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A vertex-based finite volume method for solving the three-dimensional compressible Reynolds-averaged
Navier-Stokes equations is presented for calculating turbomachinery cascade flows. A discretization scheme for
the viscous terms is proposed. The Baldwin-Lomax algebraic turbulence model is used. The scheme is verified
against laminar and turbulent flows over a flat plate.vTWo- and three-dimensional computations were carried out
for a low-pressure turbine cascade at design and off-design conditions. Results are compared with inviscid sola-

tions and experimental data.

I. Introduction

N an earlier paper' the authors presented results of cascade flow
L calculations with a three-dimensional Euler method. It was
found that the pressure distribution on the cascade blade surface
agreed well with the experimental data obtained by Hodson and
Dominy?* for a low-pressure turbine cascade at its design condi-
tion. When proper inlet boundary conditions were given, the Euler
equations were also found to be capable of capturing the major
features of secondary flow vortices caused by the convection of the
inlet endwall boundary layers. However, small discrepancies
existed where small separation bubbles were found in the experi-
ment at the design condition. At an off-design condition there were
large differences between the predicted pressure distributions and
the experimental data due to the existence of large separation in the
flowfield. For such flows it is essential to include viscous effects in
the simulation. Hah® developed an implicit relaxation method for
the Navier-Stokes equations. Chima® used an explicit multigrid
algorithm for quasi-three-dimensional flows. Some other contribu-
tions include Davis et al.,” Choi and Knight,® and Dawes.’

In this paper a finite volume scheme for solving the Reynolds-
averaged Navier-Stokes equations in three dimensions is pre-
sented. A vertex scheme is used in this work instead of the cell-
centered scheme used in Ref. 1 for the Euler equations. It is
believed that a cell-vertex scheme may have better accuracy than a
cell-centered scheme on irregular meshes. In this paper an alterna-
tive discretization is used for the viscous terms, as modified from
one of the schemes used by Martinelli'® in his two-dimensional
Navier-Stokes code. This new discretization avoids a potential dif-
ficulty in calculating the viscous terms when the computational
mesh has kinks. A multigrid method is used to accelerate conver-
gence. The numerical method with the Baldwin-Lomax algebraic
turbulence model is used to calculate the flow in the same low-
pressure turbine cascade?™ for which solutions of the Euler equa-
tions were obtained by the authors in Ref. 1. The usefulness and
limitations of the Navier-Stokes calculations will be demonstrated
through comparison of the results with those of the Euler calcula-
tions and the experiment.
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II. Numerical Method

After proper nondimensionalization, the Reynolds-averaged
Navier-Stokes equations can be written in an integral form as

d
—j Wd:+§ fon ds=i§ F-nds (1
did o 29 ReJae

for a fixed region €, where W is one of five conserved scalar com-
ponents: density p; three components of momentum pu, pv, and
pw; and energy pE. The convective and viscous flux vectors are f
and F. Re is the Reynolds number based on the reference values in
the non-dimensionalization.

The flow variables in these equations are time-averaged mean
variables, and the system is closed by using the Baldwin-Lomax
algebraic turbulence model.!! We describe a vertex-based finite
volume method for solving these equations. Details can be found
in Ref. 12. The computational domain is divided into hexahedral
cells. In a vertex scheme the flow variables are defined at the cell
vertices of the hexahedral cells. A system of ordinary differential
equations can be obtained by applying Eq. (1) to a supercell
formed by the union of eight cells surrounding a vertex point (i, j,
k) in three dimensions. Thus,

d
ar ’(Qijk W) +Q. =2, =0 @

where Q;, is the volume of the supercell and Q, ;. Q, ;;, are the net
convective and diffusive fluxes out of the supercell, respectively.
The convective flux balance over the mth elementary cell around
the vertex (i, j, k) can be approximated by

6
(Qc,ijk)m=sz -ds, for m=1,2,...,8

k=1

©)

where the summation is over the six faces of the hexahedral cell,
the face area vector is dS, = n - dS;, which has the face area as its
magnitude and the outer normal n for its direction, and f; are the
average flux vectors on each face. The convective flux balance
over one supercell can be obtained by summing the flux balances
over the eight constituent cells. '

8
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Since flow variables are defined at cell vertices, the velocity and
temperature derivatives at each cell center can be found by apply-
ing Gauss’s formula to each individual cell. Suppose du/ox is to be
found at the center of a cell. By Gauss’s formula,

J‘%:J. u dS
Q Jx 0 *

Q% zJ‘ u ds
dx JQ *

where dS, is the x component of dS.

To calculate the viscous flux balance Q,;;, an auxiliary control
volume around the vertex point (i, , k) is formed. For simplicity,
consider in Fig.1 a vertex point in a two-dimensional mesh. Marti-
nelli’®in one of his two-dimensional schemes formed the auxiliary
control volume by directly connecting the cell centers A, B, C, and
D. Since the derivatives of velocity and temperature are found at
all cell centers, F, on each face of the formed control volume can
be evaluated as the average of F at the end points. Q,,;, can then be
obtained by

thus,

6
O, i = ZFk'dSk &)

k=1

w

Fig.1 Supercell and auxiliary cell for the vertex scheme.

Fig.2 Problem with a kinked mesh.

Fig. 3 Auxiliary cell used in this work to calculate the diffusive bal-
ance for the cell-vertex scheme.
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Fig. 4 Laminar skin friction coefficient over a flat plate.
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Fig. 5 Laminar boundary-layer velocity profile over a flat plate.

A difficulty may arise in this method, however, when the mesh
exhibits a kink, as shown in Fig. 2. In that case, the vertex point
where the diffusive flux balance is to be found falls outside the
auxiliary cell, and the local accuracy may drop. To rectify this, an
alternative scheme is proposed. An auxiliary cell connecting A, B,
C, and D and the midpoints (midlines in three dimensions) a, b, c,
and d of the cell faces is formed, as shown in Fig. 3.

The surface integral on face Aa can be evaluated as F, times
(dS),,, where F, is F at A and (dS),, is surface area vector for Aa.
The surface integrals over other face segments of the control vol-
ume in Fig. 3 can be formed in the same manner. Although the sur-
face integral on each face segment is one sided, this scheme is
equivalent to Martinelli’s scheme for regular meshes but is ex-
pected to give better local accuracy on grids with sharp kinks.

To prevent odd-and-even decoupling and to capture shocks
without preshock oscillations, an additional dissipation term D;;; is
added to the semidiscrete Eq. (2), so that we solve

d/de (Qijk Wijk) + Qc, ijk Qv, ijk _Dijk =0 (6)
The dissipation term D, is formed in a conservative manner in
which the dissipation fluxes are defined as a blending of first and
third differences of the flow variables. In the current applications,
redistributed directionally variable dissipation scales are used (see
Refs. 10 and 12).

Equation (6) can be integrated in time by an explicit multistage
scheme. In this work a five-stage scheme is used, with evaluations
of the dissipation and the viscous terms only at the first, third, and
fifth stages. The allowable Courant-Fredrich-Lewy (CFL) number
for this explicit scheme is increased by smoothing the residuals
R;;, at each stage. :

(1-e8)) (1-¢,8) (1-¢8) Ry = R, )
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Fig. 6 Turbulent skin friction over a flat plate.
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Fig. 7 Turbulent boundary-layer velocity profile over a flat plate.

where &, &, and €¢ are the smoothing parameters in each direction
and are given by, for example,

x 2
€; = max O,E(CFL t )—1 ®)
4 \CFL* K§+kn+7»§

CFL is the CFL number used, CFL* is the allowable CFL number
for the multistage scheme, Ae, A, and Ay are the spectral radii of
the Jacobian matrices of f* S, f'S;, and f-S¢, respectively, and
where Sg, S,], and SC are the cell surface area vectors along each
grid line direction.

To further increase the rate of convergence, locally varying time
steps are used. A multigrid method based on Ref. 13 is imple-
mented. In this work a W-cycle strategy is used in each time step.
In order to save computational time, the molecular and turbulent
viscosity coefficients are evaluated only on the fine grid and frozen
on the coarse grids. In the solution of the Reynolds-averaged
Navier-Stokes equations, the robustness of the multigrid method is
enhanced by smoothing the corrections from the coarse grids
before they are added to the solution on the fine grids. The same
factorized smoothing operator as shown in Eq. (7) is again used
with a constant smoothing parameter.

III. Results and Discussion

A. Laminar and Turbulent Flow over a Flat Plate

In these calculations, the freestream Mach number is set to 0.3
to approximate incompressible flow. Laminar flow at Reynolds
number Re = 35,000 is obtained. Figure 4 shows the calculated
surface skin friction and that by Blasius in logarithmic scales.

A good check is the similarity profile offered by the Blasius
solution. Figure 5 shows the calculated velocity profile as scaled

by the Blasius similarity law at about 10, 20,...,and 90% chord
length downstream of the leading edge. All of the data points col-
lapse into a single curve on the Blasius velocity profile. Similarity
is also obtained with the vertical velocities.

Turbulent flow over the same flat plate at Re = 6 X 106 is calcu-
lated. Figure 6 is the calculated surface skin friction plotted in log-
arithmic scale and compared with the 1/5 law of Prandtl. In this
case transition is set at Re, = 3.25 X 10°, The skin friction jumps up
at transition and then follows the 1/5 law closely toward the end of
the plate.

Figure 7 shows the turbulent similarity velocity profile at differ-
ent streamwise locations. Regions of laminar sublayer, the loga-
rithmic law of the wall, and the wake are distinctly captured.

B. Flow Through a Turbine Cascade

Figure 8 is the two-dimensional mesh with 209 X 65 grid points
used in the calculations. The mesh is initially generated by an
elliptic method and then stretched in the blade-to-blade direction.
The first grid point is taken to be 1.5 X 10~* axial chord length away
from the blade surface. In the three-dimensional calculations, only
half of the blade span is used since the blade passage has a sym-
metric divergence of 6 deg on the sidewalls. A 209 X 65 X 33 mesh
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Fig.8 H-mesh of 208 X 64 cells for a low-pressure turbine cascade.
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Fig. 9 Isentropic Mach number at midspan, three-dimensional Euler
solution.
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is generated by stacking the two-dimensional mesh in the spanwise
direction. Because of the large aspect ratio of this cascade, the
smallest grid size near the endwall is only 2.8 x 1073 axial chord
length.

Transitions are set at specific locations on the blade surfaces in
view of experimental observations. Some adjustments of these
locations were performed so that the pressure distribution agreed
better with the experimental data. Such manual adjustment on tran-
sition and the turbulence model itself present major uncertainties
in the calculation. On the sidewalls, experimental data in Hodson
and Dominy? suggest that the flow is turbulent at the entrance and
transitional at the exit. In the calculations, the flow is assumed to
be fully turbulent on all of the endwalls. The endwall velocity pro-
file at the entrance is specified by experimental data provided in
Ref. 3.

1. Flow at the Design Condition

At its design condition this cascade has an exit isentropic Mach
number of 0.7, an incidence angle of 38.8 deg, and an isentropic
exit Reynolds number Re = 2.9 x 10°, Transition in this calculation
is set at 0.88 axial chord on the suction surface and 0.2 axial chord
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Fig. 10 Isentropic Mach number at midspan, two-dimensional
Navier-Stokes solution.
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Fig. 11 Skin-friction distribution at midspan, two-dimensional
Navier-Stokes solution.
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Fig. 12 Isentropic Mach number at midspan, three-dimensional
Navier-Stokes solution.
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Fig. 13 Skin-friction distribution at midspan, three-dimensional
Navier-Stokes solution.

on the pressure surface. Figure 9 reproduces from Ref. 1 the isen-
tropic Mach number distribution at midspan obtained with a three-
dimensional Euler method. It was explained in Ref. 1 that the
slight discrepancy between calculation and experiment on the aft
portion of the upper surface was due to a small separation bubble,
which was observed in Hodson and Dominy's experiment.>

Figure 10 is the isentropic Mach number distribution at midspan
calculated by the two-dimensional code. Compared with Fig. 9, the
two-dimensional result underpredicts the isentropic Mach number
by quite a margin due to the fact that it does not account for the
divergence of the endwalls. However, the small hump in the aft
portion of the suction surface pressure distribution that was ob-
served in the experiment but missed by the inviscid calculation is
now captured by the viscous code.

The separation bubble on the back of the cascade blade is con-
firmed by the skin friction distribution shown in Fig. 11. This sepa-
ration starts at about 80% axial chord and ends at about 90% axial
chord, which agrees with the experimental location obtained by oil
flow in Refs. 2 and 3. It is due to this separation bubble that the
isentropic Mach number in that region exhibits higher values than
the inviscid solution. However, a small leading edge separation
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Fig. 14 Convergence history for Navier-Stokes calculations.
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Fig. 15 Spanwise variation of pitchwise mixed-out flow angle at 140%
axial chord.

bubble that was observed in experiment on the suction surface® is
not found in this calculation, although the skin friction does show a
spiked low value near the leading edge. This is most likely due to
the inability of the mesh to resolve the thin boundary layer near the
leading edge. On the pressure surface, incipient separation exists
from about 15% axial chord to about 20% axial chord. Hodson and
Dominy? estimated that this was from 12 to 20% blade surface dis-
tance, based on oil flow visualization.

The two-dimensional calculations capture most of the viscous
features of the flow at midspan, despite the inaccuracy caused by
assuming no endwall divergence. Figure 12 shows the isentropic
Mach number at midspan with the three-dimensional version of
the code. Clearly this problem is rectified. Figure 13 shows the
skin friction distribution at midspan. Compared to the two-dimen-
sional solution in Fig. 11, the three-dimensional solution does not
predict a true separation bubble on the suction surface; rather, it
predicts a small region of near separation flow. Nonetheless, the
small hump in the isentropic Mach number distribution shown in
Fig. 12 is closely reproduced.

The three-dimensional viscous calculation with the rather fine
209 x 65 x 33 mesh takes about 12 h of CPU time in double preci-

sion on a single processor on a Convex C220 to march 200 time
steps. The two-dimensional code, however, takes less than 20 min
of CPU time for the same nomber of time steps but with better
convergence. Figure 14 shows the convergence history for the
two- and three-dimensional calculations. The parameters in the
numerical scheme have not been optimized for the three-dimen-
sional calculations due to constraints in computer time.

The effect of the sidewall boundary layer is closely related to
secondary flow development in the cascade passage. It was shown
in Ref. 1 that given the entrance sidewall boundary layer profiles,
the Euler model was capable of predicting the qualitative features
of the secondary flow vortices due to inviscid convection. Figure
15 contains a reproduction of the spanwise variation of pitchwise
mixed-out flow angle at 140% axial chord along with those
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Fig. 16 Isentropic Mach number at midspan at off-design condition,
three-dimensional Euler solution.

N
~

+ Upper surface
Lower surface
Experiment

0.8

0.6

Isentropic Mach Number
04

0.2

208x64 mesh

Fig. 17 Isentropic Mach number at midspan at off-design condition,
two-dimensional Navier-Stokes solution.
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Fig. 18 Skin friction distribution at midspan at off-design condition,
two-dimensional Navier-Stokes solution.

obtained by experiment® and the current Navier-Stokes code. The
pitchwise mixed-out flow angle is obtained by a constant-area
mixing calculation at each spanwise location. Essentially, the flow
is extended by a fictitious constant-area pipe with uniform exit
flow conditions. The uniform exit flow conditions are called the
mixed-out flow conditions and can be obtained by applying the
mass, momentum, and energy conservation laws. As shown in
Fig. 15, there is a large overturning near the wall. This overturning
is then followed by an underturning some distance into the flow-
field. This is due to the induced velocity by the passage vortex. In
the inviscid solution the underturning of the flow was predicted
with the correct magnitude but a displaced location. The discrep-
ancy was attributed to the fact that the Euler model does not
account for the boundary layer growth in the cascade passage due
to the diffusive effects of viscosity. The Navier-Stokes solution
shown in Fig. 15 confirms this diffusive effect. However, the pre-
dicted magnitude of the underturning is not as large as that of the
inviscid solution.

Notice also the difference between the inviscid and the viscous
solutions near the endwall in Fig. 15. The overturning is reduced in
the viscous solution as compared to the steady increase in the
inviscid solution. The blade-to-blade pressure gradient forces the
low energy flow in the boundary layer to turn more than the invis-
cid core flow, thus forming the passage vortex. But very near the
wall, viscous effects retard this overturning mechanism. The ex-
perimental results from Hodson did not provide data very near the
wall, but the existence of reduced overturning was pointed out.

2. Flow at an Off-Design Condition

Figure 16 shows the inviscid pressure distribution obtained in
Ref. 1 at ~20.3 deg incidence relative to the design condition. In
this case there is a large separation bubble on the pressure surface.
Because of this separation the inviscid solution shows a large suc-
tion peak and then a steep diffusion, as compared to the smaller
suction followed by a long flat curve measured in the experiment.
Figure 17 is the solution obtained with the two-dimensional
Navier-Stokes code. The flat region of pressure distribution due to
separation is reproduced with surprisingly good accuracy, consid-
ering the uncertainties involved in the calculation. Transition to
turbulence in this calculation is set at 0.84 axial chord on the suc-
tion surface and 0 axial chord on the pressure surface. Figure 18
shows the skin friction on the blade. The pressure surface separa-
tion bubble can be clearly seen. The flow separates at about 3%
axial chord and then experiences transition and reattaches at about
58% axial chord. Hodson and Dominy,* however, found that the
separation is of a smaller length, from 5 to 45% axial chord. This
may explain why the calculated isentropic Mach number tends to
curve upwards compared with the experimental data. Comparison
with results by other turbulence models would be desirable. Figure
19 shows the velocity vectors below the pressure surface. The
large recirculation is evident.

Fig. 19 Velocity vector field on the lower surface of the cascade blade.

On the suction surface, there is a small separation bubble on the
back of the blade. This is confirmed by the skin friction plot and by
the small hump in isentropic Mach number distribution shown in
Fig. 17.

Although a steady-state solution was achieved for this case with
the two-dimensional code, it was not obtained with the three-
dimensional program on the 209 X 65 x 33 mesh. Calculations
show quite fast convergence on a coarse mesh with 105 x 33 x 17
grid points. When the solution on the coarse grid is interpolated
onto the fine grid, the fine grid solution converges to a certain point
and then starts to oscillate, with the maximum residuals occurring
in the pressure surface separation region. This may be related to
the nature of the flow separation and the properties of turbulence
modeling. The skin friction plot shown in Fig. 18 shows that the
flow on the pressure surface has a tendency to reattach after the
first separation and then separate again. In the three-dimensional
calculations skin friction plots show that the flow actually reat-
taches with a noticeable positive skin friction and then separates.
This flow behavior may have had a direct effect on the conver-
gence of the computation. It should be pointed out, however, that
Hodson and Dominy did not provide detailed skin friction mea-
surement for this cascade, nor do the authors have knowledge of
any computational results by other methods. It would be very
desirable to compare results by other methods and with other tur-
bulence models.

IV. Concluding Remarks

A vertex-based finite volume method for the Reynolds-averaged
Navier-Stokes equations is presented for calculating three-dimen-
sional cascade flows. The program has been validated by calculat-
ing laminar and turbulent flows over a flat plate. The method has
been applied to a three-dimensional low-pressure turbine cascade.
Clear improvements were achieved over the Euler solutions for
flows with separation at both design and off-design conditions.
Skin friction plots show the separation bubbles that were observed
in experiment. Predicted variation of pitchwise mixed-out exit
flow angle compare reasonably well with experimental data in
both strength and location. However, the locations of transition
and turbulence modeling pose uncertainties to the calculations.
More detailed studies on the interaction between the blade and the
endwall boundary layers and the development of secondary flows
are needed.
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