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Abstract

Following van Leer's MUSCL idea, a numerical scheme
can be regarded as consisting of two key steps: a re-
construction step followed by a gas evolution step. We
present a gas-kinetic method based on the collisional
BGK model which provides an alternative to Riemann
solvers for the gas evolution step. An advanced BGK-
scheme is derived under quite general assumptions on
the initial conditions. The new formulation uses in-
terpolation of the characteristic variables in the recon-
struction step and a BGK-type flow solver in the gas
evolution step. The scheme satisfies both an entropy
condition and a positivity condition, which guarantees
a positive density and temperature at the cell inter-
face during a complete time step. Numerical results
for one-dimensional and two-dimensional test cases are
presented to show the accuracy and robustness of the
proposed approach.

1 Introduction

Based largely on the mathematical foundation laid
among others by Lax[15] and Godunov[6], many high
resolution shock capturing schemes have been developed
in the past twenty years. Most of them attempt to re-
solve wave interactions through upwind biasing of the
discretization, while other methods explicitly introduce
a numerical viscosity in just the amount needed to cap-
ture discontinuities [11]. Although great advances have
been made in the area of spatial discretization, grid gen-
eration and solution strategies, the status of unsteady
compressible flow solvers is far from satisfactory both for
structured and unstructured grids. Since the simulation
of unsteady flows is emerging as an important area of
practical interest, there is a compelling need for schemes
with low dissipation and dispersion errors. The design
principle should be guided by the "dynamics" of the
"computational fluid" which should mimic, as closely as
possible, those of a real fluid [27]. The simulation of
highly compressible flow with strong shock waves and
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extreme expansion waves requires a numerical scheme
which is capable of handling both flow features. BGK-
type schemes mimic the real dynamical process of the
gas and could overcome many of the weaknesses of the
traditional central difference and upwind methods. In
particular, schemes of this class may provide a superior
resolution of both shocks and expansion regions as well
as contact discontinuities.

According to the MUSCL idea [31], a high resolu-
tion scheme usually consists of two parts, the recon-
struction of the initial data and the dynamical evolu-
tion from the constructed data. These two stages can
be regarded respectively as geometrical and dynami-
cal correlations for the gas flow around an artificially
defined cell boundary. Currently available techniques
such as Total Variation Diminishing (TVD), Essentially
Nonoscillation (ENO) and Local Extremum Diminishing
(LED) [7, 8, 11] schemes, which are well understood for
scalar conservation laws, can be used in the reconstruc-
tion stage for systems of equations. In the gas evolution
stage, however, the solution is not necessarily a decreas-
ing function of time and local extrema can be generated
by nonlinear wave interactions.

The development of numerical schemes based on the
gas-kinetic theory started in the 1970s with the beam
scheme [28]. This scheme was widely used in 1970s in
the astrophysical community and is based on the colli-
sionless Boltzmann equation. In the beam scheme the
left and right moving particles generated in each side
from the equilibrium state are allowed to penetrate the
opposite side through a cell interface giving rise to the
numerical fluxes. In the 1980's the beam scheme was re-
invented, modified or extended by many authors, such
as Reitz[25], Pullin[23], Deshpande[3] and Perthame[21].
Pullin was the first to use the complete error function to
obtain the numerical fluxes: his scheme is named Equi-
librium Flux Method (EFM). By applying the Courant-
Isaacson-Reeves (CIR) upwind technique directly to the
collisionless Boltzmann equation, Mandal and Desh-
pande derived a similar scheme, which is named Kinetic
Flux Vector Splitting (KFVS)[20]. Perthame simplified
these schemes by using a square or half dome function as
the equilibrium gas distribution function. By combining
the KFVS scheme with the multidimensional upwinding
techniques developed by several researchers at Univer-
sity of Michigan and von Karman Institute, Eppard and



Grossman formulated several versions of first order mul-
tidimensional gas-kinetic schemes [5].

All these schemes are based on the collisioaless Boltz-
mann equation, which does not account for the dynam-
ical correlations between the left and right states. As
pointed out by Macrossan[18], schemes of this kind have
intrinsically large numerical viscosity and heat conduc-
tivity. In an effort to reduce the artificial viscosity, Xu
and Prendergast in 1991 developed the Total Thermal-
ized Transport (TTT) scheme [33], which is based on
the physical assumption that the left and right moving
beams collapse instantaneously at the cell interface to
form an equilibrium state. The beam scheme and TTT
scheme are two extreme limits describing the real parti-
cle motion. In order to model more accurately the real
physical situation, a scheme called Partial Thermalized
Transport (PTT), which is obtained by using a linear
combination of the beam and the TTT scheme, was also
developed. This hybrid scheme was found to behave
nicely for shock tube simulations. At the same time,
Macrossan and Oliver independently developed the so
called Equilibrium Interface Method (EIM). EIM is sim-
ilar to the TTT scheme and is derived using the same
physical considerations [19]. Recently, a new scheme
based on the TTT and the beam scheme has been de-
veloped by the authors and applied to steady state airfoil
calculations [35].

During the same period, new gas-kinetic schemes
based on the collisional BGK model have been de-
veloped [22, 34, 35] to model the gas evolution pro-
cess more precisely. Schemes of this class are named
BGK-type schemes in order to distinguish them from
other Boltzmann-type schemes based on the collisionless
Boltzmann equation. BGK-type schemes make local use
of the full integral solution of the BGK model. It is then
possible to compute a time-dependent gas distribution
function at the cell interface and to obtain the numer-
ical fluxes. This approach, also, avoids the ambiguity
of adding ad hoc models for particle collisions designed
only to reduce the numerical viscosity which is intrinsic
in any of the Boltzmann-type schemes. Moreover, the
BGK-type schemes give Navier-Stokes solutions which
follow directly from the BGK model, and the gas re-
laxation from a nonequilibrium state to an equilibrium
state is associated with an increase of entropy.

In this paper, we continue our previous work on the
analysis of BGK-type schemes. By modifying some of
the assumptions we develop a more general approxima-
tion of the equilibrium state around a cell boundary.
This increases the robustness and accuracy of the BGK-
type schemes. In section 2, a description of the basic
finite volume gas-kinetic scheme in terms of the recon-
struction and evolution ideas is presented. The section
concludes with some useful and important remarks re-
garding the positivity and multidimensionality proper-
ties of the scheme. Finally, section 3 presents a compre-
hensive summary of numerical results used to validate
the current numerical approach.

2 Finite Volume BGK-Type Schemes

The fundamental task in the construction of a finite-
volume gas-kinetic scheme for compressible flow simula-
tions is to evaluate the time-dependent gas distribution
function / at a cell interface, from which the numerical
fluxes can be computed. In a finite volume gas-kinetic
scheme, the local solution of the gas-kirietic equation is
used to compute the flux at the cell interface. Due to the
intrinsic complexity of the collision integral in the full
Boltzmann equation, simplified gas-kinetic models are
usually used. In our approach the integral solution of
the BGK model is used locally to compute the fluxes at
the cell interface. Hence, it replaces an approximate or
exact Riemann solver (see Fig.(l)). Since a single scalar
distribution function / in the gas-kinetic theory includes
all information about the macroscopic flow variables as
well as their transport coefficients, the schemes in two-
dimensions and three-dimensions can be constructed in
a unified manner.

The BGK relaxation model [1] retains all the features
of the Boltzmann equation which is associated with the
free molecular motion and describes approximately, in
a mean-statistical fashion, the molecular collisions. The
collisional term in the BGK model is the simplest of
all possible structures which reflect the nature of the
particle collision phenomenon. Since in the continuum
regime the behavior of the fluid depends very little on
the nature of individual particles, the most important
properties are: conservation, symmetry and dissipation.
The BGK model satisfies all these requirements [16].

A numerical scheme based on the BGK model is
equivalent to a scheme which approximates the Navier-
Stokes equations [34, 35]. Earlier versions of the BGK-
type schemes were based on the assumptions of a dis-
continuous nonequilibrium distribution /0 and a con-
tinuous equilibrium state g across each cell interface at
the beginning of each time step. Although these earlier
schemes were found to give good results for a number
of standard test cases, these assumptions can be still
modified to improve the accuracy and reliability of the
schemes for complex flows. In this paper we introduce
a scheme which allows for a slope discontinuity in the
equilibrium state g, and also uses characteristic variables
for the reconstruction.

2.1 Reconstruction Stage

Following van Leer's MUSCL idea, the present class of
numerical scheme is composed of an initial reconstruc-
tion stage followed by a dynamical evolution stage. At
the beginning of each time step t = 0, cell averaged
mass, momentum and energy densities are given. For a
higher order scheme, interpolation techniques must be
used to capture the subcell structure. Simple polyno-
mials usually generate spurious oscillations if large gra-
dients in the data are present. The most successful in-
terpolation techniques known so far are based either on
the TVD, ENO or LED principles. These interpolation
techniques can be applied to the conservative, charac-



teristic or primitive flow variables. For example, some
recent upwind schemes use characteristic variables in the
reconstruction stage [8, 29]. Unfortunately, depending
on the particular test case, the numerical results may
be sensitive to the particular set of variables used in the
reconstruction step. In earlier BGK-type schemes, the
reconstruction has been applied directly to the conserva-
tive variables. In this work, we try to take advantage of
the smoothness property of the characteristic variables
by using this particular set in the reconstruction step.

Let Xj = jh (j = 0,1,2,...) be a uniform mesh and
h the mesh size. Let Zj+i = (j + |)/i be the interface
between cells j and j + 1. The cell averaged valuers de-
noted by Uj, and its interpolated value in cell j is Uj(x),
with two pointwise values Uj(xj-i/2) and Uj(xj+i/2) at
the locations Zj-i/a and £,-+1/2- To second order ac-
curacy, the interpolated value in the j-th cell can be
written as
Uj(x) = Uj + L(Uj-t, ..., Ui+t)(x - Xj)

for Zj-l/2 <X <Xj+i/2,

where I is an integer and 21+ 1 is the extent of the stencil
in the reconstruction process, and L is an interpolating
function. For example, the second-order TVD and LED
schemes have I = 1, while second-order ENO scheme has
1 = 2.

For higher order (more than second order) reconstruc-
tions, the interpolating function may be defined recur-
sively. In any case, the value Uj(xj) at cell center is not
necessarily equal to the cell averaged value Uj.

Reconstruction using Characteristic Variables

Let j be a fixed cell with cell averaged mass PJ , momen-
tum Pj and energy ej. The conservative variables are
transformed to the primitive variables

Vj = (PJ,UJ,PJ)T,
where Uj is the velocity and PJ is the pressure. The
sound speed is Cj = i/'jpjTpj- For cell j, we need three-
point stencils for the reconstruction, for which -1 <
I < 1. Set the characteristic variables in neighboring
cell (j + I) as

= LVj+l =

where L is the matrix of left eigenvectors at the state
Vj for the Euler equations. For each components of the
characteristic variables, we get s+ = (w^ — wo)/h and
s- = (w0—w-i)/h as the slopes across the cell interface,
and apply the MUSCL limiter of

L(u, v) = S(u, w)min(-|u w|, 2|u|, 2|w|)

to s+ and s_ to get the limited slope L. Then, for each
component of the characteristic variable in cell j, we
have

- -hL(s+,s-.)

+ -

and

Once the interpolated value is obtained for each char-
acteristic component, the distributions of the primitive
variables in each cell at £j_i/2 and Xj+i/z can be found
from the relation

V = RW,
where the matrix R is

R = -CJ/PJ 0
V c? 0

Finally, the conservative variables

(p j (Xj _ ! /2 ) , Pj (Xj - 1 /2 ) , c j (xj - 1 72 ) ) and

are obtained by the reverse transformation.

2.2 The BGK-Type Flow Solver

The BGK model in one-dimension can be written as

where / is the real gas distribution function and g is the
equilibrium state approached by / . Both / and g are
functions of space x, time t, particle velocity u and in-
ternal degrees of freedom £. The particle collision time
r depends on the local macroscopic flow variables, such
as temperature and density. The equilibrium state is
usually assumed to be a Maxwellian, with the formula-
tion

where p is the density and U is the macroscopic velocity.
In the one-dimensional case, when the particle motion
in y and z direction are included as internal degrees of
freedom [14], the total number of degrees of freedom K
is equal to (5 - 87)7(7 - 1) + 2. The relations between
mass p, momentum P and energy densities e with the
distribution function / are

a = 1,2,3, (2)

where ipa is the vector of moments

^ = (1,U,1(U
2+C2))T,

and dE = dud£ is the volume element in the phase space.
Since mass, momentum and energy are conserved during
particle collisions, / and g must satisfy the conservation
constraint

H = o, a = 1,2,3 (3)

at any point in space and time.
For a local equilibrium state with / = g, the Euler

equations can be obtained by taking the moments of i{>a
to Eq.(l). This yields



and the corresponding Euler equations are

= 0,

where the pressure term is p — p/2A.
On the other hand, to the first order of T, the

Chapman-Enskog expansion[14] gives / = g — r(gt +
ugx). Taking moments of ij)a again to the BGK equa-
tion with the new /, we get

(gtt + 2ugxt + u2gxx)dud£.

After integrating out all the moments, the Navier-Stokes
equations with a dynamic viscous coefficient 77 = rp can
be expressed as

(4)

The general solution of / at the cell interface Xj+i/2
and time t is

from our previous approaches [22, 34, 35, 12]. The de-
pendence of al,ar,...,A on the particle; velocities is ob-
tained from the Taylor expansion of a Maxwellian and
have the form

a' = a{ + af,u + a'3-(u2 + £2) = a'aVa,

ar = a

ar=a[

'a = a

A =

a'2u a'3-(u2

+ A2u + A3-(u2 + = Aaij)a,

where all coefficients of a', a2, ..., ̂ 3 are local constants.
The idea of interpolating f0 separately in the regions
x < Xj+i/2 and x > Xj+i/a originates from the fol-
lowing physical consideration: for a non-equilibrium gas
flow, since the cell size is usually much larger than the
thickness of a discontinuity, the physical quantities can
change dramatically in space. For example, across a
shock front, the upstream and downstream gas distri-
bution functions could be two different Maxwellians.
Therefore, we need a splitting of /o to capture this phys-
ical situation.

In the reconstruction stage described in Section(2.1),
we have obtained pj(x),Pj(x) and lj(x] in each cell
Xj-i/2 < ^ < Xj+i/2- At the cell interface Xj+1/2, the
left and right side pointwise values are

where x' = Xj+i/2 -u(t—t') is the trajectory of a particle
motion and /o is the initial nonequilibrium distribution
function / at the beginning of each time step (t = 0)
[14]. The two values g and /o must be specified in Eq.(5)
in order to obtain the desired solution for /.

Generally, /o and g around the cell interface x,-+1/2
are assumed to be

, _
°

and

9 =

9l (1 + a'(x - x
x (6)

R[x-xj+1/2}ar(x-xj+l/2)+At) (7)

where gl,gr and 50 are local Maxwellian distribution
functions, which are located, respectively, to the left,
to the right and in the middle of a cell interface.
a',ar,a',ar are slopes. H[ar] is the Heaviside function
defined as

, x <0
. x > 0

Notice that in the expansion of g, the possibility of dis-
continuous slopes has been retained. This is different

By using the relation between the gas distribution func-
tion /o and the macroscopic variables (Eq.(2)), we get

r j+ij+i/2
I gripadud£= I Pj+i(xJ+1/2)

(xj+ 1/2)7

(8)

where Ax~ = xj+l/2 - Xj and Ax+ = xj+i - xj+i/-2.
With the definition of the Maxwellian distributions



and from Eq.(8), all parameters in gl and gr can be
uniquely determined from

and

Based on gr in the above equations, the slope of ar can
be obtained from

= (9)

where the matrix Af^ = j? f gr^aipl3dE. From Eq.(9),
(a^a^a^)7 can be readily obtained by observing that
M£p is a symmetric matrix. Thus, we obtain

4Ar

rJJT

,ur2

4Ar " (10)

where

A = APr - UrApr,

Since the matrix Ml
a0 = 4- f g^aippdE has the same

structure of Af^, (a{,ali,al
3)T can be obtained using a

similar procedure.
After determining /0, the corresponding values of

po, UQ and AQ in 30 with

So = Po( —)
7T

can be determined as follows. Taking the limit t -* 0
in Eq.(5) and substituting its solution into Eq.(3), the
conservation constraint at (x = Xj+i/z,t = 0) gives

(11)

E = I fg'ipadE + I fgripadE,
J u>OJ J u<OJ

a — 1 2 3u: — i, i, o.

This equation validates the basic idea of the TTT
scheme. Since AQ can be found from /ju, t/o and CQ
through the relation

we only need to know (PQ,UQ,CO)T, which can be ex-
pressed as moments of gl and gr. By introducing the
notation

.. >>0=
u>0

pr < ... ><0=

from Eq.(ll) one obtains

(...)grdE,

A detailed derivation can be found in the Appendix B.
Then, a' and ar of g in Eq.(7) can be obtained through
the relation of

and

The matrix A?^ = j- f g0ipatppdE has the same struc-
ture of M£p. Therefore, (al,a^a^)T and (a{,al

2,al
3)T

can be found following the procedure used to obtain
Eq.(lO).

Up to this point, we have found two half-Maxwellian
and one whole Maxwellian distribution function at the
cell interface £,-+1/2 and they represent the nonequilib-
rium state /0 and equilibrium state g0. All the slopes in
the expression of al,ar in /0 and al,ar in g are deter-
mined from the slopes of macroscopic variables. Notice
that the construction of two slopes for g proposed in
this paper gives more freedom to describe complicated
flow situations. Notice, also, that for Navier-Stokes so-
lutions, the slopes of a' and ar represent the viscosity
and heat conduction effects [35].

After substituting Eq.(6) and Eq.(7) into Eq.(5), the
final gas distribution function at a cell interface is ex-
pressed as

ug0-l + e~t/T) + te-'/T) (a'H[u] + ar(l -

~i/T ((1 - - utar)(l - p) CIS)

The only unknown term in the above equation is A.
Since both / (Eq.(13)) and g (Eq.(7)) contain A, after

,(12)



applying the conservation constraint of Eq.(3) at £
and integrating it over the whole time step T, we get

which gives

A7°3.40 = — / [7130 + 72" fa'H[u] + ar(l - H[u])) go
Po J

+ 73 (H[u]fl' + (1 - H[u])gr)
+ 74ti(a'H[u]j'+ap(l-H[tt])sP)]^a<i5, (14)

where

70 = T-r(l-e-T/a
71 = -(1 - e-T/r)/7o,

73 = (1 - e-T/T)/7o,

74 = (re-3'/'--T(l-e-T/r))/Td.

All moments of the Maxwellian on the right hand side
of Eq.(14) can be found in Appendix B and the above
equation can be solved for (Ai,A2,A3)T.

Finally, the time-dependent numerical fluxes in the
x-direction across the cell interface can be computed as

where /(«j+i/2, *,u,0 is given in Eq.(13). By inte-
grating the above equation to the whole time step,
we get the total mass, momentum and energy trans-
port. These fluxes satisfy the consistency condition of

, U) = F(U) for a homogeneous uniform flow, where
are the corresponding Euler fluxes.

2.3 Numerical Analysis

One of the obvious improvement in this new version of
the BGK-type schemes is that we have relaxed the origi-
nal assumption of a single continuous slope for the equi-
librium state g across a cell interface, and generalized
the initial conditions for the gas-evolution model. This
significantly increases the robustness of the BGK-type
schemes. The computational cost of the new scheme is
slightly higher than that of the previous schemes due to
additional computations required by the two slopes in
Eq.(7). Nevertheless, in our experience, the CPU time
required by the current approach is comparable to that
of a second order extension of Roe's approximate Rie-
mann solver with entropy fixes.
Remark(l).

The construction of go in term of g1 and gr is a natural
consequence of the solution of the BGK model, which
physically validates the assumptions of the TTT scheme
[33]. This stage is similar to the use of Roe's average to
construct a common state at a cell boundary. However,
in gas-kinetic theory, the equilibrium state is formed

between the loft and right beams due to particle col-
lisions. In a previous paper[35], we have proved that yo
has larger entropy than the original nonequilibrium state
/o- The point that should be emphasized here is that
the density and temperature in Eq.(12), corresponding
to the equilibrium distribution go, could possibly be out-
side the range determined by the left and right states.
For example, the following inequalities could be true un-
der some conditions:

po ',pr) ; AQ < min(A',A r).

One example is that of two shocks collapsing to form
a stronger shock around the cell interface with larger
density and higher temperature. Or, two rarefaction
waves at the left and right sides of a cell interface which
create a lower density region at the center.

Thus, in the dynamical stage, the maximum or mini-
mum of density and temperature could be increased or
decreased, and our construction of go is capable of cap-
turing these phenomena.
Remark(2).

As derived in Eq.(4), the BGK model converges to
the Navier-Stokes equations in its second order approx-
imation. Also, as we know [35], the viscous fluxes are
related to the linear slope of g at the cell interface, and
the BGK-type schemes give the Navier-Stokes equations
with dynamical viscosity 77 = rp and Prandtl number
Pr = 1 in smooth regions. The smooth regions could
include the boundary or shock layers if the grid size
is small enough to resolve these layers [34]. For Euler
calculations, the final gas distribution function can be
much simplified [36].
Remark(3).

In contrast to the Riemann solver, the BGK-type
schemes provide an advanced gas evolution model. From
Eq.(12), we know that g0 has positive density and tem-
perature if g1 and gr obtained in the reconstruction stage
are physical states with positive density and tempera-
ture. Then, go > 0 is satisfied, which means that all par-
ticles have positive probability. If we ignore all slopes in
the BGK-type schemes, the distribution function / at
the cell interface can be written as

Since go > 0,fo > 0 and e~^r < 1, / is strictly posi-
tive with / > 0. Therefore, / has positive density and
temperature due to the following relations

This is a positivity condition for the BGK-type schemes.
Roe's approximate Riemann solver cannot guarantee
that the solutions of the flow variables at the cell in-
terface satisfy a positivity condition [4, 2G]. Thus, it
appears that the BGK-type schemes provide more real-
istic solutions.
Remark(4).

From gas-kinetic theory, the collision time should de-
pend on macroscopic flow variables, such as density and



temperature. For BGK-type numerical schemes, the col-
lision time T is composed of two parts

T =
Po

where T is the time step, C\ is chosen according to the
Reynolds number and 62 is of order 1 for most cases.
The two terms in the collision time are equivalent to a
physical and a numerical viscosity. In most cases, the
mesh size is not small enough to resolve the disconti-
nuities. Therefore, we have to regard the thickness of
the discontinuity as being, at least, as large as a few
cell sizes, and additional viscosity is necessary to satisfy
this requirement. For all Euler test cases, the results
are not very sensitive to the values of C\ and Ca, and
Ci is usually of the order of 10~2 if Aa; = 1. The ad-
ditional term in the collision time can be regarded as
a limiter imposed in the time domain in the dynami-
cal stage, which is similar to the conventional limiter
imposed in the space domain during the reconstruction
stage when the order of space accuracy is more than
first order. Therefore, the concept of limiter should be
extended to both space and time if a numerical scheme
couples them and has uniformly high order accuracy.
One advantage of the BGK-type scheme is that an ex-
plicit expression for the total viscosity can be computed.
This avoids the ambiguity of implicit viscosities in most
upwind schemes.
Remark(5).

In an earlier paper [35], we have illustrated the en-
tropy condition for BGK-type schemes. Here one point
should be emphasized: the BGK model itself satisfies
the entropy condition (dissipative property) [14]. This
is in contrast with the Euler equations, where the en-
tropy condition has to be additionally added. Thus, if a
scheme uses the BGK model correctly there would not
be any mechanism to create unphysical phenomena such
as expansion shocks.
Remark(6). For two dimensional flow, the linearized
form of the Navier-Stokes equations is

Wt + AWX BWy = S.

It is well known that the difficulties in the development
of multidimensional upwind schemes for the Navier-
Stokes equations is due to the fact that the matrices
A and B do not commute: [A, B] = AB - BA ^ 0.
Physically, it means that an infinite number of waves
are present in the flow. Therefore, the necessity of wave
modeling follows.

However, for the BGK model

ft + ufx + vfy = (g- f ) / r ,

the particle velocities are independent variables and this
difficulty is eliminated.

Thus, in the BGK-type schemes we can consider all
particles in all directions. Theoretically, there is not
any obvious obstacle to a multidimensional BGK-type
scheme provided that a truly "multidimensional" initial
reconstruction is developed.

Remark(7). If higher order terms are included in the
expansion of /o and g, i.e.

g = go(l +ax + 6x2 + Bxt + At + Ct2),

the BGK model can be still solved numerically using the
generalized conservation constraints

Qm+n

cndtm

3 Numerical Experiments

The new numerical scheme has been applied to sev-
eral test cases ranging from a simple advection-diffusion
equation to hypersonic flow computations. Unless oth-
erwise stated, in all of the numerical examples reported,
7 = 1.4, and the MUSCL limiter is used.
Case(l) Advection-Diffusion Equation

A previous study of the BGK-type flux function for
the advection equation has shown an interesting algo-
rithmic structure([12]). In particular, it turns out that
the numerical fluxes can be regarded as a nonlinear
time-dependent combination of the Lax-Wendroff type
schemes with the Kinetic Flux Vector Splitting. Details
of the numerical discretization of the BGK-type scheme
for the linear advection-diffusion equation are presented
in Appendix A. In order to compare the results obtained
with our BGK-type scheme with others in the litera-
ture, ENO interpolation is employed in the reconstruc-
tion stage. Fig.(2)-Fig.(3) show the computed results
of a decaying sinusoidal wave after one period(i = 2.0)
corresponding to Reynolds numbers Re(= cL/v) of 400,
2000, respectively. The computations use 40 cells, and
a CFL number of 0.1. A comparison with the results of
Chiu and Zhong [2] reveals that our results obtained
with higher order (more than second order) are almost
indistinguishable from those reported in the literature.
However, first order and second order results obtained
with the BGK-type schemes are much better. A grid
refinement study using a second order MUSCL limiter
also verifies excellent convergence characteristics of the
scheme. Fig.(4)-Fig.(5) show that the numerical results
obtained with more than 80 cells practically collapse
onto the exact solution.
Case(2) Shock Tube Problems

Two standard shock tube problems are chosen. The
Sod case is a Riemann problem for the one dimensional
Euler equations and is taken from reference [30]. The
density distribution computed using 100 cells is shown
in Fig. (6) and compared with the exact solution which
is plotted as a solid line. The Lax-Harten case is also a
Riemann problem for the Euler equations [29]. The den-
sity distribution computed using 100 cells is shown in
Fig. (7). The accuracy of the computed results are com-
parable to that obtained with higher order ENO schemes
by other authors [8, 29], although a MUSCL limiter is
used in the reconstruction step of the BGK-type scheme.
Case(3) Blast Wave Problem

The blast wave problem, first proposed by Woodward
and Colella [32], requires the computation of a head-on



collision between two blast waves and the resulting se-
ries of shocks and contact discontinuities. The density
distribution computed with the MUSCL limiter and the
BGK flux function using 400 cells is shown by the sym-
bols in Fig. (8). The solid line is obtained with the same
scheme and 800 cells. From the results, we can see that
the shock and contact discontinuity waves are well re-
solved.

It is well known that several existing schemes, such as
the PPM method, need to be augmented by a steepening
technique in order to improve the accuracy of the results
for this test case. Thus, we have also investigated the
use of steepening techniques in the reconstruction stage
of the BGK-type method. The density distribution com-
puted using 400 cells and Huynh's third-order interpola-
tion scheme with sharpening of the contact discontinu-
ity coupled with our BGK-type flow solver is shown in
Fig.(9). This result, which was obtained using a K = 10
[10], compares extremely well with the solid line which
is again the fine grid solution of Fig. (8). However, as in
the case with other schemes, it is observed that steep-
ening techniques reduce the robustness of our numerical
method.
Case(4) Shu-Osher Problem

The Shu-Osher test case requires the calculation of a
moving shock at Mach number 3 interacting with sine
waves. As observed by the Shu and Osher[29], MUSCL
type TVD schemes produce very smeared results for
the density distributions. Fig.(lO) and Fig.(ll) show
the density distributions computed on a mesh with 400
cells using the BGK solver coupled, respectively, with a
MUSCL and a 4th-order ENO [8] interpolation of the
pointwise values at the cell interface. The results con-
firm that an accurate calculation of this test case re-
quires higher order reconstructions.
Case(5) Forward Facing Step with Mach 3

The forward-facing step test is carried out on a uni-
form mesh with 240 x 80 cells. The computed density
and pressure distributions are presented in Fig.(12). No-
tice that the BGK-type scheme does not require any
special treatment at the corner, and does not produce
any expansion shocks at the corner.
Case(6) Double Mach Reflection

The double Mach reflection problem is calculated on a
computational domain with 360 x 120 cells. The problem
is set up by driving a strong shock down a tube which
contains a wedge. The computed density and pressure
distributions after the collision between the shock and
the wedge are shown on Fig. (13). The carbuncle phe-
nomenon reported in reference [13] was never observed
with our BGK-type scheme.
Case(7) An Impulsively Started Cylinder

Strong shocks, and expansions as well as subsonic flow
regions are present in both steady and unsteady hyper-
sonic flows induced by the impulsive start of a cylinder.
A monotonic numerical scheme is needed to capture,
crisply and without spurious oscillations, the abrupt
change of flow variables across a shock wave. Moreover,
a numerical scheme should be capable of maintaining
positivity of the flow variables, to avoid the occurrence

of unphysical negative values for quantities such as pres-
sure and/or temperature in regions of low density and
low temperatures created by extreme expansions. In the
present paper initial Mach numbers of M = 2.5,3.5 were
chosen as test cases of hypersonic flows which present all
the flow features discussed above. This problem imposes
a particular difficulty not only for unsteady but also for
steady flow computations because the very high expan-
sion in the rear part of cylinder produces a vacuum-like
low pressure and low density region.

If the kinetic energy is so large that the difference
between the total energy and the kinetic energy is in
the range of round off error, one should limit the lower
bound of the difference with the order of round-off to
avoid meaningless computations. This problem is solely
caused by the finite precision of the hardware and not
by the numerical scheme. The round-off error is usu-
ally of the order O(10~12) ~ O(10-16). The present
computations were performed using a Silicon Graphics
INDIGO 2 workstation with an observed round-off error
of order O(10~18). Thus a lower bound of 10~16 was se-
lected. Several numerical schemes described in reference
[13] have been applied to this problem.

All of the schemes have severe difficulties in maintain-
ing positive pressure and/or density, and generally need
ad hoc fixes. Most of the second order schemes simply
fail. Our BGK-type scheme, however, does not seem to
have particular difficulties in preserving positivity dur-
ing the whole time integration. This finding is verified
for both first and second order schemes.

Two different grids with 90 x 25, and 180 x 50 cells
were used. The coarse grid is shown in Fig.(14). The
grid distribution is uniform in the angular direction
(90 or 180 cells) while the cells in the radial direction
grid(25 or 50 cells) are slightly clustered to the surface.
The ratio of inner radius to outer radius is 10, and all
the calculations were carried out using a CFL of 0.5.
Fig.(15) and Fig.(16) show the computed density, pres-
sure and Mach number distributions along the symme-
try line and the upper surface of the cylinder at times
of T = 6.0,7.0,8.0 corresponding to a free stream Mach
number of M = 2.5,3.5 respectively. It can be seen that
the results at three different times practically collapse to
a single curve. This indicates that the computed results
at T = 6.0 have reached a steady state. Fig. (17) and
Fig. (18) show the density, pressure and Mach number
distributions at T = 6.0. Notice that the bow shock
wave is captured with two interior points. Also, on the
finer grid, the shock profile is sharper and the expansion
in the rear part of cylinder is more extreme, leading to
a higher Mach number. Our results show a much higher
Mach number than the result of [17] even on a coarser
grid. This again indicates that BGK-type schemes may
yield a less diffusive solution with a consequent higher
accuracy.

Fig. (19) and Fig. (20) show the density, pressure and
Mach contours for M = 2.5, 3.5. Forty contour levels,
equally spaced from the maximum and minimum values,
are used. Both the bow shock, and the V-shape shock
induced from the expansion are captured very well with



a relatively coarse grid.

4 Conclusion

Both the initial reconstruction stage and the gas evo-
lution stage can affect the accuracy and robustness of
a numerical scheme. While the reconstruction step is
mainly a numerical artifact, the dynamical evolution
step should model the physics of the flow as accurately
as possible. The BGK-type schemes provide an alter-
native and advanced gas evolution model, which has
many advantages over Godunov-type schemes. The ini-
tial condition in the reconstruction step is more flex-
ible and the final gas distribution function yields the
Navier-Stokes equations. The physical evolution for the
BGK-type schemes is based on the simple fact that a
nonequilibrium state will approach an equilibrium state
in both space and time due to particle collisions. This
process is accompanied by an increase of entropy. Also,
the BGK-type schemes eliminate some of the difficulties
encountered by multidimensional upwind schemes and
satisfy the positivity condition. Following earlier papers
[22, 34, 35, 12, 36], the present paper shows the pro-
gressive development of the BGK-type schemes. The
comprehensive numerical results presented in this paper
validate both the physical and numerical considerations
used in the development, and indicate the level of ma-
turity reached by this class of schemes.
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Appendix A
Linear Advection-Diffusion Equation

Substituting the above equation into the BGK model
and integrating it in the particle velocity space, the cor-
responding advection-diffusion equation can be obtained

The linear advection-diffusion
one-dimension is written as

Ut + cUx = vUxx,

equation in

where v is the viscosity coefficient. The above equation
can be derived from the BGK model

The 4£/t-order derivative in the above equation has the
very nice property of stabilizing the numerical scheme
[9]. Thus, if we take r = 2j/A, the advection-diffusion
equation is recovered from the BGK model.

The numerical scheme for the linear advection-
diffusion equation can be obtained from the scheme pre-
sented in this paper by following several simplifications:
1. Make the number of the internal degrees of freedom
K = 0.
2. Only keep the first moment of i/>a with i/> = 1.
3. Both / and g have the same A, which is chosen ini-
tially, for example A — I. The collision time T is deter-
mined afterwards by T = 2Xv, where v is known.

Appendix B
Moments of the Maxwellian Distribution
Function

In the gas-kinetic scheme, we need to evaluate moments
of the Maxwellian distribution function with bounded
and unbounded integration limits. Here, we list some
general formulas.

Firstly, we assume that the Maxwellian distribution
for one dimensional flow is

where £ has K degrees of freedom. Then, by introducing
the following notation for the moments of g,

p < ... >= j(...}gdud£,

the general moment formula becomes

where n is an integer, and I is an even integer(owing to
the symmetrical property of £). The moments of < £' >
are:

,.« / K- *.

assuming that

together with the conservation constraint

\f - g}d= = 0.

The second order expansion of the BGK model gives

MA2 4A2

The values of < un > depend on the integration limits.
If the limits are —oo to +00, we have

< u° >= 1

n+l



When the integral is from 0 to +00 as < ... >>0 or from
— oo to 0 as < ... ><o, the error function and the com-
plementary error function, appear in the formulation.
Thus, the moments for u" in the half space are,

< u° >>0 = ierfc(-v/A[/)

<u>>0 =

>>0=

Similarly,
= ierfc(>/AI7)

0-Al/2

<u><0 =

><0= U n+1
2A
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FLi/2,j {Interface flux determined by the BGK solver

Figure 1: Interface fluxes by a finite volume gas-
kinetic scheme
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Figure 3: Advection-Diffusion Case with ENO Lim-
iter and BGK Solver ( Re = 2000 )
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Figure 2: Advection-Diffusion Case with ENO Lim- Figure 4: Advection-Diffusion Case with MUSCL
iter and BGK Solver ( Re = 400 ) limiter and BGK Solver (Re = 400)
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Figure 5: Advection-DifFusion Case with MUSCL Figure 7: Lax-Harten case with MUSCL limiter
limiter and BGK Solver (Re = 2000) and BGK Solver (100 cells)
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Figure 6: Sod case with MUSCL limiter and BGK Figure 8: Blast-Wave case with MUSCL limiter and
Solver (100 cells) BGK Solver (400 cells)
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Figure 9: Blast-Wave case with Huynh's limiter
and BGK Solver (400 cells)

Figure 11: Shu-Osher case with 4th-order ENO
Limiter and BGK Solver
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Figure 10: Shu-Osher case with MUSCL limiter
and BGK Solver (400 cells) Figure 12: Density and Pressure Distributions from

the Splitting BGK-type Scheme with MUSCL lim-
iter
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Figure 13: Density and Pressure Distributions from
the Splitting BGK-type Scheme with MUSCL Lim-
iter

Figure 14: Grid Distribution around the Cylinder
(90 x 25 cells)
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Figure 15: Density, Pressure and Mach Number
Distributions for M = 2.5
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Figure 16: Density, Pressure and Mach Number
Distributions for M = 3.5 Figure 17: Grid Refinement Study for A/ = 2.5
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19a: Density Contours
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Figure 18: Grid Refinement Study for M - 3.5 19b: Pressure Contours
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19c: Mach Number Contours

Figure 19: Density, Pressure and Mach Contours
for M = 2.5
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20a: Density Contours
20c: Mach Number Contours

Figure 20: Density, Pressure and Macli Contours
for M = 3.5

18


