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In a previous paper (Part VI), the impact of spatially varying density on the localization of deformation of
granular materials has been quantified using mesoscopic representations of stresses and deformation. In
the present paper, we extend the formulation to unsaturated porous media and investigate the effect of
spatially varying degree of saturation on triggering a shear band in granular materials. Variational formu-
lations are presented for porous solids whose voids are filled with liquid and gas. Two critical state for-
mulations are used to characterize the solid constitutive response: one developed for clay and another for
sand. Stabilized low-order mixed finite elements are used to solve the fully coupled solid-deformation/
fluid-flow problem. For the first time, we present the consistent derivative of the effective stress tensor
with respect to capillary pressure considering full coupling of solid deformation with fluid flow, which is
essential for achieving an optimal convergence rate of Newton iteration.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A class of problems that has attracted considerable attention in
computational solid mechanics involves very large deformation
occurring over a very narrow zone. Deformation bands are narrow
zones of intense shear, compaction, and/or dilation; the displace-
ment field is continuous but the strain field exhibits a discontinuity
[15,16]. Material and/or geometric imperfection is known to be a
common trigger of deformation bands [8,9]. In the past, arbitrary
imperfections in the form of weak elements have been used in fi-
nite element simulations to trigger strain localization because of
the uncertainties in quantifying actual specimen imperfections.
However, advances in nondestructive, noninvasive imaging tech-
niques have now allowed for more accurate quantification of the
spatial variation of density in a specimen of granular materials. It
is well known that the strength and stiffness of a granular material
correlate very well with density, so knowing the spatial variation
of density allows the spatial inhomogeneities within a specimen
to be prescribed deterministically. Density within a specimen is a
continuum variable associated with the so-called ‘mesoscopic’
scale, a scale larger than the grains but smaller than the specimen
(see [7] for a detailed description of the macro, meso, and grain
scales). A mesoscopic characterization of inhomogeneity in a
specimen, be it in the form of density or some other continuum
variables, is the point of view taken in this paper.

Apart from density, the degree of saturation representing the
amount of water present in the pores of a material is another mes-
oscopic continuum variable that can potentially serve as an imper-
fection triggering strain localization. Conventionally denoted by
the symbol Sr , the degree of saturation is known to influence the
strength and permeability of a porous material such as soil. Typi-
cally, the degree of saturation is determined in the laboratory by
taking the weight of a sample before and after drying, but this
technique is destructive and can only describe an average value
for the entire specimen but not the spatial mesoscopic distribution
within the specimen. More recently, it has been shown that, like
density, the degree of saturation can also be quantified nonde-
structively through imaging techniques along with digital image
processing to allow deterministic characterization of its distribu-
tion within the specimen. Such finer-scale measurements of degree
of saturation are critical for the mesoscale modeling technique
advocated in this paper.

As a brief literature review, a variety of nondestructive, nonin-
vasive laboratory techniques are currently utilized for the mea-
surement of liquid saturation in porous media. They include
gamma ray or conventional X-ray attenuation techniques [71]. In
principle, these techniques exploit differences in the absorbance
of electromagnetic energy between the liquid, gas and solid phases.
Recently, synchrotron X-ray measurements have been developed
as a reliable method for measuring phase saturation during multi-
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phase transient flow [33,39,62,72]. The technique allows measure-
ments with short counting time, but only regions less than 0.5 cm2

can be characterized at a given time [32]. Image analysis methods
have been valuable alternative tools in measuring transient phe-
nomena in the entire flow domain. They have been used in misci-
ble and immiscible experiments where various parameters linked
to reflected light intensity recorded onto color or black and white
photographs, and subsequently digitally scanned to be computer-
processed, have been correlated to species concentration or liquid
saturation [1,44,65,66,74].

Very recently, Yoshimoto et al. [78] proposed a method to
directly measure the degree of saturation on a region by noting
the variation in color of the ground with changes in the moisture
content of the soil. They showed that the relation between degree
of saturation and luminance value can be expressed in terms of a
quadratic correlation function. With this method, contours of de-
gree of saturation can be generated, making it possible to visualize
the propagation of the saturated region (see Fig. 1). The idea is sim-
ilar to the technique proposed by Darnault et al. [32], which is a
variation of the method by Glass et al. [43] for air–water systems
that uses light transmission method (LTM) to allow full field mois-
ture content visualization in soil–oil–water systems. By appropri-
ately coloring the water, they found the hue of the transmitted
light to be directly related to the water content within the porous
medium. To obtain the calibration curve between the hue value
and oil–water content, they constructed a two-dimensional cali-
bration chamber consisting of compartments with known quanti-
ties of oil and water, from which they concluded that a unique
relationship exists between the hue and water content.

Kechavarzi et al. [49] developed a multispectral image analysis
technique to determine dynamic distributions of non-aqueous
phase liquids (NAPL), water, and air saturations in two-dimen-
sional three-fluid phase laboratory experiments. They showed that
the optical density for the reflected luminous intensity is a linear
function of the NAPL and the water saturation for each spectral
band and for any two- and three-fluid phase systems. This method
was used to obtain a continuous, quantitative and dynamic full
field mapping of the NAPL saturation as well as the variation of
the water and the air saturation during NAPL flow. To summarize,
a variety of nondestructive, noninvasive techniques for quantifying
the spatial variation of degree of saturation are currently available,
Fig. 1. Contour of degree of saturation as a function of time for Toyoura sand with impo
10 cm�10 cm. Color bar indicates an error within 10% as indicated by the value Sr ¼ 11
in addition to similar techniques for quantifying the spatial varia-
tion of density (see [7,31,60] for a survey of the latter techniques).

This paper focuses on the degree of saturation as a trigger to
strain localization in granular materials. As the water content of
a porous medium increases, the apparent preconsolidation pres-
sure decreases [38,54,58]. This implies that increasing the water
content unevenly could induce nonuniform yielding in the mate-
rial even without a change in the external load. We expect regions
with a higher degree of saturation as likely hotspots for early yield-
ing and for early onset of localized deformation. However, the
degree of saturation is not the only possible source of material
imperfection. As noted earlier, a spatially varying density could
also be an important trigger of strain localization. In fact, it has
been observed from previous numerical simulations and experi-
ments that regions of high porosity are also likely hotspots for
localized deformation in granular materials [3,7,11]. Given that
degree of saturation and density are two independent state
variables, they serve as independent sources of imperfection
triggering strain localization in granular materials.

Density describes the state of the solid phase, whereas degree of
saturation is a fluid state variable. Interaction between these two
sources of material imperfection requires a fully coupled hydrome-
chanical formulation [8,9,26,27,36,47,56,73,76,79]. We present a
variational formulation for fully coupled solid deformation-fluid
flow in unsaturated porous media for deformation and strain local-
ization analyses. Important contributions of this paper include
casting a nonstandard critical state model for sand [2,11,48] within
the framework of the hydromechanical continuum theory, and an
implicit implementation of the variational equations in the frame-
work of mixed finite element formulation. We remark that conven-
tional critical state plasticity models, including the modified Cam-
Clay model [14,20–22,63], cannot represent density imperfection
since these models uniquely determine the void ratio from the crit-
ical state line and the current state of stress. A nonconventional
critical state model that uses density as a principal state variable
is the ‘Nor-Sand’ model [48]. We use this model to ‘uncouple’ the
void ratio from the critical state line, allowing a spatially varying
density to be specified independent of the state of stress. We show
how the computational framework presented in this paper accom-
modates spatially varying density and degree of saturation
simultaneously.
sed fluid head of 2 cm on top and drained at the bottom. Each box with 25 cells is
0%, which is 10% in excess of the theoretical maximum value. After Reference [78].
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The scope of the paper is limited to the triggering of a persistent
shear band in variably saturated porous media. Once a persistent
shear band has been identified, post-localization enhancements,
either through the assumed enhanced strain or extended finite ele-
ment methods, can be employed to capture the evolution of the
identified shear band at post-failure condition [18,19,26,51–
53,61]. We also limit the paper to a deterministic representation
of the spatial variability of density and degree of saturation, which
we assume can be measured and quantified in the laboratory. The
formulation advanced in the paper can be used to provide a mech-
anistic underpinning for any uncertainty or probabilistic model,
although such application is beyond the scope of the paper (see
[2,29,68,70] for a sampling of stochastic simulations in
geomechanics).

2. Variational formulation

We consider a mixture of solid matrix with continuous voids
filled with water and air. The total volume of the mixture is
V ¼ V s þ Vw þ Va and the total mass is M ¼ Ms þMw þMa, where
Ma ¼ qaVa for a = solid, water, and air; and qa is the true mass den-
sity of the a constituent. The volume fraction occupied by the a
constituent is given by /a ¼ Va=V , so that

/s þ /w þ /a ¼ 1: ð1Þ

The partial mass density of the a constituent is given by qa ¼ /aqa,
where qa is the intrinsic mass density of the a constituent. This
gives

qs þ qw þ qa ¼ q; ð2Þ

where q ¼ M=V is the total mass density of the mixture.
We define void fractions Sr and 1� Sr representing the portions

of void occupied by water and air, respectively. The void fractions
are related to the volume fractions through the equations

Sr ¼
/w

1� /s ; 1� Sr ¼
/a

1� /s : ð3Þ

The void fraction Sr is called the degree of saturation and is used in
the effective stress equation [10,12]

r ¼ �r� Bp�1; p� ¼ Srpþ ð1� SrÞpa; ð4Þ

where r and �r are the total and effective Cauchy stress tensors,
respectively, p and pa are the pore water and pore air pressures, 1
is the second-order identity tensor, and B is the Biot coefficient.
For soils, B ¼ 1 is a reasonable approximation. In this paper, we as-
sume that pa ¼ 0 (atmospheric pressure), and that the process is
isothermal (see [35,55], for example, on how to include thermal
effects).

We consider a partially saturated mixture in domain B with
boundary @B ¼ @Bu [ @Bt, where @Bu and @Bt are nonintersecting
portions of the total boundary @B on which the solid displace-
ments and total tractions, respectively, are prescribed. Ignoring
inertia loads (see Uzuoka and Borja [73] for a formulation with
inertia load), the momentum conservation equation along with rel-
evant boundary conditions can be stated as follows. Find u and p
such that

$ � ð�r� Srp1Þ þ qg ¼ 0 in B; ð5Þ

subject to boundary conditions

u ¼ bu on @Bu and n � r ¼ bt on @Bt ; ð6Þ

where g is the gravity acceleration vector, n is the outward unit nor-
mal vector to the boundary, and bu and bt are given space and time
functions.
We next decompose the same boundary into @B ¼ @Bp [ @Bq,
where @Bp and @Bq are nonintersecting portions of the total
boundary @B on which the pore water pressure and fluid flux,
respectively, are prescribed. The mass conservation equations for
water along with relevant fluid flow boundary conditions can be
stated as follows. Find u and p such that

ð1� /sÞ _Sr þ
/w

Kw
_pþ Sr$ � v ¼ �

1
qw

$ �w; ð7Þ

subject to pressure p̂ and flux bq boundary conditions

p ¼ p̂ on @Bp and n � ð/w ev Þ ¼ �bq on @Bq; ð8Þ

where v ¼ _u is the velocity of the solid; w is the Eulerian relative
water flow vector given by

w ¼ qw/w ev ; ev ¼ vw � v ð9Þ

is the relative velocity of water with respect to the solid, Kw is the
bulk modulus of water, and the superimposed dot denotes a mate-
rial time derivative following the motion of the solid. We assume
that water is incompressible and ignore the second term on the
left-hand side of (7) for simplicity, and set qw = constant. The prod-
uct term /w ev � v is known as Darcy velocity.

Relevant constitutive laws motivate the u=p formulation
implied above. Take, for example, the degree of saturation Sr that
is related to the suction stress �p through the water retention
curve, Darcy velocity v that is related to the pressure gradient $p
via Darcy’s law, and the effective Cauchy stress tensor �r that is re-
lated to the infinitesimal strain rate tensor $sv � ð$v þ v$Þ=2 and
(indirectly) to the suction stress�p through an elastoplastic consti-
tutive law. The independent variables then boil down to u and p. In
the following section we consider two critical-state constitutive
laws, one typically associated with clays and the other with sands,
and cast both of them within the framework of the u=p formulation.

The variational equation for linear momentum balance takes the
formZ
B

$sx : ð�r� Srp1ÞdV ¼
Z
B

x � qg dV þ
Z
@Bt

x � bt dA; ð10Þ

where x is the vector of displacement variation such that xi 2 H1

and xi ¼ 0 on @Bui
, and $s denotes the symmetric component of

the gradient operator. Similarly, the variational equation for fluid
flow can be written asZ
B

hSr$ � v dV þ
Z
B

hð1� /sÞ _Sr dV �
Z
B

$h � v dV

¼
Z
@Bq

hbq dA; ð11Þ

where h is the pressure variation such that h 2 H1 and h ¼ 0 on @Bp.
We can integrate them in time to obtain the discrete evolutions of u
and p. In so doing, we assume that un and pn are known at time tn

and we want to determine u and p at time t ¼ tn þ Dt (the usual
subscript ‘nþ 1’ is dropped for brevity). Eq. (10) is an elliptic equa-
tion for which time integration is straightforward,

L ¼
Z
B

$sx : ð�r� Srp1ÞdV �
Z
B

x � qg dV �
Z
@Bt

x � bt dA; ð12Þ

where all of the variables are assumed to be evaluated at time t. The
conservation of momentum is then given simply by the condition
L ¼ 0. However, Eq. (11) is a nonlinear first-order equation for
which the generalized trapezoidal time-integration method would
prove challenging to implement.

Consider the time integration of (11) by the one-parameter gen-
eralized trapezoidal method such that the time integration param-
eter is b ¼ 1 for backward implicit and b ¼ 0 for forward Euler. The
integrated variational equation takes the form
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fM ¼ Dt
Z
B

hfnþb dV þ
Z
B

hð1� /sÞðSr � Sr;nÞdV

� Dt
Z
B

$h � vnþb dV � Dt
Z
@Bq

hbqnþb dA; ð13Þ

where

fnþb ¼ bSr$ � _uþ ð1� bÞSr;n$ � _un

vnþb ¼ bv þ ð1� bÞvn ð14Þbqnþb ¼ bbq þ ð1� bÞbqn: ð15Þ

We assume that the change in /s is small, since in variably satu-
rated porous media the contribution of the change in porosity to
storage properties is not as significant as the change in degree of
saturation [25]. Given that Sr and v vary nonlinearly with p, any
method other than b ¼ 1 would be difficult to implement, see [28].

Motivated by the return mapping algorithm that employs the
standard backward implicit scheme for stress-point integration,
we take b ¼ 1 and write the conservation of water mass as

M ¼
Z
B

hSr$ � ðu� unÞdV þ
Z
B

hð1� /sÞðSr � Sr;nÞdV

� Dt
Z
B

$h � v dV � Dt
Z
@Bq

hbq dA: ð16Þ

Hence, the problem is to find u and p such that L ¼M ¼ 0. Given
that both the fluid flow and solid deformation are integrated consis-
tently by the backward implicit scheme, it seems plausible to ex-
pect that the accuracy and (linearized) stability properties of the
method are preserved, see [40].

Next, we quantify the variation of L and M to variations in u
and p. Apart from the fact that this would reveal the intricate cou-
pling between the two independent variables in the unsaturated
regime, the result is also useful for constructing the algorithmic
tangent operator in Newton iteration. The variation of L is given by

dL ¼
Z
B

$sx : ðc : $sduþ adp� Srdp1ÞdV ; ð17Þ

where

c ¼ @
�r
@�

; a ¼ @
�r
@p

; Sr ¼ Sr þ pS0rðpÞ ð18Þ

and � ¼ $su is the infinitesimal strain tensor. We refer to [14] for
further details of the above equations. In the above definitions, c
is the usual algorithmic stress–strain tensor and Sr is related to
suction stress �p through the water retention curve. The tensor a
is unique to the unsaturated porous media formulation in that it
reflects dependence of the calculated effective stress �r on the
suction stress �p through the so-called preconsolidation stress of
the material.

Next, consider the following variation of M for a fixed surface
flux:

dM ¼
Z
B

hSr$ � dudV þ
Z
B

h$ � ðu� unÞS0rðpÞdpdV

þ
Z
B

hð1� /sÞS0rðpÞdpdV � Dt
Z
B

$h � dv dV ; ð19Þ

where dv is the variation of Darcy velocity. This variation can be ob-
tained with the aid of Darcy’s law, which takes the form

v ¼ �krwðpÞKsat � $
p

qwg
þ z

� �
; ð20Þ

where Ksat is the saturated hydraulic conductivity, g is the gravity
acceleration constant, z is the vertical coordinate, and krwðpÞ is the
relative permeability that depends on the capillary pressure �p in
the unsaturated regime. Taking the variation gives
dv ¼ � krwðpÞ
qwg

Ksat � $ðdpÞ � k0rwðpÞdpKsat � $
p

qwg
þ z

� �
: ð21Þ

A specific soil–water characteristic curve that facilitates the evalu-
ation of k0rwðpÞ is given in the next section.
3. Finite element formulation

We employ a mixed finite element formulation with equal or-
der interpolation for displacement and pressures. The indepen-
dent variables are the nodal displacements dAi and pressure pA.
Each node has nsd þ 1 degrees of freedom, where nsd = number
of spatial dimensions. Let NA = global shape function for node
A; then

uiðx; tÞ ¼
X

A

NAðxÞdAiðtÞ; pðx; tÞ ¼
X

A

NAðxÞpAðtÞ; ð22Þ

where dAiðtÞ and pAðtÞ are the time-varying displacement compo-
nent i and pressure at any node A, including those where the essen-
tial boundary conditions are specified. This makes the degree of
saturation a dependent variable that is calculated from the pressure
p through the water retention curve, which is expressed in func-
tional form as as

Srðx; tÞ ¼ Srðpðx; tÞÞ ¼ Sr

X
A

NAðxÞpAðtÞ
 !

: ð23Þ

The symmetric part of the displacement gradient defines the
infinitesimal strain tensor,

�ij ¼
1
2

X
A

NA;jðxÞdAiðtÞ þ
X

A

NA;iðxÞdAjðtÞ
 !

; ð24Þ

with trace

�ii ¼
X

A

NA;iðxÞdAiðtÞ: ð25Þ

The gradient of the pressure field takes a similar form,

p;iðx; tÞ ¼
X

A

NA;iðxÞpAðtÞ: ð26Þ

Two shape function matrices can be constructed from the same
shape functions NA. The first pertains to the scalar pressure field,

�N ¼ ½N1 N2 . . . Nn �; ð27Þ

with corresponding gradient

E ¼ $�N ¼
N1;x N2;x . . . Nn;x

N1;y N2;y . . . Nn;y

� �
: ð28Þ

The second matrix pertains to the displacement vector field,

N ¼
N1 0 . . . Nn 0
0 N1 . . . 0 Nn

� �
; ð29Þ

with corresponding symmetric component of the gradient

B ¼ $sN ¼ ½B1 B2 . . . Bn �; Ba ¼
Na;x 0

0 Na;y

Na;y Na;x

264
375 ð30Þ

The finite element momentum balance equation then takes the
vector formZ
B

BTf�r� Srp1gdV ¼
Z
B

NTqg dV þ
Z
@Bt

NTbt dA; ð31Þ

whereas the time-integrated fluid mass balance equation is given
by
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Z
B

�NTSr$ � ðu� unÞdV þ
Z
B

�NTð1� /sÞðSr � Sr;nÞdV � Dt
Z
B

ETv dV

¼ Dt
Z
@Bq

�NTbq dA: ð32Þ

Simultaneous solution of the above equations for the unknown
nodal displacement vector d and pressure vector p necessitates an
iterative strategy and consistent tangent operators. The next section
elaborates the relevant tangent operators.

In the fully saturated regime Sr ¼ 1:0, and the time-integrated
fluid mass balance equation simplifies to the formZ
B

�NT$ � ðu� unÞdV � Dt
Z
B

ETv dV ¼ Dt
Z
@Bq

�NTbq dA: ð33Þ

A very small Dt captures the incompressibility condition, which is
given byZ
B

�NT$ � ðu� unÞdV ¼ 0: ð34Þ

In the incompressible and nearly incompressible regimes, equal-or-
der interpolation for the displacement and pressure fields is known
to cause spurious oscillation in the pressure field, unless some form
of stabilization is utilized. Here, we employ the polynomial pressure
projection stabilization advocated in [5,6,23,34] for Darcy and
Stokes equations, and in [75] for the coupled solid deformation-
fluid flow problem. This stabilization ‘‘corrects’’ the quantified defi-
ciency of the linear-order pair, and is sufficiently robust for the
numerical problems discussed in this paper.

4. Tangent operators

In this section, we derive general expressions for the tangent
operators for any standard elastoplastic constitutive model in
which the yield stress is also a function of the suction stress
s ¼ �p, which is the case for unsaturated porous materials. Two
specific critical state models are then presented, one appropriate
for clay and one for sand. Given that the elastic component of
the constitutive model may also introduce nonlinear effects, the
expressions are formulated in the elastic strain space. The develop-
ment presented below accommodates any hyperelastic–plastic
theory including those where the elastic bulk and shear moduli de-
pend on the stress.

4.1. General expressions for solid tangent operators

We consider the standard return mapping algorithm in compu-
tational plasticity where �rn and D� are given and the stress tensor
�r at time t ¼ tn þ Dt is computed. For unsaturated porous media an
additional variable that functions like a strain tensor, the incre-
mental suction stress Ds, is also given, potentially affecting the fi-
nal value of the effective stress �r. We define predictor (trial) values

�e tr ¼ �e
n þ D�; str ¼ sn þ Ds: ð35Þ

Note that for elastic process D� ¼ D�e.
We define

x ¼
�e

Dk

� �
; z ¼

�e tr

str

� �
; ð36Þ

where Dk P 0 is the standard incremental plastic multiplier. We
can think of x as a vector in R7 consisting of six components of
the elastic strain tensor and a plastic multiplier, and z as a vector
consisting of the predictor elastic strain components and the suc-
tion stress. It is important to understand the following setup of
the formulation: x contains the local independent variables that sat-
isfy the constitutive laws for a given z, whereas z contains the global
independent variables that satisfy the relevant conservation laws.
In other words, x ¼ xðzÞ.

In a local stress-point integration algorithm, z is given and the
task of the algorithm is to determine x. Once �e and Dk have been
determined on the local level, the remaining state variables may be
calculated from the following relations

�r ¼ �rð�eÞ; �pc ¼ �pcð�r;Dk;�e tr; strÞ;
F ¼ Fð�r; �pcÞ; Q ¼ Qð�r; �pcÞ;

ð37Þ

where F and Q are the yield and plastic potential functions, respec-
tively, and �pc < 0 is the preconsolidation stress.

A return mapping algorithm in elastic strain space may be em-
ployed to determine x by defining the residual vector

r ¼ rðx; zÞ ¼
�e � �e tr þ Dk@ �rQ

Fð�r; �pcÞ

� �
: ð38Þ

The solution of the problem is the vector x� such that rðx�Þ ¼ 0 for a
given z. However, the equation is nonlinear, so the solution x� must
be determined iteratively. To this end, we use Newton’s method and
evaluate the local Jacobian matrix

r0ðxÞjz ¼ A ¼
A11 A12

A21 A22

� �
: ð39Þ

Preserving the tensor notation for the matrices, we have

A11 ¼ I þ Dkð@2
�r�rQ : ce þ @2

�r�pc
Q � @�e �pcÞ ð40Þ

A12 ¼ Dk@2
�r�pc

Q � @Dk�pc þ @ �rQ ð41Þ
A21 ¼ @ �rF : ce þ @�pc F � @�e �pc ð42Þ
A22 ¼ @�pc F � @Dk�pc; ð43Þ

where I is the rank-four symmetric identity tensor with compo-
nents Iijkl ¼ ðdijdkl þ dildjkÞ=2; ce ¼ @�r=@�e is the tangential elasticity
tensor, and ð@Dk; @�e Þ�pc are the partial derivatives of �pc obtained
from the incremental hardening rule.

Since r is zero at x ¼ x�, we can differentiate r with respect to z
at x ¼ x� to get

@r
@z
¼ @r
@z

����
x
þ @r

@x

� ����
z

�
� @x
@z
¼ 0; ð44Þ

which gives

A � @x
@z
¼ �@r

@z

����
x
) @x

@z
¼ �B � @r

@z

����
x
; ð45Þ

where B ¼ A�1. The inverse exists provided that the local iteration
has converged.

Expanding Eq. (45) gives

@��e @s�e

@�Dk @sDk

� �
¼ �

B11 B12

B21 B22

� �
C11 C12

C21 C22

� �
; ð46Þ

where the the abbreviated expressions @�� ¼ @�=@� � @�=@�e tr

and @s� ¼ @�=@s � @�=@str have been used. The submatrices are
derived from the tensors

C11 ¼ Dk@2
�r�pc

Q � @��pc � I ð47Þ

C12 ¼ Dk@2
�r�pc

Q � @s�pc ð48Þ

C21 ¼ @�pc F � @��pc ð49Þ

C22 ¼ @�pc F � @s�pc ð50Þ

We thus obtain

a ¼ @�
e

@�
¼ �B11 : C11 � B12 � C21 ð51Þ

b ¼ @�
e

@s
¼ �B11 : C12 � B12 � C22: ð52Þ
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Substituting the above expressions into (18) yields the tangent
operators

c ¼ @
�r
@�
¼ ce : a; a ¼ � @

�r
@s
¼ �ce : b: ð53Þ

The tensor a above is the consistent derivative of the effective stress
tensor with respect to capillary stress and accounts for full coupling
of deformation and fluid flow. Note from the effective stress Eq. (4)
that @�r=@s – ð@p�=@sÞ1 even if B ¼ 1, since @r=@s – 0 even if the ap-
plied external load is constant. The latter statement is analogous to
the argument that the total stress tensor generally varies with time
even if the applied external load remains fixed. This variation of the
total stress with time is responsible for the Mandel-Cryer effect,
which is a characteristic of the fully coupled solution, see Lambe
and Whitman [50, p. 417]. To our knowledge, this is the first time
that such consistent variation of the effective stress with respect
to capillary pressure has been derived. Apart from its noteworthy
physical significance, this derivative is also crucial for achieving
the optimal convergence rate of Newton iteration.

4.2. Isotropy and spectral representation of tangent operators

By isotropy we mean that the constitutive model can be ex-
pressed in terms of the invariants of the stress tensor. It is impor-
tant to note that strain localization is enhanced by the third stress
invariant, so in this work we shall use all three invariants of the
stress tensor in the constitutive formulation. For three-invariant
models, spectral decomposition combined with return-mapping
in principal elastic strain space provide an effective numerical
scheme for stress-point integration [17,57,69].

To develop the relevant tangent operators we write the effective
Cauchy stress tensor and the elastic strain tensor in spectral form

�r ¼
X3

A¼1

�rAmðAÞ; �e ¼
X3

A¼1

�e
AmðAÞ; �e tr ¼

X3

A¼1

�e tr
A mðAÞ; ð54Þ

where mðAÞ ¼ nðAÞ � nðAÞ is the spectral direction constructed from
unit vector nðAÞ in the direction of principal stress �rA. Note the coax-
iality of the three tensors, particularly the coaxiality between �e and
�e tr that emanates from the fact that the plastic spin is zero in infin-
itesimal plasticity. This means that the spin of the principal axes is
determined by the tensor �e tr alone.

We recall the following spectral form of ce:

ce ¼
X3

A¼1

X3

B¼1

Ae
ABmðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B–A

�rB � �rA

�e
B � �e

A

� �
ðmðABÞ

�mðABÞ þmðABÞ �mðBAÞÞ; ð55Þ

where mðABÞ ¼ nðAÞ � nðBÞ and Ae
AK is the tangential elasticity matrix

in principal axes. In a similar fashion, the spectral form of
a � @�e=@� is

a ¼
X3

A¼1

X3

B¼1

@�e
A

@�B
mðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B–A

�e
B � �e

A

�e tr
B � �e tr

A

� �
ðmðABÞ

�mðABÞ þmðABÞ �mðBAÞÞ; ð56Þ

Taking the inner product gives the spectral form of c ¼ ce : a as

c ¼
X3

A¼1

X3

B¼1

AABmðAÞ �mðBÞ þ 1
2

X3

A¼1

X
B–A

�rB � �rA

�e tr
B � �e tr

A

� �
ðmðABÞ

�mðABÞ þmðABÞ �mðBAÞÞ; ð57Þ

where mðAÞ ¼ mtrðAÞ is the spectral direction of the elastic trial pre-
dictor strain, and

AAB ¼
@�rA

@�B
¼
X3

K¼1

@�rA

@�e
K

@�e
K

@�B
¼
X3

K¼1

Ae
AK
@�e

K

@�B
ð58Þ
is the consistent tangential moduli matrix in principal axes.
We also recall the following spectral form for @�r=@p:

@�r
@p
¼
X3

A¼1

@�rA

@p
mðAÞ þ

X3

A¼1

X
B–A

@HAB

@p
ð�rB � �rAÞmðABÞ; ð59Þ

where HAB is the rotation of principal axes. As noted before, this
spin is determined by �e tr alone, and so @HAB=@p � 0. Hence, we
get the simplified relation

@�r
@p
¼
X3

A¼1

X3

K¼1

@�rA

@�e
K

@�e
K

@p
mðAÞ ¼

X3

A¼1

X3

K¼1

Ae
AK
@�e

K

@p
mðAÞ: ð60Þ

Note that the change occurs at fixed principal directions.
We now turn to obtaining the tangential matrix in principal

axes. In this case, the local residual equation becomes

rðx; zÞ ¼

�e
1 � �e tr

1 þ Dk@ �r1 Q

�e
2 � �e tr

2 þ Dk@ �r2 Q

�e
3 � �e tr

3 þ Dk@ �r3 Q
Fð�r1; �r2; �r3; �pcÞ

8>>><>>>:
9>>>=>>>;; x ¼

�e
1

�e
2

�e
3

Dk

8>>><>>>:
9>>>=>>>;; z ¼

�e tr
1

�e tr
2

�e tr
3

str

8>>><>>>:
9>>>=>>>;:
ð61Þ

Iterating for the local solution x� corresponding to a given z requires
the evaluation of the 4� 4 matrix,

r0ðxÞjz ¼ A ¼

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A34 A44

26664
37775; ð62Þ

where

AIJ ¼ dIJ þ Dk
X3

K¼1

@2Q
@rI@rK

Ae
KJ þ

@2Q
@rI@�pc

@�pc

@�e
J

 !
; I; J ¼ 1;2;3; ð63Þ

AI4 ¼ Dk
@2Q
@rI@�pc

@�pc

@Dk
þ @Q
@rI

; I ¼ 1;2;3; ð64Þ

A4J ¼
X3

K¼1

@F
@rK

Ae
KI þ

@F
@�pc

@�pc

@�e
I

; J ¼ 1;2;3 ð65Þ

and

A44 ¼
@F
@�pc

@�pc

@Dk
: ð66Þ

As in the previous section we denote the inverse of A by the
4� 4 matrix B with components ½BIJ�. Eq. (45)2 then becomes

@�e
I

@�J
¼ �

X4

K¼1

BIK CKJ; I; J ¼ 1;2;3 ð67Þ

and

@�e
I

@s
¼ � @�

e
I

@p
¼ �

X3

K¼1

BIK CK4; I ¼ 1;2;3: ð68Þ

where

CIJ ¼ �dIJ þ Dk
@2Q
@�rI@�pc

@�pc

@�J
; CI4 ¼ Dk

@2Q
@�rI@�pc

@�pc

@s
;

C4J ¼
@F
@�pc

@�pc

@�J
; C44 ¼

@F
@�pc

@�pc

@s
:

ð69Þ

Note that the derivatives @Dk=@�J and @Dk=@s are not used in the
formulation.

It is important to recall that in evaluating ½AIJ� the derivatives
are evaluated with respect to x with z held fixed, whereas in eval-



Fig. 2. Influence of the third stress invariant on the shape of the yield surface.

Fig. 3. Exponential (N ¼ 0;0:5) and elliptical (MCC) yield surfaces on compressional
meridian plane. CSL = critical state line.
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uating ½CIJ� the derivatives are evaluated with respect to z with x
held fixed.

4.3. Derivatives of �pc

In critical state isotropic models, ��pc > 0 is a measure of the
size of the yield surface in the fully saturated state. For isotropic
plasticity models, �pc is the distance from the origin of the stress
space to the intersection of the compression cap with the hydro-
static axis. Experimental evidence [38] suggests that in the unsat-
urated regime the compression cap expands with increasing
suction, and so ��pc must increase with increasing suction. An
experimentally validated analytical form for �pc reflecting this fea-
ture is given by the hardening law [14,38]

�pc ¼ � exp½aðnÞ�ð�pcÞ
bðnÞ
; ð70Þ

where pc ¼ pcð�r;Dk;�e trÞ is the preconsolidation pressure in the
fully saturated state, and aðnÞ and bðnÞ are functions of a so-called
bonding variable n such that a ¼ 0; b ¼ 1, and �pc ¼ pc in the fully
saturated state. The bonding variable n varies with the suction
stress s through the equation

n ¼ f ðsÞð1� SrÞ; f ðsÞ ¼ 1þ s=patm

10:7þ 2:4ðs=patmÞ
: ð71Þ

The suction function f ðsÞ given above is a hyperbolic fit to Fisher’s
[37] curve as suggested in [14]. For isothermal deformation the de-
gree of saturation Sr may be expressed as a function of s alone, for
example, through the van Genuchten relation [41]

Sr ¼ S1 þ ðS2 � S1Þ 1þ s
sa

� �n� ��m

; ð72Þ

where sa is the air entry value and S1; S2;m, and n are fitting param-
eters. The relations presented above are highly nonlinear, but the
derivatives can be obtained in a straightforward fashion.

Taking the derivative of �pc with respect to a variable � other
than s gives

@�pc

@�
¼ expðaÞbð�pcÞ

b�1 @pc

@�
; ð73Þ

where @pc=@� can be evaluated from the specific form of the incre-
mental hardening law. The derivative with respect to s itself is given
by

@�pc

@s

����
x
¼ � expðaÞn0ðsÞð�pcÞ

b½a0ðnÞ þ b0ðnÞ lnð�pcÞ�: ð74Þ

We see that in both cases, s is separable from the other variables
with respect to derivatives. This facilitates a straightforward imple-
mentation of any established critical state model within the frame-
work of unsaturated poromechanics. We present two models
below, one for clay and another for sand. In both models we assume
an associated plastic flow in which the plastic potential function is
the same as the yield function.

4.4. Three-invariant modified Cam-Clay

In the formulation of a three-invariant model, it is sometimes
convenient to use the ð�p; q; hÞ representation analogous to the
cylindrical Haigh–Westergaard coordinates [30], where the hydro-
static axis serves as the pole and any of the three positive (exten-
sional) principal stress axes serves as the polar axis. We define

�p ¼ 1
3

trð�rÞ; q ¼
ffiffiffi
3
2

r
k�r� �p1k; ð75Þ

The polar radius extends to all polar directions 0 6 h 6 2p, see
Fig. 2. In addition, the ellipticity is defined as (see [77])
q ¼ qext=qcom; 1=2 6 q 6 1; ð76Þ

where
ffiffiffiffiffiffiffiffi
2=3

p
qcom (alternatively,

ffiffiffiffiffiffiffiffi
2=3

p
qext) is the radius on the com-

pressive (alternatively, extensional) principal stress axis. The ellip-
ticity q describes the deviation from roundness of the cross
section of the yield surface on the deviatoric plane. The upper
bound q ¼ 1 is for a circular cross section on the deviatoric plane,
whereas the lower bound q ¼ 1=2 is for a limiting triangular cross
section.

A three-invariant modified Cam-Clay yield function is of the
form

F ¼ f2 q2

M2 þ �pð�p� �pcÞ 6 0; ð77Þ

where M is the slope of the critical state line (CSL) and f ¼ fðq; hÞ is
a scaling function designed to reproduce the effect of ellipticity. The
function f satisfies the following boundary conditions: (a) f ¼ 1=q
when h ¼ 0; and (b) f ¼ 1 when h ¼ p=3. Since h does not depend
on the first stress invariant, all cross sections of the yield surface
are scaled similarly. Possible forms of f include those proposed by
Willam and Warnke [77], Gudehus [45], and Argyris et al. [4] (the
latter two have the same form). Fig. 3 shows the shape of the yield
function on a compressional meridian plane (labeled MCC).

The hardening law at full saturation is given by the discrete evo-
lution equation [14]

pc ¼ pc;n exp
�e

v � �e tr
vek � ej

� �
; ð78Þ



Table 1
Solid deformation parameters for unsaturated clay.

Symbol Value Parameter

ej 0:03 Elastic compressibility
p0 �0:1 MPa Reference pressure
�e

v0 0:0 Reference strain
l0 10 MPa Shear modulus
M 1.2 Critical state parameterek 0.09 Plastic compressibility

vc0 1.95 Reference specific volume
q 7/9 Ellipticity

R.I. Borja et al. / Comput. Methods Appl. Mech. Engrg. 261–262 (2013) 66–82 73
where �e
v ¼ trð�e), �e tr

v ¼ trð�e trÞ, and ek and ej are compressibility
parameters [14]. We recall that pc is readily separable from suction
with respect to differentiation, i.e., one can express �pc ¼ �pcðs;pcÞ. This
specific evolution equation for pc follows from pc ¼ pcð�rð�eÞ;�e trÞand
does not have Dk explicitly as one of its arguments.

4.5. Model for sand with state parameter

A three-invariant yield function for sand is given by [2,11,48]

F ¼ fqþ g�p 6 0; ð79Þ

where f ¼ fðq; hÞ is the same scaling function introduced in the pre-
vious section, and

g ¼
M½1þ lnð�pi=�pÞ� if N ¼ 0;

ðM=NÞ½1� ð1� NÞð�p=�piÞN=ð1�NÞ� if N > 0:

(
ð80Þ

The parameter M has the same meaning as in the modified Cam-
Clay model, and �pi < 0 takes the role of the plastic internal variable,
see Fig. 3. A closed-form expression for �pi is obtained by setting
F ¼ 0,

�pi

�p
¼

expðg=M � 1Þ if N ¼ 0;

½ð1� NÞ=ð1� gN=MÞ�ð1�NÞ=N if N > 0:

(
ð81Þ

The parameter N determines the curvature of the yield surface on
the hydrostatic axis, and typically has a value less than 0.4 [48]. If
f ¼ 1 the yield function reduces the original Cam-Clay yield func-
tion [67]. The form of the yield function readily provides expres-
sions for pc in terms of �pi. Setting g ¼ 0 in (82) and solving for �p
gives the value of pc � �p

pc ¼ �pi �
e if N ¼ 0;

ð1� NÞðN�1Þ=N if N > 0;

�
ð82Þ

in which e is the natural logarithm constant.

4.6. Fluid flow derivatives

We consider a four-parameter soil–water characteristic curve
derived from the van Genuchten [41] model of the form

SrðpÞ ¼ S1 þ ðS2 � S1Þ 1þ s
sa

� �n� ��m

; ð83Þ

where s ¼ �p; S1 is the residual water saturation, S2 is the maxi-
mum water saturation, sa is a scaling pressure, and n and m are
empirical constants defining the shape of the saturation curve.
The constants n and m are not independent, but are related as
m ¼ ðn� 1Þ=n. Thus, the model has a total of four independent
parameters. The relative permeability of the water phase is simi-
larly defined as

krwðhÞ ¼ h1=2 1� 1� h1=m

 �mh i2

; h ¼ SrðpÞ � S1

S2 � S1
: ð84Þ

The pressure derivative of saturation can be readily evaluated as

S0rðpÞ ¼ ðS2 � S1Þ
n� 1

sa

s
sa

� �n�1

1þ s
sa

� �n� ��ð1þmÞ

: ð85Þ

The derivative of the relative permeability is then given by

k0rwðpÞ ¼ k0rwðhÞ
S0rðpÞ

S2 � S1
; ð86Þ

where

k0rwðhÞ ¼ 2hð1=m�1=2Þð1� h1=mÞm�1 1� 1� h1=m

 �mh i

þ 1
2

h�1=2 1� 1� h1=m

 �mh i2

: ð87Þ
The above constitutive relations do not explicitly account for the ef-
fect of tortuosity and pore shape on the relative hydraulic conduc-
tivity (see [42,80] for more in-depth discussions of these subjects).

5. Numerical examples

In the three examples below, we simulate plane strain compres-
sion on rectangular specimens under globally undrained but lo-
cally drained conditions. This means that fluid can migrate inside
the sample but is not free to enter or leave through the exterior
boundaries of the sample. In the first example, a soil with a uni-
form density but with a spatially varying degree of saturation is
modeled with the three-invariant modified Cam-Clay theory. The
second example presents a similar simulation but uses the consti-
tutive model for sand. The third example simulates spatially vary-
ing density and degree of saturation with the three-invariant
plasticity theory for sand. Note that the three-invariant modified
Cam-Clay theory has no state parameter and cannot account for
the effect of initial density variation, so it cannot accommodate
the conditions of the third example. Throughout the simulations,
we use stabilized low-order (bilinear) quadrilateral elements with
polynomial pressure projection stabilization [75,76] to suppress
spurious pore pressure oscillations in the incompressible and
nearly incompressible regimes.

5.1. Triggering a shear band in clay

The material parameters for the clay model are summarized in
Tables 1 and 2. The values of the parameters are similar to those
considered in [14]. The problem domain is a rectangular specimen
5 cm wide and 10 cm tall modeled with 200 stabilized four-node
quadrilateral mixed elements with displacement and pressure de-
grees of freedom at each node. The block is supported on vertical
rollers at the top and bottom boundaries (except at a bottom cor-
ner node that is pinned for stability), and compressed vertically at
a rate of 0.001 cm/s so that in the absence of any non-uniform field
the deformation would be homogeneous. Therefore, any calculated
inhomogeneous deformation can be attributed directly to the ini-
tial field condition, which, in this case, is the spatial variation of
the degree of saturation. The total simulation time is 350 s over
117 load steps.

The initial degree of saturation is shown in Fig. 4a and has been
randomly generated to represent the effect of sample preparation
in which soils are deposited horizontally in thin layers and sprayed
unevenly with water before depositing the next horizontal layers.
The result is a saturation distribution characterized by intermittent
patches of wet and dry layers. The two vertical boundaries of the
block are subjected to a pressure of 100 kPa that is held constant
throughout the simulation. Since the degree of saturation varies
throughout the block, the capillary pressure and the effective stres-
ses also vary, creating an initially inhomogeneous stress field. The
variable saturation also creates a pressure gradient field that in-
duces fluid migration inside the block. The fluid flow is initially er-



Table 2
Fluid conduction parameters for unsaturated clay.

Symbol Value Parameter

k 1:0� 10�5 cm/s Saturated hydraulic conductivity

w1 0:0 Water retention parameter
w2 1:0 Water retention parameter
n 2:0 Water retention parameter
sa 0:01 MPa Air entry pressure
c1 0:185 Parameter of Ref. [38]
c2 1:49 Parameter of Ref. [38]
patm 101:3 kPa Atmospheric pressure

Fig. 4. Evolution of degree of saturation (DOS) in a partially saturated clay during
vertical compression: (a) initial condition; and at axial strains of (b) 1.0%, (c) 2.0%,
and (d) 3.5%.
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ratic owing to the initially erratic variation of degree of saturation,
but eventually the gradient field smoothens out as shown in
Figs. 4d.

Establishing a statically admissible initial condition is impor-
tant for interpretation of the results. Prior to the first load step, ini-
tial effective stresses at the Gauss points are tentatively prescribed
to balance the externally applied pressure of 100 kPa. However,
randomly generated capillary pressures are also prescribed at the
nodes. In general, the effective stresses and pore pressures will
not balance the applied external pressure, and there will be some
residual nodal forces. The first load step is then used to iteratively
balance these forces. In the simulations presented below, we take
the ‘initial condition’ as the converged solution after the first load
step. The contour of saturation shown in Fig. 4a is the statically
admissible saturation configuration after the first load step.

Since the degree of saturation varies within the problem do-
main, both the capillary pressure and the effective stresses also
vary within the domain. The constitutive model for clay assumes
the same critical state line for all the elements, so for the same ref-
erence specific volume the ‘initial condition’ is characterized by a
nonuniform density field. However, this density field is not speci-
fied, but instead is calculated by the constitutive model from the
prescribed initial degree of saturation and applied forces. In con-
trast, the density field and degree of saturation are two separately
specified state variables for the constitutive model for sand.

Fig. 5 indicates a complex evolution of the stress ratio �q=�p
occurring within the problem domain as the specimen is com-
pressed vertically and the fluid migrates locally within the speci-
men. Starting from the isotropic stress state in Fig. 5a, the effect
of variable saturation is ‘felt’ almost instantaneously by the solid
matrix as soon as the compression commences, as shown in
Fig. 5b. Further vertical compression leads to more complicated
stress pattern portrayed in Fig. 5c, where some points even reached
the critical state. The final stress state, shown in Fig. 5d, suggests a
stress ratio value of around 0.6 prevailing within and around the
deformation band, which is well below the critical value of
M ¼ 1:2. At no time in the solution did the stress ratio exceed
the critical value M, indicating that plasticity is restricted to the
compression side of the yield surface.

The resulting deformation field for the clay simulation is shown
in Fig. 6 and suggests the formation of a compactive shear band, a
type of deformation band where shearing is accompanied by a
reduction in volume over a narrow zone [15,16]. The volume
reduction is due to the compaction of the air voids within the band
that increases the degree of saturation as shown in Fig. 4. As the
degree of saturation increases the pore water pressure increases,
producing a pressure gradient field that enhances fluid migration
away from the band. These complex multiphysical processes are
illustrated further by the fluid flow vectors shown in Fig. 7a, sug-
gesting that fluid is continually squeezed out of the band as the do-
main is compressed.

Fig. 7b shows the contour of the determinant of the drained
acoustic tensor [14,64] at the end of the simulation. This determi-
nant is an indicator of the propensity of a material to form a comp-
active shear band under a locally drained condition [13,24]. The
figure clearly shows a tendency to form a deformation band in
the region where the determinant of the acoustic tensor vanishes.
However, this band is fairly diffuse and the determinant function
never reaches the value zero. This is because the stress point re-
mains on the compression cap of the yield surface throughout
the simulation. The compression cap is considered to be a stable
region where the plastic modulus is always positive; hence, local-
ized bifurcation in which the determinant becomes zero is not
reached.

Fig. 8 shows the global convergence of Newton iteration for the
unsaturated clay simulation. The residual vector is a composite
vector consisting of out-of-balance nodal forces and fluid fluxes,
and has been normalized with respect to its initial L2-norm. The
figure shows that convergence of the iterations is asymptotically
quadratic throughout the simulations. This implies that both the
solid deformation and fluid flow equations have been consistently
linearized. For the record, Step #117 is the last load increment in
the simulation.

5.2. Triggering a shear band in sand

Tables 3 and 4 summarize the relevant material parameters for
the sand model. The values of the parameters are similar to those



Fig. 5. Evolution of stress ratio �q=�p: (a) initial isotropic condition; and at axial
strains of (b) 0.3%, (c) 1.1%, and (d) 3.5%. Note: red in the color bar is critical state,
�q=�p ¼ M.

Fig. 6. Localized deformation in clay after applying a nominal axial compression of
3.5%: (a) volumetric strain, (b) deviatoric strain.

Fig. 7. Deformed mesh in clay at axial strain of 3.5%: (a) degree of saturation with
fluid flow vectors, (b) normalized determinant of drained acoustic tensor.

Fig. 8. Global convergence of unsaturated three-invariant clay model.
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considered in [11]. The finite element mesh and boundary condi-
tions are the same as those used in the previous example. Note that
the saturated hydraulic conductivity is two orders of magnitude
higher than in the clay example. To capture a comparable range
of deformation, the sample is deformed at a higher speed of
0.1 cm/s, which is equivalent to applying a total vertical compres-
sion of 0.45 cm over a period of 4.5 s. The total vertical compres-
sion is applied in 225 increments.

Fig. 9 shows the degree of saturation at two different stages
of vertical compression. Once again, the zone of higher satura-
tion concentrates in the neighborhood of the band where the soil
undergoes greater compaction and shearing, see Fig. 10. Compac-
tion of the air void is responsible for the increase in saturation,
as can be seen by comparing Figs. 9 and 10. Note a strong cor-
relation between the zone of greatest compaction with the zone
of highest degree of saturation. Fig. 11a shows that fluid is ex-
pelled from the band as the compaction of this zone takes place.
The determinant of the acoustic tensor in Fig. 11b shows that
the constitutive model for sand gives rise to more pronounced
localized deformation as the determinant function switches in
sign within a narrow band. This implies an impending shear
band forming, in contrast to the more diffuse deformation pat-
tern predicted by the clay model that does not produce a
reversal in the sign of the determinant function. Once again,
Fig. 12 shows that convergence of the global Newton iteration
is rapid.
5.3. Shear band in sand with variable density and saturation

The third example deals with spatially varying density and de-
gree of saturation in sand. The density variation is derived from a
digitally processed CT image of sand with specific volume varying
from 1.3 to 2.0 (see Ref. [7] for details of the laboratory test). This



Table 3
Solid deformation material parameters for unsaturated sand.

Symbol Value Parameter

ej 0:03 Compressibility
p0 �0:1 MPa Reference pressure
�e

v0 0:0 Reference strain
l0 20 MPa Shear modulus
M 1.2 Critical state parameterek 0.11 Compressibility parameter

N 0.4 Yield surface parameter
h 280 Hardening modulus
vc0 1.95 Reference specific volume
q 7/9 Ellipticity
a �3:5 Limit dilatancy parameter
qs 2.0 Mg/m3 Solid density
qw 1.0 Mg/m3 Fluid density

Table 4
Fluid flow material parameters for unsaturated sand.

Symbol Value Parameter

k 1:5� 10�3 cm/s Saturated hydraulic conductivity

w1 0:0 Water retention parameter
w2 1:0 Water retention parameter
sa 0:01 MPa Air entry value of bubbling pressure
n 2:0 Constant in Von Genuchten equation
c1 0:185 Parameter of Ref. [38]
c2 1:49 Parameter of Ref. [38]
patm 101:3 kPa Atmospheric pressure

Fig. 9. Degree of saturation on unsaturated fine sand before and after vertical
compression: (a) initial condition, (b) condition at nominal axial compression of
4.5%.

Fig. 10. Localized deformation in sand after applying a nominal axial compression
of 4.5%: (a) volumetric strain, (b) deviatoric strain.

Fig. 11. Deformed mesh in sand after applying a nominal axial compression of 4.5%.
Contours represent: (a) degree of saturation with fluid flow vectors, (b) normalized
determinant of drained acoustic tensor.

Fig. 12. Global convergence of unsaturated three-invariant sand formulation.
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density contrast in the physical specimen is very strong and could
very well dominate the formation of persistent shear band, so for
the simulations we consider a similar density variation but with a
smaller density contrast. The specimen is 137 mm tall, 39.5 mm
wide, and 79.7 mm deep (out-of-plane), with specific volume
varying from 1.4 to 1.8, see Fig. 13. The top and bottom bound-
aries are supported on vertical rollers that permit unconstrained
shear band propagation, mimicking the conditions for the speci-
men described in Ref. [7]. On the lower half of the specimen is
a locally loose layer. Preliminary simulations on this specimen
assuming dry condition and using the same material parameters
as in Example #2 indicate that when the specimen is compressed
vertically, the loose layer simply compacts with no shear band
forming in the specimen (Figs. 14). In the following simulations
we show that the presence of moisture can trigger a shear band.
Furthermore, we show that the position and orientation of this
band depend on the spatial distribution of the initial degree of
saturation.



Fig. 13. Dry silica-concrete sand subjected to plane strain compression: (a) CT
image with specific volume varying from 1.3 to 2.0 [7]; and (b) similar density
variation but with specific volume adjusted to vary from 1.4 to 1.8.

Fig. 15. Case #1: Degree of saturation (DOS) for partially saturated silica-concrete
sand specimen subjected to vertical compression in plane strain: (a) initial
condition; (b) condition at nominal vertical strain of 2.8%.

Fig. 16. Case #1: Volumetric (EPV) and deviatoric (EPD) strains in the specimen
after a nominal vertical compression of 2.8%.

Fig. 14. Dry silica-concrete sand subjected to 4.5% vertical compression in plane
strain: (a) volumetric strain; and (b) second invariant of deviatoric strain.
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We consider two randomly generated saturation profiles super-
imposed on the sample with imposed initial heterogeneity in den-
sity. The first is shown in Fig. 15a and resembles the saturation
profile considered in Example #2. The soil is assumed to have
the same hydrological parameters as in Example #2. The specimen
is compressed vertically at the rate of 0.002 cm/s until a persistent
shear band can be observed. Fig. 15b shows the degree of satura-
tion profile at 2.8% nominal vertical strain suggesting a trend to-
ward full saturation within a narrow inclined region that ascends
in the rightward direction. As in the previous examples, the loose
layer compacts as the shear band forms, causing the air voids to de-
crease and the degree of saturation to increase. Fig. 16 affirms the
compaction-shearing deformation pattern occurring within the
band. The flow gradient induces fluid migration away from the
band, as indicated by the flow vectors shown in Fig. 17a. The deter-
minant function shown in Fig. 17b indicates that the localization
function changes sign, suggesting the formation of a persistent
shear band. Fig. 18 demonstrates that the global convergence of
Newton iteration for this particular simulation remains strong.



Fig. 17. Case #1: (a) Flow vectors superimposed with degree of saturation; and (b)
normalized determinant function superimposed on deformed meshes. Snapshots
taken after a nominal vertical compression of 2.8%.

Fig. 18. Case #1: Global convergence of unsaturated three-invariant sand formu-
lation with spatially varying density and degree of saturation.

Fig. 19. Case #2: Degree of saturation (DOS) for partially saturated silica-concrete
sand specimen subjected to vertical compression in plane strain: (a) initial
condition; (b) condition at nominal vertical strain of 2.4%.

Fig. 20. Case #2: (a) Volumetric strain (EPV); and (b) deviatoric (EPD) strain.
Snapshots taken after a nominal vertical compression of 2.4%.
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Next, we consider a second sample with a randomly generated
degree of saturation profile shown in Fig. 19a and with the same
heterogeneous density distribution as in the first sample. After
compressing the sample vertically to a nominal vertical strain of
2.4%, a nearly saturated band forms, but this time the band des-
cends in the rightward direction as shown in Fig. 19b. This orienta-
tion is conjugate to the shear band in the previous example,
demonstrating that the local saturation does have impact on the
orientation of the shear band. The strain contours of Fig. 20 suggest
that the pattern of localized deformation is dominated by com-
bined compaction and shearing. As the deformation band com-
pacts, fluid migrates into the surrounding zone (Fig. 21a). This is
accompanied by the sign of the localization function reversing
within the band, indicating localized bifurcation (Fig. 21b). Once
again, the global convergence of Newton iterations remains strong
(Fig. 22).
Conducting a mesh sensitivity study is not straightforward for
boundary-value problems with imposed material heterogeneities,
because as the mesh is refined the description of material hetero-
geneity must also be refined. Obviously, mesh refinement is lim-
ited by the particulate nature of granular materials and should
not go beyond the representative elementary volume. As noted
in the Introduction, the heterogeneity is typically quantified from
digital processing of a CT image, so the mesh refinement is limited



Fig. 21. Case #2: (a) Flow vectors superimposed with degree of saturation; and (b)
normalized determinant function. Snapshots on deformed meshes taken after a
nominal vertical compression of 2.4%.

Fig. 22. Case #2: Global convergence of unsaturated three-invariant sand formu-
lation with spatially varying density and degree of saturation.

Fig. 23. Case #2-refined mesh: Degree of saturation (DOS) for partially saturated
silica-concrete sand specimen subjected to vertical compression in plane strain: (a)
initial condition; (b) condition at nominal vertical strain of 2.4%.

Fig. 24. Case #2-refined mesh: (a) Volumetric (EPV) strain; and (b) deviatoric (EPD)
strain. Snapshots taken after a nominal vertical compression of 2.4%.
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by the resolution of the CT image. In the following, we consider a
soil sample with similar density and saturation variations as in
the previous example (Case #2).

The mesh consists of 16� 55 stabilized mixed elements with an
initial saturation variation similar to Case #2, as shown in Fig. 23a.
After applying a nominal vertical strain of 2.4%, a similar compac-
tive shear band emerges, i.e., descending to the right. The reduction
of air voids within the band results in increased saturation
(Fig. 23b). The pattern of persistent shear band characterized by
significant volumetric and deviatoric strains is depicted in
Fig. 24. In general, this pattern is similar to Case #2 but with a
much better resolution. The pattern of fluid flow is also similar,
as is the reversal in sign of the localization function (Fig. 25). The
positions and inclinations of the shear bands predicted by the coar-
ser and finer mesh simulations are essentially the same.
Fig. 26 compares the load versus displacement responses gener-
ated by the coarser and finer meshes for Case #2. The vertical load
represents the resultant force at the prescribed vertical compression
of the sample, and is calculated from the nodal pore pressures and
effective stresses at the Gauss points projected to the upper bound-
ary nodes. Prior to the peak load the two curves compare well, with
the finer mesh exhibiting the expected slightly softer response com-
pared to the coarser mesh. However, the two curves diverge beyond
the peak loads, suggesting mesh sensitivity afflicting the two solu-
tions. Bifurcation has been detected prior to the peak loads, with



Fig. 25. Case #2-refined mesh: (a) Flow vectors superimposed with degree of
saturation; and (b) normalized determinant function. Snapshots on deformed
meshes taken after a nominal vertical compression of 2.4%.

Fig. 26. Mesh sensitivity for Case #2: Prior to the peak load, the calculated
responses compare well, with the finer mesh exhibiting a slightly softer response, a
typical result. Beyond the peak points, the two solutions exhibit mesh sensitivity.

Fig. 27. Case #2: Global convergence of unsaturated three-invariant sand formu-
lation with spatially varying density and degree of saturation: refined mesh.
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the finer mesh showing the expected propensity for an earlier bifur-
cation. It has been argued in [7] that for simulations involving
strongly heterogeneous fields (e.g., strong density contrast), post-
localization finite element enhancements should be introduced only
after the persistent shear band has been fully identified, and not at
the first onset of bifurcation. In the present case, the first onset of
bifurcation as well as the peak load occurred almost at the same time
as the formation of a persistent shear band, so the decision on when
to introduce the post-localization enhancements is quite straight-
forward. Fig. 27 shows that the rate of convergence of Newton iter-
ation remains rapid with the more refined mesh.

5.4. General remarks on the pattern of persistent shear band

The orientation of the persistent shear band described in this
paper must not be confused with the analytical solution for a
homogeneous stress state determined by classic bifurcation analy-
sis [64]. The persistent shear band reflects a general trend for a het-
erogeneous structure and not for a homogeneously stressed point.
For the numerical examples discussed in this paper, the persistent
shear band reflects the collective effect of compaction-induced
deformation taking place in some regions, and dilation-induced
shearing occurring in other regions. In the presence of fluid flow,
the orientation of the persistent shear band also depends on the
deformation rate due to the volume constraint it imposes on the
overall deformation. Moreover, the persistent shear band also de-
pends on some other random fields that cannot be fully quantified
deterministically [2,29,46,59,68,70].

When the bifurcation condition is met at a particular Gauss
point, a common procedure is to enhance the first bifurcating ele-
ment to accommodate a post-localization mode, and then trace
the evolution of the band [19,18,61]. However, as discussed in
[7], this procedure will create unwanted bias in the presence of
spatially distributed heterogeneous fields (such as density and/
or degree of saturation). Some Gauss points could undergo bifur-
cation in different places, only to regain stability as the solution
resolves the persistent shear band. In the presence of spatially
distributed heterogeneous fields, it seems expedient to introduce
the post-bifurcation enhancements after the persistent shear
band has been fully developed. Once the persistent shear band
has been identified, the post-localization enhancements are fairly
straightforward.
6. Summary and conclusions

We have presented a mathematical framework for triggering a
shear band in unsaturated granular materials with spatially varying
degree of saturation and density. Both density and saturation have
first-order effects on the persistent shear band. The volume con-
straint imposed by the presence of moisture, even in the unsatu-
rated state, enhances the development of shear band. We have
also presented a closed-form expression for the variation of the
effective stress tensor with capillary pressure accounting for full
coupling of the solid deformation and fluid flow. The performance
of Newton iteration has been optimal in all the examples presented,
demonstrating that this robust iterative technique can be applied
successfully to some of the most challenging problems in
geomechanics.
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