended to systems of conservation laws. McCartin 
1981 presents such an extension and applies the technique to the shock tube problem. Furthermore 
these results can be extended to multiple spatial dimensions. McCartin 1981 presents this 
extension and applies the method to transonic channel flow. Both of these topics will be the 
subject of separate publications. 

A) Tension parameter selection algorithms. The following algorithms provide for the automatic 
selection of the exponential spline tension parameters. Algorithm COCONVEX incorporates 
convexity constraints while Algorithm C O M O N O T O N E  incorporates monotonicity constraints. 
Convexity and monotonicity constraints can be enforced simultaneously by taking the pointwise 
maximum of the tensions supplied by Algorithms COCONVEX and C O M O N O T O N E  
individually. Complete details are available in McCartin 1989b. 
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A.1) Algorithm COCONVEX 

do i *- I (1)N 

[~i ~" Pi 

end do 

if r{ 'b l  < 0 then 

- max(lbl[ ,  d l l r l "  I) 
k .-- It2" I ; g ~ max((~-'hl)-l/2' Pl); 

end if 

do i *-- 2(1)N 

if r[ '  = 0 then 

1)i-1 ~ max(pt- i  + e, Pi-1) 

end if 

if t [ '  bi < 0 

- max(Ibi}, (di-1 + di)Ir~'l) 
k --  2 max(lri'_'l I, [ri~-'~) 

151 ~- max(~, 151) 

Computational Mechanics 6 (1990) 

g ~- maxC(~hi-1) -1/2, Pi-1); 

P- *" max((~hi) -1/2, Pi); 

end if 
end do 

if tN~-~l bN+l < 0 then  

2-.-  max(lbN,1[, dNlrN'h l) 
Ir~'l  

end if 

do i . - -  1(1)N 

Pl ~" Pi + ~ (P i  - Pt) 

end do 

piol e-" m~Cp'~ [)i-l) 

Pi ~ max(~, Pi) 

; g'-" max((ihN) -1/~, Ps); I)N 4-- max(if, PN) 

A.2) Algorithm COMONOTONE 

do i---  1(1)N 

Pi " -  Pf 

end do 

do i ~-- 2 ( I ) N -  1 

if mi-lmi > 0 and m i omi+t -> 0 then 

if ri' ~ mi < 0 then 

if Pi-i = 0 then 
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else 

i f ,  
1 + Pi-lhi-1 2 max(Iri"l  I , It[' I, Iri~'l I) 

Pi-lhi-i l m i - i  + rail 
+6 

end if 

if 

else 

I5>1 ~'- m a x ( E  lSi-l) 

p~ = 0 then 

p i * - 6  

1 + piht 

pihi 

2 max(lri'_'l I , It/' I, Irl;', I) 
Imi-i + mil 

~6 

end if 
end if 

if ri§ " m i §  then 

if 

else 

15i --- m a x ( E  t5i) 

Pi = 0 then 

15i ,-- 6 

1 + pih i p . -  
plhi 

2 m a x ( l r i " l ,  Ir~;'~ I, Ir~;~) 
[mi+ mi+ll 

+6 

15t "-'- max(if,  !50 
end if 

if 

else 

end if 
end if 

if r[ * mi -> 0 and ri~.l mi.~ -> 

if C i > 0  

if 

else 

end if 

if C i < 0  

Pi,1 = 0 t hen  

Pi+l ~ 6 

1 + Pi§247 
ff.,- 

Pi§ 

2 max(k; '  I, Ir;,'~, Ir,;'~) 
Imi+ mi<l 

end if 

0 then 

and Di < 0 then 

mi -< 0 then 

15i ~ m a x ( p i ,  150 

,-- - ~ 1 ( 2  -7-:-W~,D~) + a 

15i ~ m a x , ,  pi) 

and Di > 0 then 

if mi -> 0 then 

t5i ~ max(pi, 150 
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else 
~" ~ Bi/(2 ~ )  + 6 

151 ~" max(if, 150 
end if 

end if 
end if 

end if 
end do 
do i ~  1(1)N 

Pi ~" Pi + tO(16i - Pi) 
end do 

B) Expansion of exponential spline derivatives. Before tabulating power series expansions for 
exponential spline derivatives, we assemble the following expansions for the spline coefficients 
themselves. The complete derivation of all ensuing expressions is contained in McCartin 1981. 

h ='_2"[1 7p2h2 , 31 --4L4 - -  -- ~-gg6P n -1- O(p6h6)]  e 
6 

d =  ~ [  l _ ~sp2h 2 - 2 4 . 4  t gigP n + O(p6h6)] 

1 1 
d - e - h [6 + l p 2 h 2  - l@6-6P4h4 + O(p6h6)]  

1 1 h[2 1_21.2 1 _41.4 d + e - + ge  n - gg61 ) n + O(p6h6) ]  

1 1 
h ( d _ e ) - h 2 [  6 + ~6p2h 2 -- ~@6-dP'*h 4 + O(p6h6)] 

1 1 
- h2[ +~1J n - - f fddP n q- O(p6h6) ]  d2 _ e2 1 2  6 _ 2 h 2  1 _ 4 L 4 .  

e 1 
d2 e2 - h [ 2 -  a~dp2h2 - t - ~ p 4 h  '* -t- O(p6h6) -] 

d 1 11 _ 4 L 4 -  
- -  6-~-6 P n -- h[4 + ~p2  h2 + O(p6  h6) ] 

d 2 e 2 

(B.1)  

B.1) First derivative. 
accuracy of spline first derivatives. 

6 ( 1  + 1 )  1 (p4  h 3 p~h~)+ 
= - - - 1 ~  i - 1  i - 1  a0 h/~i ~/ q- ~ ( P 2 - 1 h i  1 -I- p2hi  ) q- . . .00  

al=32_6(p2_lhE_l_p2h2 ) 13 ( _ 4 .  -1-TK6-6,t,i_ lh~_ l - p~h~) + ...00 

13 (p4 h 5 +p~h~)+.. .oo a2=(hi- l  +hi)-~6(pE-lha-l  +p2h3i)+ 2~T~6 i-1 i-1 

1r _ h 2) + x (_2  13 /'_4 h 6 a 3 = - - 7 ,  ,-1 ~ , P i - l h 4 - 1 - p 2 h ~  ) - ~ ' p i - 1  i - l - p ~ h 6 )  + ' ' ' ~ 1 7 6  

1(h3 + h a ) _  1 2 +p2h5 ) -  13 (_4 h 7 a , = ~  i -1  -5-ff-d(Pi-lh5-1 + ~ , k ' i - 1  i-1 +p4h7) + ' ' ' ~ 1 7 6  

1 2 _p2h6i) xa t_4 h 8 -p~h~)+. . .oo  a5 6~d(h~_l-h4[)+ 3~6-6(Pi-,h6-~ ~-  - -  1 5 1 2 - O 0 0 t P i - 1  i - 1  

We require the following parameter definitions in order to describe the 

(B.2) 
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1 
b0  ~ i  

a o  

b 1 - -  al 
2 

a o 
2 

b2 -- a l  a2 
3 2 

a o a o 

3 2a~a 2 a3 
b3 - al -b - -  

4- 3 2 
ao ao a o 

4 3a2a2 2 
b4. = a ~ _  ~ a 2 + 2ala  3 a 4 

5 4. 3 2 
ao a o a o a o 

b5 = -- b4 al -- b3 a2 -- b2 a3 -- b 1 a_44 _ boa5 
ao ao ao ao ao 

c i = a o 

(B.3) 

_ 1 4 - p ~ h ~ ) +  . . . o o  l (p2 h 2 _p2h2)_t_z~_C6(pi_lh~_l C 2 - -  - - ~  i - 1  i - 1  

c3 =(h i -1  + hi) + ~o(pL lh31 + p2i h3)-j--(p48400 i-  lh~- i  + p'~h~) + ... oe (B.4) 
l ( h2  _ h  2) 1 (p2 _ p ~ h  4) 1 4 

C4 4x  i - 1  --2"40~ i - lh4i -1  = - + lh61 - h6) + "'" 

_ i 3 + h 3)  + 1 , 2 h 5 
c5-~--6(hi-1 iTc6tPi-1 i-1 +p2h~ ) ~(Pia 4_ l h7_ 1 + P 4 i h T ) + ' " ~ "  

In terms of these parameters, we may express 

z'i = [(bocl)D + (bxcl + boc2) D2 + (b2cl + blc2 + boc3) D3 + (bacl + b2c2 + blc3 + boc4)D 4 

+ (b4cl + b3c 2 3c b2c 3 -Jr- bic4 + bocs)D 5 + . " ] f i ,  (B.5) 

where D is the differentiation operator, Df~ = f ' (x i ) .  Note that boc ~ -- 1. 
We Pihi = ph for all i, we have 

bic I -t- boc 2 = O, b2c i q- blC 2 q- boc 3 = O(h4.), b3c 1 -q- b2c 2 q- blC a q- boc 4 = 0 (B.6) 

while all succeeding terms are O(h4). That  is, for uniform tension and mesh width, the spline 
first derivative is a fourth order  accurate approximation to the first derivative of the approximated 
function (at the nodes). 

B.2)  Second derivative. We next proceed to study the accuracy of spline second derivatives for 
which we need the following parameters. 

1 ao=~(h i_  1 _l_hi)_2~(p2_ h 3 + p 2 h 3 ) +  1 , 4 h 5 1 i-1 ~T6tPi-1 i - l+P~hSi )  + ' ' ' ~  

l (h2 _h2 i )+  7 ,  2 h 4 - p ~ h ~ )  3x , 4 h 6 _ p ~ h 6 ) + . . . o o  
a l = - - g x  i - 1  ~ t P i - 1  i - 1  --I~TT61,Pi-1 i - 1  

= ! ( h a  +h3 i )_  7 (p2 l h 5 _ l + p 2 h ? ) +  31 ~_4 h 7 + p , ~ h T ) + . . . ~  
a2 12 i -  i ~ i -  ~ t P i -  i - 1 

= _ _ ! ( h 4  _h /4 )+  7 (_2 h 6 _ p 2 h 6  ) 31 (p4 _ p ~ h S ) + . . . o o  
a 3  36 i - 1  ~ P i - 1  - 1  - -  9--d"q~d i -  l h8-1 

_ 1 ~h 5 a 4 -  ~-~, i - i  + hSi) 7 2 p 2 h 7 ) ,  31 / '_4  t.9 pgh9 ) . - - 8 ~ T 6 ( P i _ l h ? _ l  q- _ 3 6 - ~ - f f - f f - ~ P i _ l t t i _ l  --}- ~ . .  0(3 

1 th 6 _h~,)+__27 (p2 h S _ l _ p 2 h S )  31 (_4 a s = - 7 - T 6 ,  i-1 43200 i-1 ~ , t ' i - l h l ~ 1 7 6  + ' ' ' ~ 1 7 6  

i hi ) c2 = -i(hl- 1 + 

i 2 c3 = -- g(hi- 1 - h2) 

(B.7) 
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A-(ha + h 3) (B.8) C 4  ~ -  2 4  i -  1 

_ 1 r 4 - h~) C5 120~ i -  1 

With the b's as previously defined, we have 

z'i' = [(boc2) D2 + (btc2 + boca) D3 + (b2c2 + blc3 + boc4) D4 + ' " ] f i  (B.9) 

When p~h~ = ph for all i, we have 

z;'=D2f~+[_-~ Ji-- D4f~ h2+O(h4) �9 (B.IO) 

We see that the uniformity conditions do not yield the increase in accuracy encountered in our 
analysis of first derivative approximation. 

In spite of this, the above expansion can be exploited, producing 

12 Fz" f i+~-2 f~+ f i - l l = D 2 f i + O ( h 4  ) 
24 + (ph) 2 L ' -t 

(B .11)  

which is a fourth order accurate approximation. Note that for the cubic spline (p = O) this reduces 
to the arithmetic mean. 

above expansions also yield the following second order accurate B.3 Fourth derivative. The 
approximation to the fourth derivative. 

=12~12+(ph)2Fe ,, ( 2d 24+(ph)2"~z,. , ~e ,, 1}  
D4fi h2124+(ph) 2_ h 12+(ph)2.]  ' + , ,  z/+l 

[-hZi_ , + 1 + + O ( h  2) (B.12) 

Note that in the case of the cubic spline (p = 0, e = h/6, d = h/3) this reduces to 

"C" - -  2Z"  4- Z" D4fi = i-1 i -  i+l +O(h2), (B.13) 
h 2 

that is, a central differencing of z"(x) at x = xi. 
Also, 

D4fi = P-[z~'-x + (ps - 2c)zi' + z','+ 13 + 0(h2) �9 (B.14) 
s 

Hence, we have yet another second order accurate approximation to the fourth derivative. 
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