
Development of a Hindi Lemmatizer
Snigdha Paul#1, Nisheeth Joshi#2, Iti Mathur#3

#
Apaji Institute, Banasthali University, Rajasthan, India

1
snigdha.pal18@gmail.com

2
nisheeth.joshi@rediffmail.com

3
mathur_iti@rediffmail.com

Abstract— We live in a translingual society, in order to

communicate with people from different parts of the world we

need to have an expertise in their respective languages. Learning

all these languages is not at all possible; therefore we need a

mechanism which can do this task for us. Machine translators

have emerged as a tool which can perform this task. In order to

develop a machine translator we need to develop several

different rules. The very first module that comes in machine

translation pipeline is morphological analysis. Stemming and

lemmatization comes under morphological analysis. In this paper

we have created a lemmatizer which generates rules for

removing the affixes along with the addition of rules for

creating a proper root word.

Keywords— lemmatizer, lemmatization, inflectional, derivational.

I. INTRODUCTION

Morphological analysis is one of the most important part

of linguistic analysis where we study the structure of words.

This analysis is used to segment the words into morphemes.

For the analysis of text in any language morphological

analyzer is one of the foremost step. When we talk about

language the first thing that comes in our mind is a “Word.”

Language is vast and has a huge diversification in words.

These words make up a language. So in order to have

knowledge about any language we need to know about its

word structure. Language like Hindi is morphologically rich

and need a keen analysis of words so that we can acquire its

meaning and grammatical information. Lemmatization is the

most important part of morphological analysis. With

lemmatization we come to know the root word. Further by

applying morphological tactics all the features of a particular

word is shown. Morphology shows all the features of a

particular word. By this analysis we come to know the

category, gender, number, case, etc. thus we get all the

information about a word which tend us to understand the

language.

Morphology has two main broad classes: inflectional

morphology and derivational morphology. Inflectional

morphology is the study of those words which when inflected

does not change the class and is formed from the existing stem,

for example - we have a word खज़ानाखज़ानाखज़ानाखज़ाना which when added with

a suffix becomes खज़ानचीखज़ानचीखज़ानचीखज़ानची. The derived word doesn’t change

its word class that is both खज़ानाखज़ानाखज़ानाखज़ाना and खज़ानचीखज़ानचीखज़ानचीखज़ानची belong to noun

class. Derivational morphology is the study of those words

which when inflected changes the class and new word

formation takes place from the existing stem, for example –

the word सजासजासजासजा when suffixed with वटवटवटवट gives a derived word

सजावट which belongs to a different class, that is the word

सजा is verb but when suffixed, gives us noun (सजावटसजावटसजावटसजावट).Thus

we have root words which are affixed with several

morphemes. Generally when we look up a dictionary we get

almost all the root words but their derivated forms are rarely

found.

To overcome this problem we have morphological

analyzer. The analyzer is a way to get the derivated word from

the root thereby giving its features. In this paper we aim to

develop a tool for executing the inflectional analysis of Hindi

by using rule based approach. In this approach, in order to

obtain the suffix list the foremost thing that we did is the study

of various Hindi words. After getting the suffix list we created

rules. These rules also include the addition and deletion of

characters to make the word a proper root or stem. Here we do

not emphasize on the grammatical information of the words

which are categorized as number, person and gender. Along

with this analysis the rest of the paper includes linguistic

background of Hindi. Approach that we have applied is,

generation of suffixes and rules.

II. RELATED WORK

A lot of research work has been done and is still going on for

the development of a stemmer as well as lemmatizer. The first

stemmer was developed by Julie Beth Lovins [12] in 1968.

Later the stemmer was improved by Martin Porter [11] in July,

1980 for English language. The proposed algorithm is one of

the most accepted methods for stemming where automatic

removal of affixes is done from English words. The algorithm

has been implemented as a program in BCPL. Much work has

been done in developing the lemmatizer of English and other

European languages. In contrast, very little work has been

done for the development of lemmatization for Indian

languages. A rule based approach proposed by Plisson et al.

[10] is one of the most accepted lemmatizing algorithms. It is

based on the word endings where the suffix should be

removed or added to get the normalized form. It emphasizes

on two word lemmatization algorithm which is based on if-

then rules and the ripple down approach. The work proposed

by Goyal et al. [1] focuses on the development of a

morphological analyzer and generator. They aimed to develop

a translation system especially from Hindi to Punjabi. Nikhil

K V S [5] built a Hindi derivational analyzer using a specific

 International Journal of Computational Linguistics and Natural Language Processing Vol 2 Issue 5 May 2013
 ISSN 2279 – 0756

Snigdha Paul et.al. www.ijclnlp.org 380

tool. He used supervised approach by creating a SVM

classifier. Jena et al. [6] proposed a morphological analyzer

for Oriya language by using the paradigm approach. They

classified nouns, adjectives and finite verbs of Oriya by using

various paradigm tables. Anand Kumar et al. [4] developed an

automatic system for the analysis of Tamil morphology. They

used various methodologies, rule based approach and

sequence labelling containing the non linear relationships of

morphological features from the training data in a better way.

Chachoo et al. [3] used an extract tool named Extract v2.0

for the development of the orthographic component of

Kashmiri Script. A method has been proposed by Majumder et

al. [9] in which a clustering based approach is used for

discovering the equivalent classes of root words. This

algorithm was tested for two languages French and Bangla. A

rule based approach for stemming in Hindi was proposed by

Ramanathan & Rao [8]. The approach is based on stripping

off suffixes by generating rules emphasizing on noun,

adjective and verb inflections in Hindi. Bharti Akshar et al. [2]

proposed the work on natural language processing where they

gave a detailed study of morphology using paradigm approach.

Gupta et al. [13] proposed unsupervised approach for

stemming where they have used partial lemmatization along

with some database. They aimed to improve unsupervised

stemming by removing over-stemming problem. Mohd.

Shahid Husain [14] developed a stemmer by using

unsupervised approach. He used two different approaches

frequency based and length based method for suffix stripping

where he used Emille corpus for Urdu and Marathi languages.

III. LINGUISTIC BACKGROUND OF HINDI

Morphemes play a major role in morphology. This is the

major way in which morphologists investigate words, then

internal structure and their formation. Morphology is broadly

categorized into two parts: derivational morphology and

inflectional morphology. Derivational morphology processes

the words and form new lexemes from the existing ones. This

is done by either adding or deleting affixes. For example –

स�चा + ई = स�चाई. The class of the word is changed from

adjective to noun. Similarly, in English we have words like

computer + ization = computerization, where the class is

changed from noun to adjective. Inflectional morphology

processes the words by producing various inflections without

changing the word class. For example –
कताब + ◌े◌ं =
कताब�

where
कताब is noun/singular while
कताब� is noun/plural.

The class remains same here. The root form of the words

basically comes under noun and verb classes. This knowledge

lead us to trace the paradigm approach. According to Smriti

Singh and Vaijayanthi M Sarma [7], Hindi noun classification

system shows only the number and case for morphological

analysis. Number basically includes either singular or plural.

By default we keep the number of a word as singular. Case on

Hindi words is of two types – direct and oblique. Oblique

words show the case as well as the number of the word. For

example – लड़क – ◌ा, लड़क – ◌,े here ◌ा shows singular

number whereas ◌ े shows plural number. Similarly we also

have some gender rules. In Hindi, words that end with the

suffix ◌ी are marked feminine whereas the words that end

with suffix ◌ा are marked as masculine. For example लड़का is

masculine ending with ◌ा while लड़क� is feminine ending with

◌ी. But there are many words that contradict this concept. For

example – we have the word पानी (water) which is masculine

although it is ending with ◌ी. Similarly we have another word

माला (garland) which is feminine even though ending with ◌ा.
There are also some words which has the suffix that cannot be

removed. For example – let us consider the suffix ◌ा, the

words �पता, माता, ब�चा, कटोरा, नेता, and many more does not

require stemming. Such words need to be maintained as it is

and should be refrained from being stemmed. So we find that

Hindi is a highly inflected language which needs the deep

study of word structure and its formation.

IV. PROPOSED WORK

In this paper we have discussed about the creation of a

Hindi lemmatizer. Our approach is based on the key concept

of optimization. Optimization includes both space and time, so

our approach is based on these parameters. The lemmatizer

that we discuss here mainly focuses on the time complexity.

Typically a lemmatizer is built using rule based approach. In

rule based approach along with the rules, knowledgebase is

created for storing the grammatical features. Although the

knowledgebase creation requires a large amount of memory,

but in respect of time it gives us the best, accurate and fast

result. The reason behind this fast retrieval is that, a very short

time is taken to search the input word from the knowledgebase.

A study has been conducted in Tamil which shows that Tamil

words have infinite set of inflections but Hindi words have

finite set of inflections which are quite easy to maintain in the

knowledgebase. We have restricted our knowledgebase to

commonly used words which do not contain the proper nouns

like the names of person and place.

A. Approach Used

Although there are many approaches for performing

lemmatization like supervised approach, rule based approach,

unsupervised approach, but among these approaches rule

based approach is one of the most acceptable approach. We

have used rule based approach for extracting the suffixes. In

rule based approach we have created many different rules for

eliminating the suffixes. Since rule based approach totally

works according to the rules therefore there is a less chance of

error in obtaining the output. Rule based approach also

optimizes the work by which we can get the result in a blink

of an eye.

B. Suffix Generation

For the development of a lemmatizer we have gone

through various words with their suffixes and examined the

 International Journal of Computational Linguistics and Natural Language Processing Vol 2 Issue 5 May 2013
 ISSN 2279 – 0756

Snigdha Paul et.al. www.ijclnlp.org 381

morphological changes. These suffixes and changes led to the

development of specific rules. For example – If we take the

word कमज़ोर� (weakness) then we find that the word is

derived by adding ◌ी suffix. Similarly there are many other

words with the same suffix. Some of them are shown in Table

I and II

TABLE I

EXAMPLE OF DERIVED WORDS WITH SUFFIX ◌ी

Root Word Derived Word

कमज़ोर कमज़ोर�

 खुश खुशी

गरम गम!

गर�ब गर�बी

सद# सद$

TABLE II

SOME MORE SUFFIXES

Root Word Derived Word Suffix

लड़क� लड़
कया &◌या

साफ़ सफ़ाई ई

गंभीर गंभीरता ता

सौदा सौदागर गर

क�चा क�चापन पन

पढ़ पढ़ाई ◌ाई

असली असिलयत इयत

Since the work has been done manually therefore this

phase was quite time consuming. The suffixes were generated

by processing a corpus of 20,000 sentences from which 55

lakh words were manually stemmed out of which 112 suffixes

were derived.

C. Rule Generation

After the generation of suffix list we have developed rules.

We have created 112 rules which are framed in such a way

that the suffix gets removed from the input word and if

required, addition of character or ‘maatra’ takes place. For

example – let us take the suffix ◌ो◌ं. Fig 1 shows the working

of the rule for this suffix.

Fig. 1 Working of a Rule

Table III illustrates this process.

TABLE III

WORDS SHOWING THE SUFFIX ◌ो◌ं

 Rule application

Word Root Extraction of

suffix

Addition of

character

लड़क. लड़का ◌ो◌ ं ◌ा

बालक. बालक ◌ो◌ ं __

नाग/रक. नाग/रक ◌ो◌ ं __

In the above table on removing the suffix ◌ो◌ं we get their

respective root word. But the word लड़क. is an exception here

because on removing the suffix ◌ो◌ं we need to add ◌ा to the

last letter of the word to make it a genuine root word’ लड़का.’
Similarly there are many other rules for removing the suffix

and if necessary addition of character may also take place.

Similarly we also have some other rules, like the rule for

extracting the suffix &◌य. which is shown in Table IV.

TABLE IV

WORDS SHOWING THE SUFFIX &◌य.

 Rule application

Word Root Extraction of

suffix

Addition of

character

लड़
कय. लड़क� &◌य. ◌ी

कहािनय. कहानी &◌य. ◌ी

क�वय. क�व &◌य. &◌ (exception)

िच
ड़य. िच
ड़या &◌य. &◌या
(exception)

Since we know that in Hindi, when we remove the

plural, we need to add ◌ी to the last letter of the word. This is

the general grammar rule. Table 4 mentions the rule for the

suffix &◌य. in which we have created a general rule for

removing the suffix and adding ◌ी to the word, but we have

some exceptions here which include the addition of &◌ instead

of ◌ी. In the above table we have also shown an exception in

the last word िच
ड़य. where the root form is िच
ड़या. This
लड़क. Ð ◌ो◌ ं+ ◌ा = लड़का

सड़क. Ð ◌ो◌ ं= सड़क

 International Journal of Computational Linguistics and Natural Language Processing Vol 2 Issue 5 May 2013
 ISSN 2279 – 0756

Snigdha Paul et.al. www.ijclnlp.org 382

word contains two suffixes together which are &◌य. and ◌ो◌.ं

This becomes hard for the system as it finds difficulty in

picking up the correct rule for the particular word. Similarly

there are many more exceptions for which we have generated

different rules. To overcome such problems we have built a

database in which such exceptional words are kept. Although

this work requires much time but for the sake of fast and

accurate result this approach is applied. The rule is shown in

Fig 2-

Fig. 2 Rule procedure

D. Algorithmic Steps

The input word is first checked in database. If the word

exists in the database then it is displayed as output but if the

word doesn’t exist in the database then the rules are accessed

for stripping out the suffix. The rules work by deleting the

suffix from the input. After deletion, if the word provides a

proper meaning then it is displayed as a result otherwise a

particular character or matra is added to the stripped word to

make it a proper meaningful word. The steps are shown in Fig

3.

Fig. 3 Algorithm

V. EVALUATION

The system is evaluated for its accuracy where we gave

500 words for lemmatization. Among these 500 words 456

words were correctly lemmatized and 44 words were incorrect

because they violated both the exceptional and general rules.

Accuracy of the system was computed using the following

equation-

Accuracy= 91%

Some of the input words are shown in Fig 4-

Fig. 4 Snapshot of inputs

The output of some of these words are shown in Table V-

TABLE V

SEPARATED LEMMA AND SUFFIXES

Lemma Suffix

नज़र ◌◌े ं

सड़क ◌ो◌ ं

लड़क� -

खुश ◌ी

भारत ◌ीयता

मजदरू ◌ी

बािलका ओ ं

�व8ास नीय

सफल ताओ ं

लड़का ◌ो◌ ं

संशोध न

ितजोर� य.

लड़क� &◌याँ

<यादा -

Some of the wrong output words are shown in Fig 5-

Fig. 5 Snapshot of errors

VI. CONCLUSION

In this paper we have discussed the development of a

lemmatizer for Hindi. The work uses the rule based approach

by creating knowledgebase which contains all the Hindi words

that are commonly used in day to day life. The approach also

emphasized on time optimization problem rather than on

space. Since nowadays space is not at all a big problem,

therefore our approach aimed to optimize time and generate

accurate result in a very short period. Our system gave 91% of

accuracy.

नज़र�, सड़क., लड़क�, लड़
कयाँ, खशुी, भारतीयता, मजदरू�, िमठाई,

बािलकाओ,ं िन8ःनीय, गौरवां�वत, सफलताओ,ं लड़क., मं&ज़ल�, �वदा,

<यादा, पढ़ाई, क�वय., ितजो/रय., सतरंगी, आत
ंकय., बनुाई,

नकाराAमक, नतेाओं, अपमािनत, िच
ड़य., सशंोधन, श�Bशाली,

शीलःय.

�ववेचना, उEोगपित, कFकार�, कFकार, आGयाAमक, HानाAमक, कलाबित,

शांित�ूयता, िमKान, गुणवMा, गुणकार�, िनरंतर, नकलची, िनंदनीय,

ॐजनाAमक, सौभाOयशाली, ःवावलंबन, तमPनाए,ं य&णत, दयाल,ु चौक�दार,

चमक�ला, �वधुतीकरण.

If (root) present in (knowledgebase)

{

 Fetch the root from the list

 Display;

}

else if (root) not present in (knowledgebase)

{

 If (source) ends with (suffix)

{

 Substring the source

 Display the root;

}

}

1. Check input word in knowledgebase.

2. Display if exist.

3. Otherwise access the rules.

4. Generate suffix stripping rules

i. Delete the suffix.

ii. Delete & add characters.

 International Journal of Computational Linguistics and Natural Language Processing Vol 2 Issue 5 May 2013
 ISSN 2279 – 0756

Snigdha Paul et.al. www.ijclnlp.org 383

REFERENCES

[1] Vishal Goyal and Gurpreet Singh Lehal, “Hindi Morphological and

Generator,” IEEE Computer Society Press California USA, pp. 1156-

1159, 2008.

[2] Bharti Akshar, Vineet Chaitanya and Rajeev Sangal, The Natural

Language Processing:A Paninian Perspective, 1995.

[3] Manzoor Ahmed Chachoo and S.M.K Quadri, “Morphological

Analysis from the raw Kashmiri Corpus Using Open Source Extract
Tool,” Vol. 7, No. 2, 2011.

[4] Anand Kumar M, Dhanlakshmi V and Sonam K.P, “A sequence

labeling approach to morphological analyzer for tamil language,”
International Journal on Compter Science and Engineering, Vol. 02,

No. 06, 2010.
[5] Nikhil K V S, “Hindi derivational morphological analyzer,” Language

Technologies Research Center, IIIT Hyderabad, 2012

[6] Itisree Jena, Sriram Chaudhary, Himani Chaudhary and Dipti M.
Sarma,”Developing Oriya Morphological Analyzer Using Lt-toolbox,”

ICISIL 2011, CCIS 139, pp. 124-129, 2011.

[7] Smriti Singh and Vaijayanti M Sarma, “Hindi Noun Inflection and
Distributed Morphology.”

[8] A. Ramnathan, D Rao, “A lightweight Stemmer for Hindi,” In

 Proceedings of Workshop on Computational Linguistics for South

 Asian Languages, 10th Conference of the European Chapter of

 Association of Computational Linguistcs. pp 42-48. 2003.

[9] Prasenjit Majumder, Mandar Mitra, swapan k. Pauri, Gobinda Kole,

 Pabitra Mitra and Kalyankumar Datta, YASS: Yet Another Suffix

 Stripper, ACM Transactions on Information Systems, Vol.25, No.4, pp.

 18-38,2007.
[10] Plisson, J, Larc, N, Mladenic, “A Rule based approach to word

lemmatization,” Proceedings of the 7th International Multiconference

Information Society, IS-2004, Institute Jozef Stefan, Ljubljana, pp.83-
86,2008.

[11] Martin F. Porter, An algorithm for suffix stripping, Program, Vol. 14,

 No. 3, pp 130-137, 1980.
[12] Julie Beth Lovins, Development of stemming Algorithm, Mechanical

Translation and Computational Linguistics, Vol. 11, No. 1, pp 22-23,

1968.

 [13] Deepa Gupta, Rahul Kumar Yadav, Nidhi Sajan, “Improving

Unsupervised Stemming by using Partial Lemmatization Coupled with

Data-Based Heuristics for Hindi ,” International Journal of Computer

Application(0975-8887), Vol. 38, No. 8, January 2012.

 [14] Mohd. Shahid Hussain, “An unsupervised approach to develop

stemmer,” International Journal on Natural Language Computing, Vol.
1, No. 2, August 2012.

 International Journal of Computational Linguistics and Natural Language Processing Vol 2 Issue 5 May 2013
 ISSN 2279 – 0756

Snigdha Paul et.al. www.ijclnlp.org 384

