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vorable characteristics of the recently developed 
compressible flow codes. The free surface ship 
wave problem is presented to show the method's 
versatility to problems other than incompressible 
low speed air flows. This problem retains 
of the complexities associated with aircraft mod- 
eling, namely predicting the fluid flow about ar- 

1 Introduction 
Of great interest over the last two decades has 
been the modeling of aircraft flying in the Mach 
number range of approximately 0.80 to  0.85. This 
speed range typically results in the most favor- 
able cruise performance, whence it is desirable 
to accuratelv Dredict the stabilitv and Dower re- 

- .~ . 
bitrary fuselage/wing combinations (or hull/keel 
for hydrodynamic case). However, it is further 
complicated since it requires finding the a priori 
unknown free surface location as part of the SCP 

lution. The main direction of the present work is 
to accurately compute the free surface location, 
additional work will focus on hull/keel junctures 
inclined at realistic attack angles. 

I .  

quirements over this range, However, this speed The fundamental problem in working with in- 
range also results in the complex and a priori compressible flows, even flows without the com- 
",,known supersonic region Over the wings and plication of a free surface, is the loss of an evolu- 
other surfaces of the fuselage. The necessity of tion equation for density. Since density is con- 
accurately predicting this complex flow field has stant, the time derivative is zero and thus a 
led to much progress in the numerical solution time independent velocity constraint must be im- 
of compressible air flows about arbitrary bodies posed on the momentum equations. In addition, 
in recent years [I]. Unfortunately, the success- if one were to examine the eigenvalues resulting 
ful methods for compressible flow simulation are from the system of conventional hyperbolic Euler 
not normally applicable to  flows with low Mach equations for compressible flows, one would find, 
number. Specifically, in the limit of truly incorn- in the limit of incompressible flow, the waves to 
pressible flow, or Mach number, alternate travel in all directions, infinitely fast. This is 
methods must be used to compute the flow field, so based on physical grounds as well since in- 
Many of these have certain unfavorable compressible flows exhibit infinite sound speeds. 
drawbacks. Thus the purpose of the work de- Thus, the well established methods for comput- 
scribed herein is to present a method, for treating ing compressible flows may not be used for the 
truly incompressible flows, that retains the fa- incompressible case. 

The method used by Hino [2] is characteristic 'Copyright @I1993 by the American Institute 
of Aeronautics and Astronautics, Inc. AH rights of the general approach to solving incompressible 
reserved. flow problems (see also the recent works of Miy- 
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ata et al [3] and Tahara et al [4]). This method 
involves taking the divergence of the momentum 
equation and iterating, implicitly at  each global 
time step, the pressure and velocity fields such 
that continuity is satisfied. The method tends to 
be expensive due to its implicit nature and com- 
plicated due to taking the divergence of momen- 
tum equations in a curvilinear coordinate system. 

In this work, an approach referred to as artifi- 
cial compressibility is adopted. The approach was 
proposed by Chorin [5] in 1967 as a method to 
solve viscous flows. Since then, Flizzi and Eriks- 
son [6] have applied it to rotational inviscid flow, 
Dreyer [7] has applied it to  low speed two di- 
mensional airfoils and Kodama (81 has applied 
it to ship hull forms and propellers with rigid 
free surface. In addition, Turkel 191 has  inves- 
tigated more sophisticated preconditioners than 
the original idea proposed by Chorin. The basic 
idea behind artificial compressibility is to intro- 
duce a pseudotemporal equation for the pressure 
through the continuity equation. This approach 
removes the troublesome sound waves associated 
with compressible flow formulations with small 
Mach number; which is zero in the limit of truly 
incompressible flow. The system waves, or eigen- 
values, are now replaced with a different “ar- 
tificial” set that renders the new set of equa- 
tions well conditioned for numerical computa- 
tion. This arises through the preconditioning ma- 
trix which is the basis for artificial compressibil- 
ity. When combined with multigrid acceleration 
procedures [lo, 11,121 it proves to be particularly 
effective. Converged solutions of incompressible 
flows over three dimensional isolated wings are 
obtained in 25 - 50 cycles. 

The general objective of this work is the devel- 
opment of a more efficient method to predict free 
surface wave phenomena. A new method based 
on a coupling between an artificial compressibil- 
ity, multigrid Euler scheme and a free surface for- 
mulation is presented [13] and comparisons made 
with available experimental data (141. The new 
method is efficient and allows for straight for- 
ward extension to include viscous terms associ- 
ated with Navier-Stokes equations and a turbu- 
lence model. This extension will facilitate the 
simulation of not only free surface wave patterns, 
but the frictional and any induced drag compo- 
nents as well. 

2 Mathematical Model 

u Figure 1 shows the reference frame and ship loca- 
tion with respect to  the same used in this work. A 
right-handed coordinate system Oxyz, with the 
origin fixed at  midship on the mean free surface is 
established. The z direction is positive upwards, 
y is positive towards the starboard side and z is 
positive in the aft direction. The free stream ve- 
locity vector is parallel to the x axis and points in 
the same direction. The ship hull pierces the uni- 
form flow and is held fixed in place, ie. the ship 
is not allowed to sink (translate in z direction) or 
trim (rotate in x - z plane). 

Figure 1: Reference Frame and Ship Location tJ 
For a nonviscous incompressible fluid moving 

under the influence of gravity the continuity and 
Euler equations may be put in the form 121, 

u,+v,+w,=O,  (1) 

ut + uu= i vuy i wuz = -&, 

211 + 212). +VU” + wv, = -&, 

w1+ uw. + vwy + ‘WW, = -+.. 
Here, u = u(z,y,z, t) ,  v = v(z,y,z,t) and w = 
w(x,y,z,t)  are total velocity components in the 
x ,y ,z  directions; all lengths and velocities are 
nondimensionalized by the ship length L and free 
stream velocity U, respectively. The pressure 
$ is the static pressure p with the hydrostatic 
component extracted. This may be expressed as 
J, = p + zFr-’ where FT = ’ is the Froude 

number; pressure is nondimensionalized by pUz. 
This set of equations shall be solved subject to 
the following boundary conditions. 

z 



When the effects of surface tension and vis- 
cosity are neglected, the boundary condition on 
the free surface consists of two equations. The 
first, the dynamic condition, states simply that 
the pressure acting on the free surface is con- 
stant, or equal to atmospheric as is for normal 
ship waves. The second, the kinematic condi- 
tion, states that the free surface is a material 
surface, or in other words, once a fluid particle 
is on the free surface, it forever remains on the 
surface. The dynamic and kinematic boundary 
conditions may be expressed as follows 

W‘ 

p = c a s l a n t ,  

(2) 
dP 
- =  dt w = 01 + 4 + V P ” ,  

where I = p(s ,y , t )  is the free surface loca- 
tion. Equation 2 only permits solutions where 
0 is single valued and thus does not permit 
bow wave breaking phenomena characteristic of 
cruiser type hulls. These types of breaking waves 
are difficult to formulate numericallv and are not 

3 Numerical Solution 
This section presents some details of the proce- 
dure used for the solution of the incompressible 
bulk flow Euler formulation in conjunction with 
a free surface. Basically, the method involves the 
artificial compressibility, finite volume method 
(FVM) for the bulk flow variables (u,u,w and 
$), coupled to a finite difference method for the 
free surface evolution variables (p  and $). Alter- 
native cell-centered and cell-vertex formulations 
may be used in finite volume schemes [lo]. A 
cell-vertex formulation was preferred in this work 
because values of the flow variables are needed 
on the boundary to implement the free surface 
boundary condition. The bulk flow is solved sub- 
ject to Dirichlet conditions for the free surface 
pressure, followed by a free surface update via 
the bulk flow solution (ie. Dirichlet conditions 
on velocities in equation 2). Each formulation is 
explicit and uses local time stepping. Both multi- 
grid and residual averaging techniques are used 
in the bulk flow to accelerate convergence. 

3.1 Bulk Flow Solution considered in this work. 
The remaining boundary conditions consist of 

the ship hull, the boundaries which comprise the Following Chorin [5] and more recently 
symmetry portions of the meridian plane and the Dreyer [7], the governing set of incompressible 
far fie16 conditions of the computational domain. flow equations may be written in vector form as, 
On the ship hull the condition is that of imper- 
meability and is stated simply by 

u 

- + P  -+ -+ -  =o, (3) 
at. aw (;: ;: a,:> 

q . n = unrr + my + wnz = 0, where the vector of dependent variables, w and 
flux vectors, f,  g and h are given by 

where the normal vector n may be assumed to 
point into the flow. On the symmetry plane (that 

derivatives in they  direction as well as the 2) com- 
ponent of velocity are set to zero. The upstream 
plane has u = U and l/r = 0 (p = Z F T - ~ ) ;  all 
other components set to zero. Similar conditions 
hold on the bottom plane which is assumed to The preconditioning matrix p is given by, 
represent infinitely deep water where no distur- 
bances are felt. The starboard plane uses one 

than simply setting them to free stream values. 
A radiation condition must be imposed on the 
outflow domain to allow the wave disturbance to 
pass out of the computational domain. Although 
fairly sophisticated devices may be constructed 
to facilitate the radiation condition (151, in this 
work extrapolations have been found to be suffi- 
cient for reasons discussed later on. 

T 
w =  7 4  u, wl 1 

portion of the (x,z) plane excluding the ship hull) f = [u, u2+l/r, uv, uw] , 
g = [v, vu, v 2 + $ ,  vu]  , 

T 

T 

T h = [w, wu, wv, w2 +$] . 

r 2 o o o  
sided differences to  update flow variables rather 

p = [ #  H 4 
where r2 is called the “artificial compressibility” 
due to the analogy that may be drawn between 
the above equations and the equations of motion 
of a compressible fluid whose equation of state is 
given by, 

2 p = r  p. 
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Thus, p is an artificial density and r may be 
referred to as an artificial sound speed. Note 
that although the equations for momentum are 
in compressible flow form, when temporal deriva- 
tives tend to zero, the set of equations satisfy pre- 
cisely the incompressible Euler equations. This is 
a key point since it indicates how the correct pres- 
sure may be established using the “construct” 
of artificial compressibility, The preconditioning 
matrix P may be viewed as a device to create a 
well posed system of hyperbolic equations that 
are to be integrated to  steady state along lines 
similar to the well established compressible flow 
FVM formulation 1121. In addition, the artifi- 
cial compressibility parameter may be viewed as 
a relaxation parameter for the pressure iteration. 
Note also that temporal derivatives are now de- 
noted by t* to indicate pseudo time; the artifi- 
cial compressibility, as formulated in the present 
work, destroys time accuracy. 

To demonstrate the effect of the precondition- 
ing matrix on the above set of equations and to 
establish the hyperbolicity of the set, equation 3 
may be written in quasilinear form to determine 
the eigenvalues [6]. The eigenvalues are found to 
be, 

x,=u, xz=u, X z = U + a ,  X q = U - a  

u = u <  + v q  + wc 
where 

and 
a2 = u2 + rZ(p + q2 + c2). 

The terms E ,  q and C represent the slopes of the 
characteristic system waves, are arbitrary and de- 
fined (ie. --05 < <,q,C < +a, ). Since the eigen- 
values are clearly real for any value of < >  7 and 
c, the system of equations 3 is guaranteed to be 
hyperbolic. 

What is most important t o  note from the above 
result is that the choice of r is crucial in de- 
termining convergence and stability properties of 
the numerical scheme. Typically the convergence 
rate of the scheme is dictated by the slowest sys- 
tem waves and the stability of the scheme by 
the fastest. Thus it is seen, that in the limit 
of large r the difference in wave speeds can be 
large. Although this would presumably lead to 
a more accurate solution through the “penalty 
effect” in the pressure equation, very small time 
steps would be required to ensure stability. Con- 
versely, for small r, the difference in the maxi- 

mum and minimum wave speeds may be signif- 
icantly reduced, but a t  the expense of accuracy. 
Thus a compromise between the extremes is re- 
quired. Following the work of Dreyer, the choice 
for r was taken to  be, 

u 
r2 = qU2 + v2 + 2) 

where C is a constant of order unity. Whence, 
in regions of high velocity, where low pressure 
and suction occur, r is large to  better enforce 
accuracy. In regions of lower velocity r is corre- 
spondingly reduced. 

Another important point regarding the choice 
of r concerns the outflow boundary condition, 
or radiation condition. In this work, approxi- 
mate nonretlecting boundary conditions were de- 
veloped based on analogous hyperbolic compu- 
tations for supersonic flow. As is well known, if 
it can be demonstrated that all system eigenval- 
ues are not only real, but positive as well, then 
downstream or outflow boundary points may be 
extrapolated from the interior upstream. Exam- 
ination of the eigenvalues presented earlier sug- 
gest that this can never be so, but, the condition 
can be approached by a judicious choice of r. If 
r is large, then extrapolation will not work be- 
cause a downstream dependence exists as well as 
the upstream dependence. As r is reduced, the 
upstream dependence becomes more pronounced 
and the downstream becomes less. As it turns 
out, by taking r as outlined before, the upstream 
dependence is sufficiently dominate to allow ex- 
trapolation. Whence, all outflow variables are 
updated using zero gradient extrapolation. 

Following the general procedures for FVM the 
governing equations may be integrated over an 
arbitrary volume 0. Application of the diver- 
gence theorem on the 0ux term integral yields, 

L/ 

where S,, S, and S, are the directed areas in the 
I, y and z directions, respectively. The compu- 
tational domain is divided into hexahedral cells. 
Application of FVM to each of the computational 
cells results in the following system of ordinary 
differential equations, 

d 
dt’ - ( V i , k w )  + Q i j b  = 0, 

Here, the volume Vi,, is given by the summa- 
tion of the eight cells surrounding node i , j ,k  and 



& ; j k ( w )  is defined as prevent this "unphysical" phenomena from oc- 
cnrrinn. a dissipation term is added to the system -. n of equations such that the system now becomes, 

Q i j k ( w )  = (fS, + gS, + hS,), 
k = 1  d 

dt' - ( v i j k W )  + P [ Q i j k ( W )  - D i j k ( W ) ]  = 0. (4) 

For the present problem a third order background 
dissipation term is added. The dissipative term is 
constructed in such a manner that the conserva- 
tion form of the system of equations is preserved. 
The basic scheme for the dissipation is, 

where the summation is over the IL faces sur- 
rounding X j k .  

In practice, the grid mesh is body fitted and 
hence non-Cartesian. A curvilinear transforma- 
tion, defined by 

E = E h , y , z ) ,  q=q(">Y,z) ,  c =  C ( Z , Y , Z ) ,  
D i j k ( W )  = D. + D, + D z  

D Z i j .  = dW+Lj,. - d Z < , j , .  

(5 )  
is incorporated leading to a modified approach 
to the flux evaluation in the new, transformed where 
space. The new approach becomes 

ai ag ah 
' 3 k -  @ aq a ~ '  

Q . .  - +-+ -  
and 

(6) 
2 

d q j , b  = a & ( w i + i , j , k  - w i , j , k ) ,  

Similar expressions may be written for the y and 
where z directions with 62, 62 and 63 representing sec- 

ond difference central operators. 
In equation 6, the dissipation coefficient a is 

a scaling factor, proportional to the local wave 
meed. The actual form for the coefficient is based 

i =  J{ii.,~iiL+~~$,uii+E~$,wiC+~~$}~ 

g = J{G,uG + qz$,v6 + qu$,w6 + q,$IT 
on the spectral radius of the system and is given h = J {c,uc + cz$, 'U6 + CY'+!'? w6 + C Z ? L l T  ' in the direction as, 

The contravariant velocity components 6 ,  6 and 
6 are given by a = E ( ~ i i l  + r(s2 + si + SY'~) 

ii = utz + uEv + W L  

G = uqz +uqu +wqz 

6=uCz+uCv+wCz 

where J is the Jacobian of the transformation 
and t z ,qz  ... etc. are identified with the grid 
metrics of the transformation. In practice, the 
terms JE., Jq. ... etc., required in the flux terms, 
are identified with the projected areas of each 
cell face. They are computed by taking the cross 
product of the two vectors joining opposite cor- 
ners of each cell face in the Cartesian coordinate 
system. The physical variables required in the 
transformed flux evaluation may he averaged on 
each cell face through the four nodal values ass- 
ciated with each face. 

The above scheme reduces to  a second order ac- 
curate, nondissipative central difference approx- 
imation to  the Euler equations on sufficiently 
smooth Cartesian meshes. A central difference 
scheme permits odd-even decoupling at adjacent 
nodes which may lead to oscillatory solutions. To 

where ii is the contravariant velocity component 
and Sz,Su and S, are the directed face areas. 
Similar dissipation coefficients are used for the y 
and z components in equation 5. The E term is 
used to  manually adjust the amount of dissipa- 
tion and is small, usually around 1/256. 

Equation 4 is integrated in time by an explicit 
multistage scheme. For each bulk flow time step, 
the mesh, and thus K j k ,  is independent of time. 
Hence equation 4 can be written as 

(7) 

where 

The actual time step At is limited by the Courant 
number (CFL). This basically states that the 
fastest waves in the system may not be allowed 
to  propagate farther than the smallest mesh spac- 
ing over the course of a time step. In this work 
local time stepping was used such that regions 
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of large mesh spacing are permitted to have rel- 
atively larger time steps than regions of small 
mesh spacing. Of course the system wave speeds 
vary locally and must be taken into account as 
well. The final, local, time step was thus com- 

where X , j h  is the sum of the spectral radii in the 
x, y and z directions. Clearly, it may be seen that 
in regions of small mesh spacing and/or regions of 
high characteristic wave velocities, the time step 
will be smaller than in other regions. 

The allowable Courant number may be made 
larger by smoothing the residuals at each stage. 
This is done in the following product form in 
three dimensions, 

(1 - e.62)(1 - e,6:)(1- e z 6 z ) R  = R.  

where e=,  cy and ez are smoothing coefficients and 
the 6& are central difference operators. Thus 
each residual is replaced by an average of itself 
and the neighboring residuals. 

An effective method to accelerate convergence 
is the multigrid method. This is accomplished 
through tracking the evolution of the system of 
equations on successively coarser meshes such 
that larger time steps may be used to more 
rapidly reduce the system residuals. Auxiliary 
meshes are introduced by doubling thc mesh 
spacing and values of the flow variables are trans- 
ferred to a coarser grid by the rule, 

where the subscripts denote values of the mesh 
spacing parameter (ie. h i s  the finest grid, 2h, 4h, 
.._ etc. are successively coarser grids). In three 
dimensions the sum is over the eight cells sur- 
rounding any particular mesh point; these eight 
cells then become a new coarse grid cell. A forc- 
ing term is then defined as 

where R is the residual of the difference scheme. 
To update the solution on the coarse grid the 
multistage scheme is reformulated as 

WZh ( I )  = W$) - alAt*(@i + P 2 h )  
... 

( q + ’ )  - - aqA+,*(@ + pZh)  
W2h - W2h ... 

where It(’) is the residual of the qth stage. In the 
first stage, the addition of PZh cancels Rzh(W(’ ) )  

that the evolution on the coarse grid is driven 
by the residual on the fine grid. The result w$) 
now provides the initial data for the next mesh 
w$,) and so on. Once the last grid has has 
been reached the accumulated correction must be 
passed back through successively finer grids. As- 
suming a three grid scheme, let w$:) represent 
the final value of w 4 h .  Then the correction for 
the next finer mesh will be 

and replaces it by E R h ( W h ) ,  with the result W 

where lo,b is an interpolation operator from the 
coarse grid to the next finer grid. The final result 
on the fine mesh is obtained in the same manner, 
ie. 

The process may be performed on any number of 
successively coarser grids. The only restriction in 
the present work being use of a structured grid 
whereby elements of the coarsest mesh do not 
overlap the ship hull. A 3-level “W-cycle” is used 
in the present work for each time step [12]. u 
3.2 Free Surface Solution 
Both a kinematic and dynamic boundary condi- 
tion must be imposed at  the free surface. For the 
fully nonlinear condition, the free surface must 
move with the flow (ie. up and down correspond- 
ing to the wave height and location) and the 
boundary conditions are applied on the distorted 
free surface. The most successful method found 
in this work to couple the free surface and bulk 
flow solvers is described as follows. First, equa- 
tion 2 can be cast in a form more amenable to  nu- 
merical computations by introducing a curvilin- 
ear coordinate system that transforms the curved 
free surface @(I, y) into computational coordi- 
nates @ ( E ,  q ) .  This results in the following trans- 
formed kinematic condition, 

pt. + up, + vp, = w (8) 

where U and V are contravariant velocity com- 
ponents given by 

u = .Q + &, 
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v = u?). +vqv,  
The free surface kinematic equation may now be 

d expressed as 

where Qij(P) consists of the collection of veloc- 
ity and spacial gradient terms which result from 
the discretization of equation 8. Note that this 
is not the result of a volume integration and thus 
the volume (or actually area) term does not a p  
pear in the residual as in the FVM formulation. 
Throughout the interior of the (+,y) plane, all 
derivatives are computed using the second order 
centered difference stencil in computational coor- 
dinates ( and q. On the boundary a second order 
centered stencil is used along the boundary tan- 
gent and a first order one sided difference stencil 
is used in the boundary normal direction. 

As was necessary in the FVM formulation for 
the hulk flow, background dissipation must be 
added to prevent decoupling of the solution. The 
method used to  compute the dissipation terms 
borrows from a two dimensional FVM formula- 
tion and appears as follows: 

Dij = D. + D, 

where 
\u' Dzii = dzi+,,, - dz:,j 

&,,, = a6:(Pi+i,j - Pi,j). 
and 

The expression for a may be written as 

= 4lu<t1,jl + Iui,jl) 
where Ui,j is the unscaled contravariant velocity 
component defined by 

u = uyq - VZ1. 
Hence the system of equations for the free surface 
is expressed as 

dPi j 
dt' - + Rj(P) = 0, 

where 

and Aij is the area of the cells surrounding node 
ij. The same method of update used in equa- 
tions 7 is used here. Once the free surface up- 
date is accomplished the pressure is adjusted on 
the free surface such that, 

$(n+l) = P (nt1)Fr-2, 

R..  - Q . .  - D . . / A . .  
I J  - Z3 '3 I J  

The coupling between the free surface and the 
bulk flow is established by computing a solution 
at a time step for the bulk flow and then using 
the bulk flow as a boundary condition for the free 
surface. The free surface elevation is updated and 
its present values are used as a boundary condi- 
tion for the pressure on the bulk flow. This iter- 
ative process repeats until some measure of con- 
vergence is attained; usually steady state wave 
profile and/or wave resistance coefficient. 

An additional point in the scheme concerns 
tangency of the flow on the free surface. Since the 
free surface is considered a material surface, the 
flow must be tangent. In this work, the flow is al- 
lowed to  leak through the surface while marching 
towards steady state. It is this leakage that, in ef- 
fect, drives the evolution equation. Consider that 
during the iteration, the vertical velocity compc- 
nent w is positive (cf. equation 2 or 8). This 
will, provided other terms are small, force On+' 
to  be greater than P". Thus, when the time step 
is complete $ is adjusted such that $"+I > $" as 
well. Since the free surface has been effectively 
moved farther away from the original datum, or 
undisturbed upstream elevation, and the pressure 
correspondingly increased, then the velocity com- 
ponent w (or better still 4.n where n = fi and 
F = z - P(z, y)) will be reduced. This results in 
a smaller AP for the next time step. The same is 
true for negative velocity as well, ie. mass leak- 
age into the system rather than out. Only when 
steady state has been reached is the mass flux 
through the surface zero and tangency enforced. 
In fact, the residual flux leakage could be used in 
addition to drag components and pressure resid- 
uals to define the steady state condition. 

4 Results for Wigley 
Parabolic Hull 

Figure 2 shows the computed wave profiles, from 
bow to stern along the hull, compared with exper- 
iments conducted a t  the University of Tokyo [14]. 
The agreement with experiment is extremely fa- 
vorable. Amplitudes at all peaks and troughs 
as well as wavelength are in excellent agreement 
with experiment. The only discrepancy noted 
is near the stern where separation and/or eddy 
losses, albeit small, may be present in experi- 
ments. 

Figure 3 shows the computed wave drag as the 



simulation proceeds. The wave drag was com- 
puted by integrating the component of the static 
pressure, in the longitudinal directiozL, over the 
wetted surface of the hull. For each Froude num- 
ber, the computed wave drag overpredicts the ex- 
perimentally determined wave drag by about the 
same amount. This overprediction most likely 
arises from the comparison of viscous experi- 
ments with a purely inviscid numerical scheme. 
There is also the possibility of some error in the 
numerical integration of the pressure field on the 
hull surface; however, this is considered small if 
not negligible. It remains to  incorporate the  vis- 
cous terms and make a more meaningful compar- 
ison of not only the wave drag but the frictional 
drag as well. Aside from the overprediction, the 
computed steady state wave drag follows the gen- 
eral trend predicted by the Michell theory, ie. in- 
terference between bow and stern wakes lead to 
oscillations in a wave drag versus ship velocity 
curve [16]. 

Figures 4 and 5 show perspective views of the 
final distorted grid mesh and the resulting pres- 
sure field (ll) on the hull for Fr = 0.2670. The di- 
vergent and transverse wave systems, originating 
from both bow and stern, are in excellent agree- 
ment with the geometry predicted by thc linear 
Kelvin theory [17], ie. the waves are confined by 
straight line sectors of f19.46 degrees. 

Figures 6 and 7 show convergence history of 
the pressure residual and computed free surface 
Bernoulli constant, for various Froude numbers, 
as the simulation proceeds. The pressure resid- 
ual, Lomputed by taking the root mean square 
of g ,  is important since it affords a measure 
of the error in divergence of mass, or continuity, 
through the first of equatious 3; ie., 

As shown in figure 6, the computed residual is 
small thus implying that equation 1 is closely 
satisfied. It is probably the “leap frog” nature 
of the iterative scheme that prevents the error 
from becoming smaller; the bulk flow solution 
and free surface solution continually adjust each 
other leading to minute changes in free surface 
height (A0 % lo-‘), whence, minute changes in 
A+. The Bernoulli constant B is computed by 
summing all the free surface nodal values of 

and dividing by the number of free surface nodes. 
This represents another measure of convergence 
of the  scheme since it is fairly constant and close 
to the expected value of zero. 

A final comment in regards to convergence and 
accuracy is that the information desired from the 
simulation, usually wave drag, can be obtained in 
approximately 400 multigrid cycles. One can see 
from figures 3, 6 and 7 that the wave drag, pres- 
sure residual and Bernoulli constant change little 
beyond this point. What will change is the con- 
tinuing evolution of the downstream wave profile; 
but this has little effect on the computed drag 
once the profile near the ship hull has been es- 
tablished. The results presented herein use 700 
cycles only to  show the long time convergence 
and stability properties of the scheme. 

I/ 

5 Conclusions 
The objective of the present work was to develop 
an efficient method for solving the incompress- 
ible flow problem, about arbitrary ship hulls, in 
conjunction with a free surface. As mentioned in 
the Introduction, this required two areas of work. 
First, the free surface location must be part of the 
solution since it is unknown Q priori. Secondly, 
the incompressibility constraint must be enforced 
to facilitate calculation of the proper free surface 
location and evaluation of the pressure field on 
the hull. The results for the Wigley hull sug- 
gest that the objective has been reached and the 
resulting computer code has been validated, at 
least for the range of test cases examined. Excel- 
lent agreement between experiment and numer- 
ical simulation has been obtained in regards to 
wave elevation. In addition, the computed wave 
drag, derived from integrating the hull pressure 
field, is in good agreement for the Froude num- 
bers examined. 

Perhaps the most pressing area requiring addi- 
tional work is the inclusion of viscous fluxes and 
a turbulence model. Stemming from the ability 
to compute the frictional drag, this may also fa- 
cilitate more accurate comparisons of the wave 
drag with experimental measurement. A second 
area of work is the simulation of an actual sailing 
yacht with attached keel a t  an angle of attack. 

W 
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Figure 2: Wigley Parabolic Hull Wave Profiles 
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Figure 4: Perspective View of Wave Elevation, Fr=0.2670 
(Wave elevation multiplied three times.) 

Figure 5: Perspective View of Pressure Contours, Fk0.2670 
(Starboard Side) 
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Figure 7 Computed Bernoulli Constant 
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