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Abstract— In this paper we consider dynamical systems which
are driven by “events” that occur asynchronously. It is assumed
that the event rates are fixed, or at least they can be bounded
on any time period of length T . Such systems are becoming in-
creasingly important in control due to the very rapid advances in
digital systems, communication systems, and data networks. Ex-
amples of such systems include, control systems in which signals
are transmitted over an asynchronous network; distributed con-
trol systems in which each subsystem has its own objective, sen-
sors, resources and level of decision making; parallelized numer-
ical algorithms in which the algorithm is separated into several
local algorithms operating concurrently at different processors;
and queuing networks. We present a Lyapunov-based theory for
asynchronous dynamical systems and show how Lyapunov func-
tions and controllers can be constructed for such systems by solv-
ing linear matrix inequality (LMI) and bilinear matrix inequality
(BMI) problems. Examples are also presented to demonstrate
the effectiveness of the approach.

Keywords: Asynchronous dynamical systems, multi-rate sys-
tems, Lyapunov theory, linear matrix inequality (LMI), bilinear
matrix inequality (BMI).

1 Introduction

Due to the very rapid advances in digital systems,
communication systems, and data networks, asyn-
chronous dynamical systems are becoming increasingly
important in control from a practical point of view.
Asynchronous dynamical systems can model a vast ar-
ray of systems such as control systems in which sig-
nals are transmitted over an asynchronous communica-
tion network; distributed control systems comprising of
many interacting subsystems in which each subsystem
has its own objective, sensors, resources and level of
decision making; parallelized numerical algorithms in
which the algorithm is separated into several local al-
gorithms operating concurrently at different processors;
and queuing networks.

Roughly speaking, asynchronous dynamical systems
are systems that incorporate both discrete and continu-
ous dynamics, with the discrete dynamics governed by
finite automata, and the continuous dynamics repre-
sented by ordinary differential (or difference) equations
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at each discrete state. The discrete dynamics is driven
asynchronously by discrete events, which are assumed
to occur at a fixed rate. In other words, events trig-
ger discrete state transitions, and the discrete state in
turn, determines the dynamics governing the continu-
ous state.

Control theory to date has mainly concentrated on
continuous synchronous centralized control. Current
control methods are almost all based on uniform sam-
pling in time, with all sensors, actuators and processors
synchronized. Signals are transmitted perfectly — none
are lost, and if there is any delay at all, it is fixed. In
the future, however, more and more systems are built
around packet-switched networks, where signals can be
lost, delayed by varying amounts, etc. The current ap-
proach is to design the network so that data transmis-
sion is perfectly predictable — regular sensor samples
arriving every 20 milliseconds, say. Therefore, the chal-
lenge is to develop a new system and control theory
(and practice) that works in the more natural network
environment: asynchronous and packetized.

Asynchronous dynamical systems can have very
complex behavior, even those with very simple dynam-
ics. Hence, as in robust control, it is not surprising
that many problems for such systems are known or con-
jectured to be computationally intractable (NP-hard)
or even undecidable. For example, the stability prob-
lem of a linear time-varying system (which is a simple
asynchronous system) cannot be solved in polynomial-
time [1]. Therefore, it is very unlikely to formulate
control problems for asynchronous systems exactly as
computationally efficient (polynomial-time) optimiza-
tion problems. It is expected, however, to develop some
semi-heuristic methods that are very effective on cer-
tain types of problems. By semi-heuristic we mean a
method that guarantees its results when it works, but
is not guaranteed to work for all input data. Such a
method results, for example, when we search over a
fixed, finite-dimensional class of Lyapunov functions
that guarantee some specification for a given asyn-
chronous system — it may not be possible to find such a
function, but if one is found, the result is unambiguous.



This research is an effort in this direction.
Previous work on asynchronous dynamical systems

in control has mainly focused on the stability of asyn-
chronous multi-rate sampled-data systems and finite-
difference system of equations with unknown (bounded)
delays (cf. [2, 3, 4, 5]). The framework considered in this
work is more general, and in addition to allowing possi-
ble unknown delays in the continuous dynamics, we also
assume that the continuous dynamics are affected by a
finite set of discrete events that occur at a fixed known
rate. This enables us to model, for example, loss in
transmitted signals, “large” periods of silence in com-
munication, multi-rate communication and processing,
and asynchronous inputs in queuing systems. Note that
no statistical assumption is made on the arrival times
of the events.

In this paper, we introduce a Lyapunov-based ap-
proach for analysis and control of such systems. More
importantly, we show that computing Lyapunov func-
tions to prove some level of performance or to design
controllers for such systems can be cast as optimization
problems involving linear matrix inequalities (LMIs)
and bilinear matrix inequalities (BMIs). LMI problems
can be efficiently solved (globally) using widely avail-
able software (see, e.g., [6, 7, 8]), and BMI problems can
be solved (locally) by alternating between LMIs. A very
important and useful feature of this approach is that the
results and analysis tools of robust control can be eas-
ily mixed with those presented here for asynchronous
systems. This enables us to analyze very complex dy-
namical systems that, for example, are asynchronous,
include logic variables, and have various nonlinearities,
structured uncertainties and unknown delays.

In the next section we give a more formal definition
of asynchronous dynamical systems with constraints on
the rate of events, followed by a couple of examples of
such systems. In §3 we present a Lyapunov-based the-
ory for asynchronous dynamical systems. In §4 we show
how Lyapunov functions can be numerically computed
for such systems using SDP. Examples are given in §5
and the paper is concluded in §6.

2 Asynchronous dynamical systems with rate
constraints on events

2.1 Definition
In this paper, an asynchronous dynamical system

(ADS) with rate constraints on events is a tuple

A = (R+, {1, . . . , N},Rn, E, R, I, F ) (1)

where R+ is time, {1, . . . , N} is the discrete state-space,
Rn is the continuous state-space, E is the set of events,
R is the set of event rates, I : {1, . . . , N} → 2E is the
discrete state-event function, and F is the set of con-
tinuous dynamical system functions. Below is a brief
description of each of these and other related concepts
used in this paper.

• Time. This is the set R+. Time is denoted by t.

• Discrete state, continuous state, state-space. The
discrete and continuous states at time t are de-
noted by s(t) and x(t) respectively. For all t,
s(t) ∈ {1, . . . , N} and x(t) ∈ Rn. The state-space
of A is the set {1, . . . , N} × Rn.

• Set of continuous dynamical system functions.
F = {f1, . . . , fN} where fi : Rn → Rn. These
functions determine the dynamics of x at each
discrete state s = i (more below).

• Set of events. E = {E1, . . . , EM} is the set of
possible events Ei.

• Event indicator functions. Define the ith event in-
dicator function ei : R+ → {0, 1} for i = 1, . . . , M
as

ei(t) =
{

1 Ei has occurred at time t
0 otherwise. (2)

• Rate of events. R = {r1, . . . , rM} is the set of
event rates in which ri satisfying 0 ≤ ri ≤ 1 is the
rate of occurrence of event Ei over time. Roughly,
over any time period [t, t + T ] for large enough
T , riT is the total amount of time that Ei has
occurred. In other words,

lim
T→∞

1
T

∫ t+T

t

ei(τ) dτ = ri.

• Discrete state-event sets. The function I :
{1, . . . , N} → 2E assigns a set of events to each
discrete state. By definition, I(i) is the ith dis-
crete state-event set. We assume that

I(i) =
{
Ei1 , Ei2 , . . . EiMi

}
(3)

where e(i)
j ∈ E for j = 1, . . . , Mi The discrete

state event sets determine the evolution of the
discrete state under the influence of the events—
s(t) = i if and only if the events in I(i) have
occurred (more below).

• State dynamics. The evolution of the continuous
state x over time is given by the integral equation

x(t) =

Z t

0

fs(τ)(x) dτ + x(0).

In other words, at discrete state s, the continuous
dynamics are governed by the dynamical equation
ẋ = fs(x). The evolution of the discrete state s
is such that s(t) = i if and only if I(i) is the set
of events occurred at time t. Hence, the discrete
state s(t) remains unchanged until a new event
occurs, so that I(j) becomes the new set of oc-
curred events. At that point s(t) changes to j.



• Trajectory. Roughly speaking, a trajectory of A
is any function (s, x) : R+ → {1, . . . , N} × Rn

where s and x satisfy the discrete and continuous
state dynamics of A respectively.

• Transition diagram. It is possible to associate to
A a directed graph G(A) called a transition dia-
gram. In this graph the nodes correspond to the
discrete states and the arcs between nodes corre-
spond to events that take the discrete state from
one node to the other. Hence, the nodes are la-
beled with the discrete state numbers and the arcs
are labeled with the events (see examples below).
Any trajectory of the discrete state corresponds
to the sequence of nodes along some forward path
in G(A).

2.2 Extensions
It is possible to extend the definition of ADS in the

previous section to more general cases. For example,
we can simply add inputs and outputs by considering
the continuous dynamics ẋ = fi(x, u) and y = gi(x, u)
at discrete state i. Or, we can add delays in the contin-
uous dynamics so that ẋ = fi(x, x(t− τ)). We can also
assume that over any time period [t, t+T ] (T is given),
ri, the rate of occurrence of the ith event is bounded
such that r̄i − δi ≤ ri ≤ r̄i + δi (r̄i, δi are given). In ad-
dition, we can assume bounds on the interarrival times
of different events.

2.3 Examples
In this subsection we present two examples for asyn-

chronous systems. It should be noted that although the
descriptions for these systems appear to be simple, the
behavior of these systems can be extremely complex.

2.3.1 Control over asynchronous network:
Consider the asynchronous control system of Figure 1.
The plant is a linear system with exogenous input w,
control input u, and regulated output z. The controller
is a simple static linear feedback and should be designed
such that z is “small” in the presence of w.

What complicates the control system is that there
are two (sample & hold) asynchronous switches in this
system. To model the sample & hold operation of the
switch (Figure 2), we assume that the dynamics of the
switch when closed is governed by ẋs = −αxs + αp,
q = xs (where the time constant 1/α is “small”), and
the dynamics of the switch when open is governed by
ẋs = −ᾱxs, q = xs (where the time constant 1/ᾱ is
“large”). The first switch has rate r1 and when closed
connects the state x of the plant to the controller. The
second switch has rate r2 and when closed connects the
controller output u to the plant input. This situation
could model, for example, a remote controller which is
connected to the plant over an asynchronous network

ẋ = Ax + B1w + B2u
z = Cx + Du

K

x

u

zw

r2

r1

Figure 1: Asynchronous control system.

p q

Figure 2: Asynchronous sample & hold switch.

such as the internet. Hence, in this case, the measure-
ments x are sent to the controller over an asynchronous
communication link of rate r1 and the controller com-
mands are sent to the plant over an asynchronous com-
munication link of rate r2.

This system can be easily put in the ADS framework
of this paper. The transition diagram for this system is
given in Figure 3, where E1 and Ē1 denote the events
of closing and opening the first switch, and E2 and Ē2

denote the events of closing and opening the second
switch.

At each discrete state of the system or node of the
transition diagram, it is easy to write the dynamics
of the system. For example, at the E1E2 state, both
switches are closed and the continuous dynamics are
given by:

ẋ = Ax + B1w + B2xs,2, z = Cx + Dxs,2,
ẋs,1 = −αxs,1 + αx,
ẋs,2 = −αxs,2 + αKxs,1,

where xs,1(t) ∈ Rn and xs,2(t) ∈ R are the states of the
first and second switches respectively. Or at the Ē1E2

state:

ẋ = Ax + B1w + B2xs,2, z = Cx + Dxs,2,
ẋs,1 = −ᾱxs,1,
ẋs,2 = −αxs,2 + αKxs,1.

(Note that a more realistic model for a control system
over an asynchronous network would also include un-
known delays in the data link.) In §5 we will come
back to this problem, and we will design a controller
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Figure 3: Transition diagram of asynchronous control system.
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Figure 4: Asynchronous dual processor version for fixed-point
problem.

gain K to regulate the output z in the presence of the
disturbance w.

2.3.2 Parallelized algorithm: The fixed
point problem xk+1 = Axk + b converges to the fixed
point x = (I − A)−1b from any initial condition if and
only if all eigenvalues of A lie inside the unit circle
in the complex plane. In this example, however, we
assume that this fixed point problem is implemented
in parallel by separating it into two local problems
operating concurrently, say, on two different processors
P and P̄. The situation is shown schematically in
Figure 4, where we assume P performs the iteration
for the upper half and P̄ performs the iteration for the
lower half of x. Each processor does not have to wait
for information to become available from the other
processor. The only assumption is that P makes its
state available to P̄ at rate r1 and P̄ makes its state
available to P at rate r2. The question is whether this
asynchronous implementation version of the fixed point
problem is stable and converges to x = (I − A)−1b.

To explain this asynchronous fixed point problem in
more detail, suppose that A and b are partitioned as

A =
[

A11 A12

A21 A22

]
, b =

[
b1

b2

]
.

Furthermore, assume that the states of P and P̄ at time
k are partitioned (consistently) respectively as follows:

xk =
[

x1,k

x2,k

]
, x̄k =

[
x̄1,k

x̄2,k

]
.

Depending on the position of the switches in Figure 4
(described by events E1,E2,Ē1,Ē2 as in the previous
example) the iteration would be different. For example,
when both switches are open:

P : x1,k+1 = A11x1,k + A12x2,k + b1

x2,k+1 = x2,k

P̄ : x̄1,k+1 = x̄1,k

x̄1,k+1 = A21x̄1,k + A22x̄2,k + b2.

In other words, when the switches are open, the pro-
cessors continue updating their states without using the
state information from the other processor. When both
switches are closed:

P : x1,k+1 = A11x1,k + A12x̄2,k + b1

x2,k+1 = x̄2,k

P̄ : x̄1,k+1 = x1,k

x̄1,k+1 = A21x1,k + A22x̄2,k + b2,

so each processor uses the state information from the
other processor to update its state. The state update
equations for the two other positions of the switches
can be similarly written. We will come back to this
example in §5.2 and prove stability of such a parallelized
asynchronous fixed point problem using the methods
presented in this paper.

3 Lyapunov-based theory for ADS

In this section we present a Lyapunov-based theory
for analysis of ADS. In classical Lyapunov theory we
require a Lyapunov function to decrease monotonically
along state trajectories of the system to prove stability.
Here, on the other hand, we require a Lyapunov-type
function to decrease “on the average” along state trajec-
tories of the asynchronous system. In the following sub-
sections we give conditions on a Lyapunov-type func-
tion V which proves different performance measures for
ADS.

3.1 Exponential stability
By definition, an ADS is exponentially stable if

lim
t→∞ eαt‖x(t)‖ = 0



for some α > 0. The largest such α is referred to as the
decay rate of the system. Clearly, exponential stabil-
ity implies uniform asymptotic stability. In what fol-
lows we present a Lyapunov-type argument to compute
bounds on the decay rate of an ADS.

Suppose V : Rn → R+, that V is continuously
differentiable and

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2 (4)

where β1,2 > 0. The decay rate of the ADS is greater
than α if the scalars α1, α2, . . . , αM exist such that

r1α1 + r2α2 + · · · rMαM > α > 0 (5)

and

DV (x)fi(x) ≤ −2(αi1 + αi2 + · · · + αiMi
)V (x) (6)

for i = 1, . . . , N , in which ij for j = 1, . . . , Mi are
defined in (3). These conditions roughly state that V
does not have to decrease monotonically at some rate
α along state trajectories, but rather it should decrease
at a rate α “on the average”. For example, it might be
possible that αi1 + · · · + αiMi

< 0 for some i so that V
increases at discrete state i. However, as long as the
“average rate” r1α1+· · · rMαM > 0 the system remains
exponentially stable.

The proof is as follows. Suppose that the discrete
state transitions of any trajectory of the system occur
at times 0 = t1 < t2 < t3 < · · ·, so that s(t) is constant
for t ∈ [tk, tk+1]. Then, for t ∈ [tk, tk+1], condition (6)
gives

V̇ (x(t))
V (x(t))

≤ −2(αs1 + αs2 + · · · + αsMs
)

or

log V (x(tk+1)) − log V (x(tk)) ≤
− 2αs1(tk+1 − tk) + · · · + αsMs

(tk+1 − tk).
(7)

Note that whenever an event Ei occurs we have a con-
tributing term αi(tk+1 − tk) at the right hand side
of (7). Hence, summing up these inequalities for k =
1, 2, . . . , K − 1 gives

log V (x(tK)) − log V (x(0)) ≤
− 2α1

(
total time

E1 occurred

)
− · · · − 2αM

(
total time

EM occurred

)
.

In the limit, the total time event Ei occurs is equal to
ritK as K → ∞. Therefore

log V (x(tK)) − log V (x(0)) ≤
− 2α1r1tK − · · · − 2αMrM tK

or by (5)

log V (x(tK)) − log V (x(0)) < −2αtK

so that
V (x(tK)) < e−2αtK V (x(0)).

Now using (4) we get

eαtK‖x(tK)‖ <

√
β2

β1
‖x(0)‖

or
lim

K→∞
eαtK‖x(tK)‖ = 0.

Remark. If the evolution of x is given by a
difference equation xk+1 = fs(xk) instead of
the differential equation ẋ(t) = fs(x(t)), a suf-
ficient condition for exponential stability, is the
existence of V as in (4), and α1, α2, . . . , αM > 0
satisfying

V (xk+1)−V (xk) ≤ (α−2
i1

α−2
i2

· · ·α−2
iMi

−1)V (xk)

and
αr1

1 αr2
2 · · ·αrM

M > α > 1.

This last condition can be equivalently written
as

r1 log α1+r2 log α2+· · ·+rM log αM > log α > 0.

Under these conditions limk→∞ αk‖xk‖ = 0.

3.2 Invariant sets over period T
In classical Lyapunov theory the level sets of Lya-

punov functions of a system are invariant sets for the
system. In order to be able to say something about
invariant sets for ADS we need to have a bound on the
event rates over some finite period of time T .

Specifically, suppose that over any period of time of
length T

r̄i − δi ≤ ri ≤ r̄i + δi.

Moreover, suppose that

α = min {r1α1 + · · · + rMαM | r̄i − δi ≤ ri ≤ r̄i + δi,

i = 1, . . . , M} ,

and condition (6) holds. Then using a similar argument
to the previous subsection it can be shown that

V (x(T )) < e−2αT V (x(0)).

So if V (x(0)) ≤ η, we have V (x(T )) ≤ η since e−2αT <
1. In other words, the level sets of the Lyapunov-type
function V are invariant if we consider samples of x at
times 0, T, 2T, 3T , etc.

3.3 Bound on return time
Suppose that as in the previous subsection we have

bounds on the event rates over any time interval of
length T . The return time of a stable ADS for the
set P ⊂ Rn is defined as the smallest Tr such that if



x(0) ∈ P , then x(t) ∈ P for t = Tr, Tr + T, Tr + 2T , etc.
Let

Eη = {x | V (x) ≤ η}
and suppose that

e−α(kT )Eη ⊆ P ⊆ Eη. (8)

Since Eη is an invariant ellipsoid for samples of x at
integer multiples of T , and moreover x(0) ∈ P implies
x(t) ∈ e−αtEη for t = 0, T, 2T, . . ., from (8) we can
conclude that if x(0) ∈ P then x(t) ∈ P for t = kT, kT+
T, kT + 2T , etc. In other words, Tr = kT is an upper
bound on the return time.

3.4 Bound on L∞ to RMS gain
In this subsection we assume that the dynamics of

the continuous state at discrete state i of the ADS is
given by

ẋ = fi(x, w), z = gi(x, w),

where w is the exogenous input and z is the regulated
output of the system. Here we give a condition for a
bound on the L∞ to RMS induced gain from w to z
defined as

sup
‖w‖∞ 6=0, x(0)=0

(
lim supT→∞

1
T

∫ T

0 zT z dt
)1/2

‖w‖∞ . (9)

The L∞ to RMS gain of the ADS is less than γ if
there exists γ1, γ2, . . . , γM such that

r1γ
2
1 + r2γ

2
2 + · · · rMγ2

M < γ2 (10)

and

DV (x)fi(x, w) ≤ (γ2
i1+γ2

i2+· · ·+γ2
iMi

)wT w−zT z (11)

for i = 1, . . . , N , in which ij for j = 1, . . . , Mi are
defined in (3).

The proof is as follows. Suppose that the discrete
state transitions of any trajectory of the system occur at
times 0 = t1 < t2 < t3 < · · ·, so that s(t) is constant for
t ∈ [tk, tk+1]. Then, for t ∈ [tk, tk+1], condition (11)
gives

V̇ (x(t)) ≤ (γ2
i1 + γ2

i2 + · · · + γ2
iMi

)wT w − zT z

or
V (x(tk+1)) − V (x(tk)) ≤

(γ2
i1 + · · · + γ2

iMi
)
∫ tk+1

tk

wT w dt −
∫ tk+1

tk

zT z dt ≤

(γ2
i1

+ · · · + γ2
iMi

)(tk − tk+1)‖w‖2
∞ −

∫ tk+1

tk

zT z dt.

Now summing up these inequalities for k =
1, 2, . . . , K − 1 gives

V (x(tK)) − V (x(0)) ≤ γ2
1

(
total time

E1 occurred

)
‖w‖2∞ + · · ·

+ γ2
M

(
total time

EM occurred

)
‖w‖2∞ −

∫ tK

0

zT z dt.

In the limit, the total time event Ei occurs is equal to
ritK as K → ∞. Therefore, since x(0) = 0

V (x(tK)) ≤ γ2
1r1tK‖w‖2

∞ + · · ·

+ γ2
MrM tK‖w‖2

∞ −
∫ tK

0

zT z dt.

Using (10) and since V (x(tK)) ≥ 0 we get

1
tK

∫ tK

0 zT z dt

‖w‖2∞
≤ γ2.

In other words, the L∞ to RMS gain of the system is
less than γ.

Remark. Note that the method just described
for bounding the L∞ to RMS gain of a given
ADS would not work if any of the dynamical
systems ẋ = fi(x, w), z = g(x,w) are unsta-
ble (and therefore have an induced L2 gain of
infinity). This conservatism can be fixed by re-
quiring

DV (x)fi(x, w) ≤ (γ2
i1 + · · · + γ2

iMi
)wT w−

zT z − 2(αi1 + · · · + αiMi
)V (x)

(12)

with r1α1 + · · · + rMαM > 0 instead of (11).

4 Numerical computation of Lyapunov
functions for ADS

In the previous section we presented a Lyapunov-
based theory for ADS. In this section we demonstrate
methods to actually compute Lyapunov functions for
such systems using semidefinite programming (SDP).
This is done by searching over a fixed finite-dimensional
class of Lyapunov functions.

Different classes of Lyapunov functions have been
proposed in the control literature for analyzing var-
ious types of (nonlinear) dynamical systems. These
include quadratic Lyapunov functions, quadratic plus
integral of the nonlinearity Lyapunov functions,
quadratic plus integral quadratic terms Lyapunov func-
tions, piecewise-quadratic Lyapunov functions, path-
dependent Lyapunov functionals, etc. See, for exam-
ple, [9, 10, 11, 12, 13, 14] and references therein. Each
of these classes of Lyapunov functions are effective on
certain types of nonlinear dynamical systems. For ex-
ample, the quadratic plus integral of nonlinearity Lya-
punov function is useful for analyzing the Luré sys-
tem and leads to the well-known Popov criterion. Or
Lyapunov functions involving integral quadratic con-
straints (IQCs) can be used to analyze many different
nonlinear uncertain systems, such as systems with un-
known delays, odd monotone sector-bounded nonlin-
earities, hysteresis nonlinearities, etc.

In this section we search over simple quadratic Lya-
punov functions V given by

V (x) = xT Px, P � 0.



and we assume that the functions fi are linear so that
the continuous dynamics is linear at each discrete state
of the ADS, i.e.,

ẋ = Asx, s = 1, . . . , N.

We show that finding such a V that proves stability
or bounds the L∞ to RMS gain of a given ADS can
be cast as LMI or BMI problems which can then be
solved (globally or locally) using widely available soft-
ware. Constructing quadratic Lyapunov functions for
proving other performance measures can be handled
similarly. We also briefly explain how controller syn-
thesis can be performed in this framework.

Note that the following results can be easily ex-
tended when the search is performed over more sophis-
ticated classes of Lyapunov functions suitable for differ-
ent types of nonlinear fi’s. For example, if the contin-
uous dynamics at each discrete state is a Luré system
or a system involving unknown time delays, in order to
get less conservative results, we can respectively search
over Popov Lyapunov functions or IQCs for unknown
time delays.

4.1 Analysis of exponential stability
With V (x) = xT Px and fi(x) = Aix condition (6)

can be written as

xT (AT
i P + PAi)x ≤ −2(αi1 + αi2 + · · · + αiMi

)V (x)

which is equivalent to the matrix inequality

AT
i P + PAi � −2(αi1 + αi2 + · · · + αiMi

)P. (13)

Hence (13) with P � 0 and (5) give a sufficient condi-
tion for asymptotic stability of the ADS in the design
parameters P , and αi for i = 1, . . . , N . (13) is an LMI
in P for fixed αi’s, and a linear inequality constraint
in αi’s for fixed P . Therefore, the condition for expo-
nential stability is given in terms of a BMI. This BMI
can be solved locally by alternating between LMIs by
solving SDPs, or globally using a branch and bound
technique on the αi’s to find, if any, a feasible set of
design parameters.

Remark. If the evolution of x is given by the

difference equation xk+1 = Asxk instead of the

differential equation ẋ(t) = Asx(t), it can be

shown that the sufficient condition for exponen-

tial stability given in the Remark of §3.1 with

V (x) = xT Px is equivalent to a matrix inequal-

ity which is an LMI in P for fixed αi’s and is a

linear inequality in log αi’s for fixed P .

4.2 Computing bound on L∞ to RMS gain
Here we assume that

fi(x, w) = Aix + Biw, gi(x, w) = Cix

and therefore condition (11) with V (x) = xT Px be-
comes[

AT
i P + PAi + CT

i Ci PBi

BT
i P −(γ2

i1
+ · · · + γ2

iMi
)I

]
≺ 0.

(14)
This with P � 0 and (10) give a sufficient condition
for an L∞ to RMS gain of less than γ. The optimum
bound on the gain can be computed by minimizing γ2

subject to these constraints using SDP.

4.3 Joint controller and Lyapunov function de-
sign

It is possible to jointly design a controller to achieve
a given level of performance and a Lyapunov function
that proves that level of performance. This can be done,
for example, by replacing the open-loop system matri-
ces Ai, Bi, and Ci by the closed-loop system matrices
in the equations above. In general the matrix inequal-
ities now become bilinear in the matrix P and control
parameters and a so-called V -K iteration is required to
solve the problem. In many cases, however, it is possi-
ble to convert the BMI to a linear matrix inequality by
a change of variables (see, e.g., [9]). In such cases, the
problem can be solved globally using SDP.

5 Numerical examples

5.1 Control over asynchronous network
In this example we consider controller design un-

der the setup of §2.3.1. The system to be controlled is
the simple mechanical system of Figure 5 with k1 = 1,
k2 = 1, b1 = 1, and b2 = 1. The exogenous input
w and regulated output z are the force applied to the
first mass and the displacement of the first mass re-
spectively. The control input u is the force applied to
the second mass. The goal is to design a constant gain
controller defined by K ∈ R1×4 in the asynchronous
environment of Figure 1 with r1 = r2 = 0.9 to reduce
the RMS gain from input w to output z = x1. The
open-loop RMS gain is γOL = 1.5, and the modes of the
mechanical system are

p1,2 = −0.1309± j0.9511, p3,4 = −0.0191± j0.5878.

The problem of designing K is an output-feedback
problem and can be cast as a BMI using the method
of §4.2. The resulting BMI can be solved (locally) us-
ing a V − K iteration. That is, for a fixed controller
K we design a Lyapunov function V that proves (a
bound on) system performance, and then for a fixed
Lyapunov function V we design a controller K to im-
prove (a bound on) system performance, and we iterate
until there is no improvement in system performance.

To get an initial controller gain K for the V − K
iteration, we designed an H∞ linear constant state-
feedback controller for the plant using the regulating



output zu = [x1 0.1u]T with γ = 1. The V − K iter-
ation for the asynchronous control system of Figure 5
then resulted in

K =
[ −1.5336 −0.3252 −2.0247 −0.1021

]
and a provable level of L∞ to RMS gain from w to z =
x1 of less than γCL,async = 1. This is a 50% improvement
over the open-loop gain. Note that the optimum state-
feedback H∞ controller in a synchronous environment
would give γCL,sync = 0.4.

b1

k1

M1 = 1

x1

w

b2

k2

x2

M2 = 1 u

Figure 5: Simple mechanical system considered in the
asynchronous environment of Figure 1.

5.2 Parallelized algorithm
Here we study the stability of the parallelized asyn-

chronous fixed point problem of §2.3.2 using the anal-
ysis methods of this paper. Specifically, suppose that

xk+1 = Axk, A =
[

0.8558 −0.2895
0.7295 −0.6558

]

The eigenvalues of A are 0.7 and −0.5 so the (syn-
chronous) fixed point problem is stable with a decay
rate of 1/0.7 = 1.43, so xk converges to the fixed point
x = 0 as k → ∞.

Under the setup of §2.3.2, for the asynchronous ver-
sion of this problem

A11 = 0.8558, A12 = −0.2895,
A21 = 0.7295, A22 = −0.6558.

We assume that r1 = r2 = 0.8 so that P and P̄ com-
municate asynchronously 80% of the time. Using the
method of §4.1, a P ∈ SR4×4 can be computed such
that V (x) = xT Px proves exponential stability for this
asynchronous fixed point problem. Specifically we got

P =




17.3374 −0.7766 −3.9773 −5.4321
−0.7766 2.4066 −1.4905 1.9887
−3.9773 −1.4905 4.4845 −2.3577
−5.4321 1.9887 −2.3577 10.3086




α1 = 1.1669, α2 = 1.2242,
ᾱ1 = 0.5897, ᾱ2 = 0.5626

where α1, α2, ᾱ1 and ᾱ2 correspond to the events E1,
E2, Ē1 and Ē2 respectively. These values prove a de-
cay rate of at least α = 1.11 for the asynchronous par-
allelized implementation of the algorithm. If we as-
sume that r1 = r2 = 0.9 it is possible to prove a decay

rate bound of α = 1.25. Hence, in this case, the asyn-
chronous parallelized implementation using two proces-
sors which communicate 90% of the time is guaran-
teed to outperform the synchronous implementation,
since the decay rate of the synchronous iteration is
1.43 < 1.252 = 1.56 (assuming P and P̄ can oper-
ate twice as fast because they only perform half of the
computation).

Note that abs(A), i.e., the matrix with elements
equal to the absolute values of the elements of A, has
an eigenvalue of 1.2261 > 1. Therefore, according to [4,
p.435] for example, in an asynchronous implementation
of this problem with communication delays, if delays
of greater than two are allowed the iteration can be-
come unstable. The setup in this example is different,
however, and we assume there are no delays when the
processors communicate. On the other hand, we as-
sume that the processors do not communicate at all
times, but only asynchronously at fixed rates given by
the values of r1 and r2. Hence we allow, for example,
“large” periods of time over which no communication
occurs, or possibly data loss in transmission.

Note that to deal with unknown communication de-
lays, or quantization and finite precision errors, one can
use a richer class of Lyapunov functions V from robust
control that, for example, incorporate IQC terms to
handle unknown delays or quantization nonlinearities
(see, e.g., [12]).

6 Conclusions

In this paper we introduced a Lyapunov-based
method for analysis and controller design for asyn-
chronous dynamical systems with rate constraints on
events. It was shown that for various performance mea-
sures, the analysis and controller design can be cast as
LMI or BMI problems which can then be solved (glob-
ally or locally) using SDP. Examples were also included
to demonstrate the effectiveness of the approach.

Although we only considered computing quadratic
Lyapunov functions for asynchronous systems in which
the continuous dynamics is linear at each discrete state,
it is possible to consider more complicated continuous
dynamics and extend these results by searching over
richer classes of Lyapunov functions from robust con-
trol. For example, we can assume unknown delays and
various nonlinearities in the continuous dynamics. Ba-
sically, it is possible to mix many results and analysis
tools from nonlinear robust control within this asyn-
chronous framework.
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