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Over  the  last  years,  psychological  research  has  increasingly  used  computer-supported  tests,  especially  in
the  analysis  of complex  human  decision  making  and  problem  solving.  The  approach  is  to use computer-
based  test  scenarios  and  to evaluate  the performance  of  participants  and  correlate  it to  certain  attributes,
such  as  the  participant’s  capacity  to regulate  emotions.  However,  two important  questions  can  only  be
answered  with  the  help  of  modern  optimization  methodology.  The  first  one  considers  an  analysis  of  the
exact  situations  and  decisions  that  led to a  bad  or good  overall  performance  of  test  persons.  The second
important  question  concerns  performance,  as the choices  made  by humans  can  only  be  compared  to  one
another, but  not  to the  optimal  solution,  as it is unknown  in  general.

Additionally,  these  test-scenarios  have  usually  been  defined  on  a trial-and-error  basis,  until  certain
characteristics  became  apparent.  The  more  complex  models  become,  the  more  likely  it  is that  unforeseen
and  unwanted  characteristics  emerge  in  studies.  To  overcome  this  important  problem,  we  propose  to use
ixed-integer nonlinear programming
omplex problem solving
ecomposition approach

mathematical  optimization  methodology  not  only  as an  analysis  and  training  tool,  but  also  in  the  design
stage  of the  complex  problem  scenario.

We present  a novel  test  scenario,  the  IWR  Tailorshop,  with  functional  relations  and  model  parameters
that  have  been  formulated  based  on  optimization  results.  We  also  present  a tailored  decomposition
approach  to  solve  the  resulting  mixed-integer  nonlinear  programs  with  nonconvex  relaxations  and  show
some  promising  results  of  this  approach.

© 2012  Elsevier  B.V.  All rights  reserved.
. Introduction

Modern life imposes daily decision making, often with impor-
ant consequences. Illustrative examples are, e.g., politicians who
ecide on actions to overcome a financial crisis, medical doctors
ho decide on complementary chemotherapy drug delivery strate-

ies, or entrepreneurs who decide on long-term pricing strategies
or the products they offer.

The process of human decision making in such tasks is the sub-
ect of research in the field of complex problem solving (CPS). CPS
s defined as a high-order cognitive process. In research, the per-
ormance of participants in clearly defined microworlds (or tasks) is
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

nvestigated. The participant’s performance is evaluated and cor-
elated to certain attributes, such as the participant’s capacity to
egulate emotions.

∗ Corresponding author.
E-mail address: michael.engelhart@iwr.uni-heidelberg.de (M.  Engelhart).
URL: http://www.mathopt.de (M.  Engelhart).

877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2012.06.005
One microworld that comprises a variety of properties such as
dynamics, complexity and interdependence, discrete choices, lack
of transparency, and polytely in an economical framing is the Tai-
lorshop. Participants have to make economic decisions to maximize
the overall balance of a small company, specialized in the pro-
duction and sales of shirts. The Tailorshop is sometimes referred
to as the “Drosophila” for CPS researchers [1] and thus a promi-
nent example for a computer-based microworld. It has been used
in a large number of studies, e.g., [2–7]. Comprehensive reviews on
studies with Tailorshop have been published, e.g., [1,8–10].

The calculation of indicator functions to measure performance
of CPS participants is by no means trivial. To measure performance
within the Tailorshop microworld, different indicator functions
have been proposed in the literature, see [11] for a recent review.
In [12,13] the question how to get a reliable performance indica-
tor for the Tailorshop microworld has been addressed. Because all
 approach for a new test-scenario in complex problem solving, J.

previously used indicators have unknown reliability and validity,
decisions are compared to mathematically optimal solutions. For
the first time a complex microworld such as Tailorshop has been
described in terms of a mathematical model.

dx.doi.org/10.1016/j.jocs.2012.06.005
dx.doi.org/10.1016/j.jocs.2012.06.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:michael.engelhart@iwr.uni-heidelberg.de
http://www.mathopt.de
dx.doi.org/10.1016/j.jocs.2012.06.005
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Therefore one can formulate the CPS task as an optimiza-
ion problem. In this article, we consider dynamic scenarios with
onsecutive (turn-based) decisions made by participants. Such a
icroworld – like the Tailorshop – can be formulated in a general
ay as a discretized mixed-integer optimal control problem (dMIOCP)

max
x,u

F(xN)

s.t. xk+1 = G(xk, uk, p, �), k = ns . . . N − 1

uk,i ∈ ˝i, k = ns . . . N − 1

i  = 1 . . . n˝

0 ≤ H(xk, uk, p), k = ns . . . N

xns = xp
ns

(1)

or different start times 0 ≤ ns < N of the optimization and where
, G, and H are nonlinear functionals, � is a random variable, and

i are, possibly discrete, feasible sets. State variables are denoted
y xk, scenario parameters by p, and decisions to be taken by the
articipants at time k by uk. We  define

xp, up) = (xp
0, . . . , xp

N, up
0, . . . , up

N−1) (2)

o be the vector of decisions and state variables for all months of a
articipant. Certain entries xp

ns enter (1) as fixed initial values. Par-
icipant independent initial values xp

0 = x0 are fixed and part of the
PS microworld definition. The model is dynamic with a discrete
ime k = 0 . . . N, and N the number of turns.

Based on (1),  an optimization can be performed for every turn ns

f the participant’s data, starting with exactly the same conditions
p
ns as the participant. The result can be used in different ways to
ope with questions like how to measure performance in complex
nvironments in an objective way and how to determine decisions
hich were critical for the overall performance of a participant.

his technique is described in detail in [13].
Thus, the assumption that the “fruit fly of complex problem solv-

ng” is not mathematically accessible has been disproven. However,
olving (1) to proven global optimality is already a challenging task.
he novel methodological approach has also been combined with
xperimental studies [6,7,13].

So far, all CPS microworlds have been developed in a purely dis-
iplinary trial-and-error approach. To our knowledge, a systematic
evelopment of CPS microworlds based on a mathematical model,
ensitivity analysis, and eventually optimization methods to choose
arameters that lead to a wanted behavior of the complex system
or all possible trajectories has not yet been applied. As an example
or the need to do this, the mathematical modeling of the Tailorshop

icroworld in [13] led to the discovery of a priori unwanted and
nrealistic winning strategies (e.g., the vans bug).

Therefore, in this article we present a new micro-world based on
he Tailorshop,  for which optimization methods have been consid-
red already throughout the modeling phase, the IWR  Tailorshop.  To
vercome the difficulties of computing globally optimal solutions
or this test-scenario, which still yields nonconvex optimization
roblems, we developed a decomposition approach tailored to the

WR  Tailorshop.
Mathematical model reduction techniques are quite common in

ther domains, see e.g., [14–16] for an overview. The basic idea of
ur new approach to solve problem (1) consists of a decomposition
f the MINLP into a master and several smaller subproblems. This
orks if the objective function is separable. The idea is related to

agrangian relaxation,  one of the most used relaxation strategies for
ILPs. Its first application was the one-tree relaxation of the travel-
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

ng salesman problem in the famous Held-Karp algorithm in [17,18].
he traditional application fields are variants of the knapsack prob-
em like, e.g., facility location and capacity planning [19], general
ssignment, network flow and the unit commitment problem [20].
 PRESS
ional Science xxx (2012) xxx–xxx

The general approach is thoroughly explained in [21] and in [22].
A problem-specific decomposition approach has been proposed in
[23]. The authors reformulate the MIOCP as a large-scale, structured
nonlinear program (NLP) and solve a small scale linear integer pro-
gram on a second level to approximate the calculated continuous
aggregated output of all pumps in a water works. To obtain objec-
tive performance measures, we need guaranteed upper bounds for
the maximum. Hence the mentioned techniques can not be applied
in a straightforward way.

The article is organized as follows. In Section 2, the IWR  Tailor-
shop is introduced. Then the tailored decomposition approach is
explained in Section 3. We  show some promising numerical results
of the decomposition applied to the IWR  Tailorshop in Section 4 and
conclude with an outlook in Section 5.

2. The IWR  Tailorshop-model

Based on the experience with the original Tailorshop-
microworld described in [13] with modeling oddities, bugs, and
other undesirable properties, we  decided to continue our work with
a mathematical model developed from scratch.

We systematically build a new microworld with desirable
(mathematical) properties based on the economical framing of Tai-
lorshop. These efforts lead to the new test-scenario IWR  Tailorshop.
A schematic representation of this new microworld can be found in
Fig. 1. Table 1 lists all states and controls the IWR  Tailorshop contains
together with corresponding units.

Compared to the Tailorshop,  the variety of variables has been
shifted towards a more abstract level. For example, the participants
have no longer the task to buy or sell machines, but instead have to
take care of the number of production sites xPS of their company. The
rather concrete variable vans has been replaced by more abstract
distribution sites xDS, and so on. We chose to set up IWR  Tailorshop on
such an abstract level, because this yields a more realistic position
of a decision maker for the participants. For the majority of com-
panies, it seems unlikely that the one who  decides on the number
of employees,  the shirt price, and the amount of money spent for
advertising is the same who  has to ensure that enough raw material
is bought to produce the shirts.

The mathematical representation of the IWR  Tailorshop con-
sists of the following set of equations for k = ns . . . N, which will
be explained below. Remember, that xk denote state variables, uk
denote control variables (decision variables) and p are fixed param-
eters.

xEM
k+1 = xEM

k − udEM
k + uDEM

k (3a)

xPS
k+1 = xPS

k − udPS
k + uDPS

k (3b)

xDS
k+1 = xDS

k − udDS
k + uDDS

k (3c)

xDE
k+1 = pDE,0 · exp(−pDE,1 · uSP

k
)

· log(pDE,2 · uAD
k

+ 1) · (xRE
k

+ pDE,3)
(3d)

xRE
k+1 = pRE,0 · xRE

k
+ pRE,1 log((pRE,2 · uAD

k

+pRE,3 · uSP
k

· (xSQ
k

)2 + pRE,4 · uWA
k

) + 1)
(3e)
 approach for a new test-scenario in complex problem solving, J.

xPR
k+1 = pPR,0 · xPS

k+1

· log

(
pPR,1 · xEM

k+1

xPS
k+1 + xDS

k+1 + pPR,2
+ 1

)
(3f)

dx.doi.org/10.1016/j.jocs.2012.06.005
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ig. 1. Schematic representation of the IWR  Tailorshop microworld. Arrows show dep
iamonds indicate the influence of participants’ decisions.

xSA
k+1 = min {pSA,0 · xDS

k+1

· log (
pSA,1 · xEM

k+1

xPS
k+1 + xDS

k+1 + pSA,2
+ 1);

xSH
k

+ xPR
k+1; pSA,3 · xDE

k+1}

(3g)

SH
k+1 = xSH

k − xSA
k+1 + xPR

k+1 (3h)

SQ
k+1 = pSQ ,0 · xMO

k + pSQ ,1 · xMQ
k

+ pSQ ,2 · uRQ
k

(3i)

( )
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

xMQ
k+1 = xMQ

k
· pMQ ,0 · exp −pMQ ,1

xPR
k

xPS
k

+ pMQ ,2

+pMQ ,3 · log(uMA
k

· pMQ ,4 + 1)

(3j)

able 1
tates and controls with corresponding units in the IWR  Tailorshop.  M.U. means monetary

States Variable Unit 

Employees xEM Person(s) 

Production sites xPS Site(s) 

Distribution sites xDS Site(s) 

Shirts in stock xSH Shirt(s) 

Production xPR Shirt(s) 

Sales  xSA Shirt(s) 

Demand xDE Shirt(s) 

Reputation xRE – 

Shirts quality xSQ –
Machine quality xMQ –
Motivation of employees xMO –
Capital xCA M.U.
cies, the symbols (+and −) show proportional and reciprocal influences respectively.

xMO
k+1 = (1 − pMO,0) · xMO

k
+ pMO,0

· log (pMO,1 · uDEM
k

+ pMO,2 · uDPS
k

+pMO,3 · uDDS
k

+ pMO,4 · uWA
k

+pMO,5 · xRE
k

+ pMO,6)

· exp ( − (pMO,7 · udEM
k

+ pMO,8 · udPS
k

+pMO,9 · udDS
k

) + pMO,10) · pMO,11

(3k)

xCA
k+1 = pCA,0 · (xCA

k
+ (xSA

k+1 · uSP
k

) + (udPS
k

· pCA,1)

+(udDS
k

· pCA,2) − (xEM
k+1 · uWA

k
)

−(xPR
k+1 · uRQ

k
· pCA,3) − (xPS

k
· pCA,4)

−(xDS
k

· pCA,5) − uMA
k

− uAD
k

−(xSH
k+1 · pCA,6) − (uDPS · pCA,7)

(3l)
 approach for a new test-scenario in complex problem solving, J.

−(uDDS · pCA,8))

A part of these equations, (3a) and (3b), consist of a simple linear
transition from month k to month k + 1. The amount of sites created

 units.

Controls Variable Unit

Shirt price uSP M.U./shirt
Advertising uAD M.U.
Wages uWA M.U./person
Maintenance uMA M.U.
Resources quality uRQ –
Recruit/dismiss employees udEM/uDEM Person(s)
Create/close production site udPS/uDPS Site(s)
Create/close distribution site udDS/uDDS site(s)

dx.doi.org/10.1016/j.jocs.2012.06.005
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nd employees recruited is added, the amount of sites closed and
mployees dismissed is subtracted from the inventory. Eqs. (3h)
nd (3i) are very similar to this type: the amount of shirts sold is
ubtracted from the current stock, the number of shirts produced is
dded. The shirt quality is a linear combination of three components,
amely the motivation of employees,  the machine quality,  and the
esource quality chosen by the participant.

The demand Eq. (3d) is more complicated and contains three
actors. First, there is an exponential decrease with the shirt price,
ollowed by a logarithm, which damps the influence of advertising.
inally, these terms are multiplied by the reputation and a certain
ffset. Demand here refers to the demand at this single company,
ot on the whole market.

In Eq. (3e), determining the reputation,  there is a memory term
onsisting of a fraction of the current reputation. Additionally, there
s a logarithm to dampen the effects of advertising, level of wages,
nd the product value – a product of shirt price and shirt quality to
he power of two.

The production Eq. (3f) consists of a log-term, which damps
he efficiency of workers per site. The assumption is, that all the
mployees are distributed equally over the sum of distribution
nd production sites. The more employees per site there are, the
ess productivity is yielded by one more employee, e.g., because
f the limitation of space or machines. This term is multiplied by
he number of production sites in compensation of the denomina-
or in the logarithm. The sales Eq. (3g) is analog to the production
quation, but with a distribution sites factor instead of production
ites. Additionally, sales are limited by the number of shirts avail-
ble, i.e., the sum of shirts in stock and shirts produced, and by the
emand. This leads to the min-expression with three components.
ote, however, that this expression can easily be transformed into

nequalities by introducing a slack-variable, which is limited by all
omponents of the minimum. This works, because the sales only
ave a positive effect in the objective function.

Machine quality,  see Eq. (3j), decreases with the load, repre-
ented by shirts produced per production site. Maintenance, on
he other hand, increases machine quality, damped by a logarithm
gain.

The motivation Eq. (3k) is a convex combination of old and new
otivation levels. The level is determined by a logarithm containing

ositive effects (recruiting employees, creating production and dis-
ribution sites, wages, and reputation) and a negative exponential,
here negative factors enter (dismissal of employees and closing
roduction and distribution sites).

The last Eq. (3l), the capital, is a composition of all expenses and
ncomes given implicitly by the other equations: revenue per shirt,
evenue per production and distribution site sold (closed), wages
er employee, production costs depending on the resource quality,
xed costs for production and distribution sites, maintenance and
dvertising expenses, storage costs, and purchase price for produc-
ion and distribution sites. The capital is subject to a certain interest
ate pCA,0.

IWR  Tailorshop contains inequalities. There is a maximum stor-
ge capacity for shirts per distribution site,

SH
k ≤ pSH,0 · xDS

k (4)

ecruitment depends on access to different job markets yielded by
he number of sites and is limited,

DEM
k ≤ pDEM,0 · xPS

k + pDEM,1 · xDS
k (5)
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

he overall number of sites is limited,

PS
k + xDS

k ≤ ptS (6)
 PRESS
ional Science xxx (2012) xxx–xxx

And finally, there is a limit on the sum of production sites closed
within two months:

udPS
k + udPS

k−1 ≤ pdPS (7)

Beyond these inequalities, all states and controls except of the cap-
ital are required to be ≥0 and some controls have additional simple
upper bounds,

udEM
k ≤ pdEM (8a)

uDPS
k ≤ pDPS (8b)

uDDS
k ≤ pDDS (8c)

udDS
k ≤ pdDS (8d)

Furthermore, some of the controls have to be integer,

uDEM
k , udEM

k , uDPS
k , udPS

k , uDDS
k , udDS

k ∈ Z
+
0 (9)

and resource quality must be chosen from a finite set:

uRQ
k

∈ {pRQ ,1, . . . , pRQ , nRQ} (10)

Compared to Eq. (1), these equations and inequalities together
with the reformulation of the sales equation form the functions G
and H. For the objective function F, one could easily think of dif-
ferent options, e.g., a weighted combination of maximizing profit,
reputation, and some other factors. We  decided to use the profit
at the end of the discrete time-scale in this article for the sake
of comparability to the original Tailorshop.  Hence, we  suggest the
following objective:

max
x,u,p

xCA
N (11)

Of course, the set of parameters has a significant influence on
the model behavior. One could definitely dedicate a whole article
on how to determine an appropriate parameter set for a microworld
like IWR  Tailorshop,  depending on the aims – see also Section 5 for
future work regarding this issue. For this article, however, we set
up a parameter set manually such that the model fulfills a cer-
tain desired behavior. The chosen parameters also yield a model
behavior that makes sense for the optimization, i.e. there are feasi-
ble solutions and the optimization problem is not unbounded. The
parameter values are listed in Tables 2 and 3.

All these components build the IWR  Tailorshop,  which – from
a mathematical point of view – is a mixed-integer nonlinear pro-
gram with nonconvex relaxation,  i.e. if the possibly discrete ˝i in the
dMIOCP (1) are replaced by some continuous ˆ̋

i ⊇ ˝i, this yields
a nonconvex nonlinear program. The implementation of this new
model features a web-based interface and uses the widely spread
AMPL interface [24], which allows, e.g., the use of a variety of pow-
erful optimization algorithms.

Compared to the variants of the original Tailorshop microworld
used in different studies, e.g. [2–7], the dimensions of the problem
are slightly smaller, but are within the same order of magnitude
(e.g. 15 (9) vs. 11 (7) control variables (integer) and 16 vs. 12 state
variables per month). Note, however, that first, there may  be small
differences between the Tailorshop microworlds used in former
studies and that second, there are some differences between the
terminology used for the variables in this article and in the articles
from the psychological community (e.g. endogenous/exogenous vs.
control/state). Structurally, the relation between the models is as
follows. Some of the equations, such as the ones for the shirts in
 approach for a new test-scenario in complex problem solving, J.

stock or the employees,  are more or less the same or at least very
similar. The main difference is, that most of the effects, for which
min/max-expressions have been used in the old microworld, are
modelled by smoothed terms like exp and log in IWR Tailorshop.

dx.doi.org/10.1016/j.jocs.2012.06.005
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Table  2
Parameter set for states used with IWR  Tailorshop in this article. M.U. means mone-
tary units.

Parameter Value

pSH,0 2000 shirts/site
pDE,0 600.0 shirts
pDE,1 2 × 10−2 shirts/M.U.
pDE,2 2 × 10−2 1/M.U.
pDE,3 0.5
pRE,0 0.5
pRE,1 1.0
pRE,2 2.5 × 10−5 1/M.U.
pRE,3 10−4 shirts/M.U.
pRE,4 6 × 10−5 persons/M.U.
pPR,0 99.9 shirts/sites
pPR,1 2.0 sites/persons
pPR,2 10−6 sites
pSA,0 99.9 shirts/sites
pSA,1 2.0 sites/persons
pSA,2 10−6 sites
pSA,3 1.0
pSQ,0 0.2
pSQ,1 0.3
pSQ,2 0.5
pMQ,0 0.8
pMQ,1 0.6 × 10−2 sites/shirts
pMQ,2 10−6 sites
pMQ,3 0.13
pMQ,4 0.2 M.U.−1

pMO,0 0.5
pMO,1 4 × 10−2 persons−1

pMO,2 0.5 sites−1

pMO,3 0.25 sites−1

pMO,4 2.0 × 10−4 persons/M.U.
pMO,5 0.3
pMO,6 1.0
pMO,7 0.7 persons−1

pMO,8 2.5 sites−1

pMO,9 2.0 sites−1

pMO,10 1.0
pMO,11 0.5
pCA,0 1.03
pCA,1 5000 M.U./site
pCA,2 3500 M.U./site
pCA,3 5.0 M.U./shirt
pCA,4 1000 M.U./site
pCA,5 700 M.U./site
pCA,6 1.5 M.U./shirt
pCA,7 10,000 M.U./site

3

a
p

T
P

max f(x)

master problem

min c1(x)

decoupled problems

min c2(x)

costs costs

input
variables

input
variables
pCA,8 7000 M.U./site

. A tailored decomposition approach
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

Now that we have a systematically built microworld with desir-
ble properties, we could start doing studies with it and evaluating
articipants’ performance based on optimal solutions as explained

able 3
arameter set for controls used with IWR  Tailorshop in this article.

Parameter Value

nRQ 4
pRQ,1 0.25
pRQ,2 0.5
pRQ,3 0.75
pRQ,4 1.0
pDEM,0 5 persons/site
pDEM,1 10 persons/site
pdEM 10 persons
pDPS 1 site
pdPS 1 site
pDDS 2 sites
pdDS 1 site
ptS 6 sites
Fig. 2. Schematic representation of the tailored decomposition approach.

above and in [13]. The computation of an indicator function as
described in [13], however, can only be claimed reasonably to be
objective, if we can find guaranteed globally optimal solutions. But
– as already mentioned above – the IWR  Tailorshop yields a non-
convex problem. This property is unavoidable as long as we are
interested in turn-based scenarios with nonlinear model equa-
tions. Hence, it is difficult to compute global solutions for such
test-scenarios.

And indeed, the computation times with Couenne 0.4 on a Intel
Core i7 machine with 12 GB RAM look bad: for N = 1 it takes less than
1 s, for N = 2 already 3 s, and for N = 3 by far more than 10 min  (see
also Table 6). For higher values of N, we  cannot hope for a solution
at all before the machine runs out of memory.

The idea of the decomposition approach is now, to exploit
the structure of the problem – especially the separability of the
objective function, see (11) – to create a relaxation of the original
problem where parts of the problem are replaced by free variables
(free within some simple bounds), for which costs are computed
in decoupled programs, which contain the complexity from the
original program. A schematic representation of this decomposi-
tion can be found in Fig. 2. The decoupling of certain parts of the
original problem obviously makes the remaining master problem
smaller and therefore easier to handle. Such a decomposition is not
unique. We  chose one with few overlapping variables. A schematic
representation of the resulting master problem is shown in Fig. 3.

The costs computation via the decoupled problems is done
offline on a discretized grid. The decoupled problems yield them-
selves an optimization problem of the type

min  Costs

s.t. Achieve desired value of free variable

(as in master problem)

The optimal solutions on the grid points can be used to fit some
model, which underestimates the costs, details can be found below.
This cost model is now plugged into the objective function of the
master problem representing costs for the newly introduced free
variables. We then can compute a globally optimal solution for the
reduced master problem. If the relaxation is valid, this yields us
a valid upper bound for the original problem. This upper bound
determined by the decomposition can then be used as an indicator,
how far a local solution for the original problem is away at the most
from a global one.

By the decomposition, the problem size has been reduced from
12 · N state (dependent) variables and 11 · (N − 1) control (free)
 approach for a new test-scenario in complex problem solving, J.

variables to 4 · N + 3 · (N − 1) free variables and 5 · N states with 2
decoupled problems.

dx.doi.org/10.1016/j.jocs.2012.06.005
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Fig. 3. IWR  Tailorshop reduced master problem with dependencies a

The master problem in our decomposition consists of the follow-
ng equations, which form a relaxation of the original problem (2)
y underestimating negative and overestimating positive effects:

xDE
k+1 = pDE,0 · exp(−pDE,1 · uSP

k
)

· log(pDE,2 · uAD
k

+ 1) · (xRE
k

+ pDE,3)
(12a)

xRE
k+1 = pRE,0 · xRE

k
+ pRE,1 log (pRE,2 · uAD

k

+pRE,3 · uSP
k

· (uSQ
k

)2 + pRE,4 · uWA
k

+ 1)
(12b)

xSA
k+1 = min  {pSA,0 · usites

k+1

· log

(
pSA,1 · uEM

k+1

usites
k+1 + pSA,2

+ 1

)
;

xSH
k

+ uPR
k+1; pSA,3 · xDE

k+1}

(12c)

SH
k+1 = xSH

k − xSA
k+1 + uPR

k+1 (12d)

xCA
k+1 = pCA,0 · (xCA

k
+ (xSA

k+1 · uSP
k

) − uAD
k

−uEM
k+1 · uWA

k
− (xSH

k+1 · pCA,6)

−f1(usites
k

; uPR
k

, uEM
k

) − f2(uSQ
k

; uPR
k

))

(12e)

SP
k ∈ [lbSP, ubSP] (12f)

SQ
k

∈ [lbSQ , ubSQ ] (12g)

PR
k ∈ [lbPR, ubPR] (12h)

WA
k ∈ [lbWA, ubWA] (12i)

sites
k ∈ [lbsites, ubsites] ∩ Z

+
0 (12j)

AD
k ∈ [lbAD, ubAD] (12k)

EM
k ∈ [lbEM, ubEM] ∩ Z

+
0 (12l)
Please cite this article in press as: M.  Engelhart, et al., A decomposition
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ere, the functions f1 and f2 return the costs to be determined in
he decoupled problems. We  choose the objective again as

ax
x,u,p

xCA
N . (13)
oportional/reciprocal influences. Diamonds indicate free variables.

The first decoupled program, which determines the costs for a
given shirt quality,  is

min  uRQ
k

·̂uPR
k+1 · pPR,cost + uMA

k−1 (14a)

s.t. ûSQ
k

= pSQ ,1 · xMQ
k

+ pSQ ,2 · uRQ
k

(14b)

xMQ
k

= pMQ ,3 · log(pMQ ,4 · uMA
k−1 + 1) (14c)

uRQ
k

∈ {pRQ ,1, . . . , pRQ , nRQ} (14d)

uMA
k−1 ∈ [lbMA, ubMA] (14e)

Here, the variables with a hat are considered to be given, e.g.,
from the free variables in the master problem. In the following, we
call them input variables in this context. The second subproblem
determines the costs for a given total number of sites and consists
of the following equations.

min  uDS
k+1 · pCA,5 + uPS

k+1 · pCA,4 (15a)

s.t. ̂usites
k+1 = uPS

k+1 + uDS
k+1 (15b)

̂uPR
k+1 = pPR,0 · log (uPS

k+1 ·

pPR,1 ·̂uEM
k+1

uPS
k+1 + uDS

k+1 + pPR,2
+ 1)

(15c)

uDS
k+1 ∈ [lbDS, ubDS] ∩ Z

+
0 (15d)

uPS
k+1 ∈ [lbPS, ubPS] ∩ Z

+
0 (15e)

We evaluate these decoupled programs on a grid, i.e., on a
discretization of the feasible interval for each input variable. For
usites

k
∈ [2,  16], e.g., we could choose the grid 2, 4, 8, 10, 12, 14, 16.

With more than one discretized variable, this leads to multidimen-
sional grids. For each grid point, we compute an optimal solution
for the corresponding decoupled program. With the solutions for
all grid points, we can fit e.g., a quadratic model, like
 approach for a new test-scenario in complex problem solving, J.

f (uSQ
k

; uPR
k ) = a0 + a1 · uPR

k + a2 · uSQ
k

+ a3 · uPR
k · uSQ

k
+ a4 · (uPR

k )2

+ a5 · (uSQ
k

)2. (16)
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Table  4
Initial values used for computations with original full problem and decomposition.

Original model Decomposition

xEM
0 = 10 uEM

0 = 10

xPS
0 = 1

xDS
0 = 1 usites

0 = 2

xSH
0 = 67 xSH

0 = 67

xPR
0 = 200 uPR

0 = 200

xSA
0 = 200 xSA

0 = 200

xDE
0 = 700 xDE

0 = 700

xRE
0 = 0.79 xRE

0 = 0.79

xSQ
0 = 0.75 uSQ

0 = 0.75

xMQ
0 = 0.81 –
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Table 5
Simple bounds used for computations with original full problem and decomposition.

Original model Decomposition

uSP
k

∈ [35, 55] uSP
k

∈ [35, 55]

uAD
k

∈ [1000,  2000] uAD
k

∈ [1000,  2000]

uWA
k

∈ [1000,  1500] uWA
k

∈ [1000,  1500]

uMA
k

∈ [0,  5000] uMA
k

∈ [0,  5000]

xEM
k

∈ [8,  16] uEM
k

∈ [8,  16]

xPS
k

, xDS
k

∈ [1,  6] usites
k

∈ [2,  6]

xPR
k

∈ [0,  1000] uPR
k

∈ [0, 1000]

xSQ
k

∈ [0.25,  0.75] uSQ
k

∈ [0.25, 0.75]

to the solutions of Couenne 0.4 in Fig. 5. For the usites-subproblem a
plot of the cost function is not possible due to its dimensions.

When comparing solutions and objective function values, three
effects need to be distinguished: integrality, local vs. global

0
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0.8

1
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8000

10000

uSQ uPR

Φ2(uSQ, uPR)
xMO
0 = 0.73 –

xCA
0 = 175, 000 xCA

0 = 175, 000

f course, we could as well use a linear or a cubic model or some-
hing completely different. The fit can then be done by solving a
imple least squares problem, with X being the set of grid points
nd h(x) a function, which returns the optimal objective value for
ach grid point x ∈ X:

in
a,x

∑
x∈X

‖f (x) − h(x)‖2
2 (17a)

.t. f (x) ≤ h(x) ∀x ∈ X. (17b)

Especially when considering the integrality conditions, equal-
ty constraints are unlikely to be fulfilled exactly. Therefore the
ollowing reformulation is introduced for each equality constraint.

k̂ = . . . −→ ûk + � = . . . (18a)

 ∈ [−�, �] (18b)

ere, � should be chosen reasonably small, such that the decoupled
rogram is feasible for almost all of the grid points.

. Numerical results

We  present first results of our decomposition approach from
ection 3 for the IWR  Tailorshop.  All computations have been done
n an Intel Core i7 machine with 12 GB RAM running Ubuntu
1.10 (64-bit) with the COIN-OR solvers Ipopt 3.10, Bonmin 1.5,
nd Couenne 0.4.  Ipopt 3.10 is a local solver for nonlinear pro-
rams [25], which implements an interior point method. It is not
ble to treat integer constraints and has only been used for refer-
nce. Bonmin 1.5 is a solver for general mixed-integer nonlinear
rograms including several algorithms [26]. For the computations

n this article, B-BB, an NLP-based branch-and-bound algorithm,
as been used. In contrast to these two solvers, Couenne 0.4 is a
lobal solver using a spatial branch-and-bound algorithm in order
o find global optima for mixed-integer nonlinear programs with
onconvex relaxations [27]. The parameter sets used are shown

n Tables 2 and 3. Initial values and simple bounds on states and
ontrols used in all computations can be found in Tables 4 and 5.

For the decomposition, in a first step the cost functions f1 and
2 for the new free variables uSQ

k
and usites

k
have been computed.

herefore the subproblems (3) and (3) have been solved on the
rids
SQ
k

∈ {0.25, 0.26, 0.27, . . . , 0.74, 0.75}, (19a)

PR
Please cite this article in press as: M.  Engelhart, et al., A decomposition
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k ∈ {100, 200, 300, . . . , 900, 1000}, (19b)

espectively

sites
k ∈ {2, 3, 4, 5, 6}, (20a)
xSH
k

, xDE
k

, xRE
k

, xSA
k

≥ 0 xSH
k

, xDE
k

, xRE
k

, xSA
k

≥ 0

xMO
k

, xMQ
k

≥ 0 –

uEM
k ∈ {8, 9, 10,  . . . , 15,  16}, (20b)

uPR
k ∈ {100, 200, 300, . . . , 900, 1000}. (20c)

By solving the corresponding problems of type (3) with this data,
we received the following underestimators for the costs:

f1(usites
k ; uEM

k , uPR
k ) = 21.6754 − 944.6455 · usites

k + 1.4968 · uPR
k

− 28.9341 · uEM
k + 0.1338 · usites

k · uPR
k − 3.3626 · usites

k · uEM
k

− 0.0586 · uPR
k · uEM

k − 1.3478 · (usites
k )2 + 1.8831 · (uEM

k )2 (21a)

f2(uSQ
k

; uPR
k ) = −898.0761 + 0.1991 · uPR

k+1 + 4726.3749 · uSQ
k+1

− 8.5390 · uPR
k+1 · uSQ

k+1 + 0.0004 · (uPR
k+1)2 − 5501.7182 · (uSQ

k+1)2

(21b)

The problems for all grid points of one subproblem could be solved
in less than 1 min  including the fit of the quadratic model. A plot of
the resulting cost function for the uSQ-subproblem can be found in
Fig. 4. However, it was  necessary to use the global solver Couenne
0.4 at least in this subproblem, as we got different solutions with
Ipopt 3.10 for a relaxed version of this subproblem which obviously
are not globally optimal as one can observe from the comparison
 approach for a new test-scenario in complex problem solving, J.

Fig. 4. Cost values ˚2 (blue dots) for solutions by Couenne 0.4 for the decou-
pled problem for uSQ with pRQ, nRQ = 2 on the grid uSQ

k
∈ {0.25, 0.26, . . . , 0.75}, uPR

k
∈

{100, 200, . . . , 1000} together with the underestimating cost function (colored sur-
face). (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of the article.)
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Fig. 5. Cost values ˚2 (blue dots) for solutions by Couenne 0.4 and Ipopt 3.10 for the decoupled problem for uSQ with pRQ, nRQ = 2 and relaxed uRQ on the grid uSQ
k

∈
{0.25,  0.26, . . . , 0.75}, uPR

k
∈ {100, 200, . . . , 1000} together with the underestimating cost function (colored surface). From the differences between Couenne 0.4 (global

solver)  and Ipopt 3.10 (local solver) one can determine, that it is necessary here to use a global solver even for the decoupled problem. (For interpretation of the references
to  color in this figure legend, the reader is referred to the web  version of the article.)
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olutions, and full versus overestimating reduced model. We  inves-
igated two scenarios. First, the variables usites

k
respectively uPS

k
and

DS
k

have been fixed to their lower bounds 2 respectively 1. The
esults are listed in Table 7. Here, Ipopt 3.10 and Bonmin 1.5 found
he same solutions for the original problem, which is due to the
act that the solutions determined by Ipopt 3.10 are already integer.
hus, there is no difference between these solvers. In this special
ase, Couenne 0.4 also finds the same solutions for the original prob-
em in an acceptable time (< 1 min). This setting allows us to focus
xclusively on the third effect, the gap between our reduced and
he full model. The gap determined by Couenne 0.4 in both cases
eaches from 4.0% to 16.3%.

Fortunately, this special case with fixed sites is something like a
orst case. The gap is mainly due to a reduction in sales, which in

urn relates to the differences between Eqs. (3g) and (12c). Fixing
he number of sites on the lower bounds results in an active first
erm in the minimum expressions. This is also the expression that
uffers most, because the new variable usites

k
is in this case twice as

arge as the correct expression xDS
k

in the original model.
If we let usites

k
free within their simple bounds as shown in

able 5, the gaps between local solution to the full model and global
olution to the reduced model alternate from 4.0% to 8.1%. Note that
Please cite this article in press as: M.  Engelhart, et al., A decomposition
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he gap relating to Ipopt 3.10 is only for information, since Ipopt 3.10
annot handle integer constraints and thus solves a relaxed version
f the problem. One observes that the gap first increases, but then
ecreases, seeming to converge to some c > 0. This behavior can be

able 6
omparison of computation times between Ipopt 3.10, Bonmin 1.5,  and Couenne 0.4

or  the original problem, as well as Couenne 0.4 for the decomposition.

N Original model Decomposition

Ipopt Bonmin Couenne Couenne

1 �1  s <1 s <1 s <1 s
2  � 1 s 4 s 3 s 1 s
3  <1 s 45 s >10 min  2 s
4  <1 s 537 s >10 min  3 s
5  <1 s >10 min  >10 min  5 s
6  <1 s >10 min  >10 min  10 s
7  1 s >10 min  >10 min  17 s
8 <1  s >10 min  >10 min  27 s
9  <1 s >10 min  >10 min  52 s
10 1 s >10 min  >10 min  88 s
explained by the fact that the mentioned effect leads to an increase
in cost (due to storage of not-sold shirts) that is about linear in the
number of turns. The possible winnings making use of a free choice
of usites

k
outperforms these additional costs if the time scale for the

optimization is long enough. Thus, the gap first increases and than
again decreases.

In this scenario, Couenne 0.4 is not able anymore to find a solu-
tion for the original problem in less than 10 min  for N ≥ 3. All
computation times can be found in Table 6. Obviously, the decom-
position can be solved faster by orders of magnitude. Even for N = 10,
it takes less than 2 min  with Couenne 0.4,  while Bonmin 1.5 even is
not able to compute a local solution for the original problem in less
than 10 min  for N ≥ 5 (see Tables 7 and 8).

Summing up, we  could estimate the gap between reduced and
full model to be in the range of a few percent. We  identified the
most important source of gaps to be in the difference between
Eqs. (3g) and (12c). For longer time horizons and more freedom of
variable choice, however, our approximation becomes better and
better. The computational gains are dramatic and allow to calculate
global solutions even on the full length of the time horizon.

5. Summary and outlook
 approach for a new test-scenario in complex problem solving, J.

We  presented a new microworld for complex problem solving,
the IWR  Tailorshop.  This turn-based test-scenario yields a mixed-

Table 7
Solutions using the full problem with fixed number of sites compared to the decom-
position approach. Note that the solutions by Ipopt 3.10 are already integer, so that
there is no difference between Bonmin 1.5 and Ipopt 3.10.

N Original model Decomposition Gap in %

Ipopt Bonmin Couenne

1 180995.1 180995.1 188495.0 4.0%
2  187170.0 187170.0 198599.3 5.8%
3  193530.2 193530.2 209006.8 7.4%
4  200081.2 200081.2 219726.5 8.9%
5 206828.8  206828.8 230767.7 10.4%
6  213778.7 213778.7 242140.2 11.7%
7  220937.2 220937.2 253853.9 13.0%
8 228310.4  228310.4 265919.0 14.1%
9  235904.8 235904.8 278346.0 15.2%

10 243727.0 243727.0 291145.9 16.3%

dx.doi.org/10.1016/j.jocs.2012.06.005
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Table  8
Solutions using the full problem compared to the decomposition approach. For solu-
tions with a ‘*’, Bonmin 1.5 did not find an optimal solution within 10 min. However,
the gap between lower and upper bound was  in all cases significantly below 1%.

N Original model Decomposition

Ipopt Gap in % Bonmin Gap in % Couenne

1 181835.6 3.5% 180995.1 4.0% 188495.0
2 189161.4  4.8% 187170.0 5.8% 198599.3
3  196180.0 6.1% 193530.2 7.4% 209006.8
4  204760.9 6.8% 201860.5 8.1% 219726.5
5  215097.9 6.8% 212332.9* 8.0% 230767.7
6  226408.7 6.5% 223118.0* 7.9% 242140.2
7 239011.7  5.8% 236196.6* 7.0% 253853.9
8 252536.7  5.0% 250100.3* 6.0% 265919.0
9  266817.6 4.1% 264399.8* 5.0% 278346.0

10  281619.2 3.3% 279119.3* 4.1% 291145.9
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matics from the University of Heidelberg in 2009 and is
now pursuing a Ph.D. on model reduction and global opti-
mization with application in Complex Problem Solving.
nteger nonlinear program with nonconvex relaxation and consists
f functional relations based on optimization results. With the
WR  Tailorshop we intend to start a new era beyond trial-and-
rror in the definition of microworlds for analyzing human decision
aking.
To be able to solve the resulting problems within reasonable

imes, we proposed a tailored decomposition approach, where the
roblem is divided into a master problem and several subproblems.
his decomposition is built such that it yields a valid upper bound
or the corresponding global solution of the original problem and
hus can be used as an indicator for the quality of local solutions of
he original problem.

We  finally presented promising numerical results using this
ecomposition approach, which indicated a high potential. In a first
worst-case like) scenario with fixed variables, the gap between
ecomposition and original problem was between 4.0% and 16.3%,
hile the original problem could also be solved to global optimal-

ty. In a second scenario, it alternated between 4.0% and 8.0%. For
his scenario, only with the decomposition it was possible to get

 globally optimal solution for more than 2 turns. The computa-
ion times for the decomposition are below 2 min  even for 10 turns
ith Couenne 0.4,  while the local solver Bonmin 1.5 could not find a

ocal solution for the original problem within 10 min  for more than
 turns. In future work, it could be interesting to compare these
esults to a Lagrangian relaxation type approach.

The parameter set used for the computations in this article has
een set up manually to achieve a more or less reasonable model
ehavior. Here we still see high potential for improvement. For
xample, one could use derivative-free optimization methods to
ptimize the parameter values such that two (or even more) previ-
usly defined strategies (e.g., a high and a low price strategy) yield a
imilar objective value. By that, participants could follow different
trategies and still perform quite well.

An important step in future work will be to collect data with
articipants, which will then be used to compute optimal solutions
or the IWR  Tailorshop starting in states derived by the participants

 as well for the original problem as for the decomposition. This
ill yield an indicator function with guaranteed gaps to the global

olution for the original problem.
If we finally succeed to compute optimal solutions fast enough,

e can take this approach even one step further: by computing the
erformance indicator online,  i.e., while participants are solving the

WR Tailorshop,  we can give an immediate feedback based on opti-
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

al  solutions. It will be subject of future research how this feedback
an be used to improve learning of complex problem solving com-
etences. Answers to this question can be used to design programs
o train future decision makers.
 PRESS
ional Science xxx (2012) xxx–xxx 9

References

[1] J. Funke, Complex problem solving: a case for complex cognition? Cognitive
Processing 11 (2010) 133–142.

[2] W.  Putz-Osterloh, B. Bott, K. Köster, Models of learning in problem solving – are
they transferable to tutorial systems? Computers in Human Behavior 6 (1990)
83–96.

[3] Z.H. Kluwe, C. Misiak, H. Haider, Systems and performance in intelligence
tests, in: H. Rowe (Ed.), Intelligence: Reconceptualization and Measurement,
Erlbaum, 1991, pp. 227–244.

[4] M. Kleinmann, B. Strauß, Validity and applications of computer simulated
scenarios in personal assessment, International Journal of Selection and Assess-
ment 6 (2) (1998) 97–106.

[5] B. Meyer, W.  Scholl, Complex problem solving after unstructured discussion.
Effects of information distribution and experience, Group Process and Inter-
group Relations 12 (2009) 495–515.

[6] C.M. Barth, The impact of emotions on complex problem solving performance
and ways of measuring this performance, Ph.D. thesis, Ruprecht-Karls-
Universität Heidelberg, 2010.

[7] C.M. Barth, J. Funke, Negative affective environments improve complex solving
performance, Cognition and Emotion 24 (2010) 1259–1268.

[8] P.A. Frensch, J. Funke (Eds.), Complex Problem Solving: The European Perspec-
tive, Lawrence Erlbaum Associates, 1995.

[9] J. Funke, Problemlösendes Denken, Kohlhammer, 2003.
10] J. Funke, P.A. Frensch, Complex problem solving: the European perspective – 10

years after, in: D. Jonassen (Ed.), Learning to Solve Complex Scientific Problems,
Lawrence Erlbaum, 2007, pp. 25–47.

11] D. Danner, D. Hagemann, A. Schankin, M. Hager, J. Funke, Beyond IQ. A latent
state-trait analysis of general intelligence, dynamic decision making, and
implicit learning, Intelligence 39 (2011) 323–334.

12] S. Sager, C.M. Barth, H. Diedam, M.  Engelhart, J. Funke, Optimization to measure
performance in the Tailorshop test scenario – structured MINLPs and beyond,
in: Proceedings EWMINLP10, CIRM, Marseille, 2010, pp. 261–269.

13] S. Sager, C.M. Barth, H. Diedam, M.  Engelhart, J. Funke, Optimization as an anal-
ysis tool for human complex problem solving, SIAM Journal on Optimization
21  (3) (2011) 936–959.

14] P. Benner, V. Mehrmann, D.C. Sorensen (Eds.), Dimension Reduction of Large-
Scale Systems: Proceedings of a Workshop held in Oberwolfach, Germany,
October 19–25, 2003, Springer, Berlin, Heidelberg, 2005.

15] A.C. Antoulas, Approximation of Large-scale Dynamical Systems, SIAM, 2005.
16] W.H. Schilders, H.A. van der Vorst, J. Rommes, Model Order Reduction: Theory,

Research Aspects and Applications, Springer, Berlin, Heidelberg, 2008.
17] M. Held, R.M. Karp, The traveling-salesman and minimum cost spanning trees,

Operations Research 18 (1970) 1138–1162.
18] M.  Held, R.M. Karp, The traveling-salesman problem and minimum spanning

trees. Part ii, Mathematical Programming 1 (1) (1970) 6–25.
19] H. Pirkul, V. Jayaraman, A multi-commodity multi-plant capacitated facility

location problem: formulation and efficient heuristic solution, Computers &
Operations Research 25 (10) (1998) 869–878.

20] J.A. Muckstadt, S.A. Koenig, An application of Lagrangian relaxation to schedul-
ing  in power-generation systems, Operations Research 25 (3) (1977) 387–403.

21] A.M. Geoffrion, Approaches to Integer Programming, North-Holland Pub Co.,
1974, Chapter: Lagrangian Relaxation for Integer Programming, pp. 82–114.

22] C. Lemarechal, Lagrangian relaxation, in: M.  Jünger, D. Naddef (Eds.), Compu-
tational Combinatorial Optimization, Lecture Notes in Computer Science, vol.
2241, Springer, 2001, pp. 112–156 (Chapter 4).

23] J. Burgschweiger, B. Gnädig, M.  Steinbach, Optimization models for operative
planning in drinking water networks, Optimization and Engineering 10 (1)
(2008) 43–73.

24] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A Modeling Language for Mathe-
matical Programming, Duxbury Press, 2002.

25] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming, Mathematical
Programming 106 (1) (2006) 25–57.

26] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J.
Lee,  A. Lodi, F. Margot, N. Sawaya, A. Wächter, An algorithmic framework for
convex mixed integer nonlinear programs, Discrete Optimization 5 (2) (2009)
186–204.

27] P. Belotti, Couenne: a user’s manual, Tech. rep., Lehigh University, 2009.
 approach for a new test-scenario in complex problem solving, J.

dx.doi.org/10.1016/j.jocs.2012.06.005


 ING Model
J

1 putat
ARTICLEOCS-151; No. of Pages 10

0 M. Engelhart et al. / Journal of Com

Joachim Funke studied at the universities of Düsseldorf,
Basel, and Trier. He received his Ph.D. in psychology from
Trier University in 1986 and his habilitation from Bonn
University in 1990. Since 1997, he is head of the division
Please cite this article in press as: M.  Engelhart, et al., A decomposition
Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.005

for  Cognitive and Experimental Psychology at Heidelberg
University. Since 2010, he is Chairman of the International
Problem Solving Expert Group of the OECD. His focus is on
human approaches to complexity, on creativity, and on
complex problem solving.
 PRESS
ional Science xxx (2012) xxx–xxx

Sebastian Sager received his Ph.D. in Mathematics from
the University of Heidelberg in 2006. After a postdoc-
toral phase in Madrid he was  head of a junior research
group at the University of Heidelberg from 2008 until
2012. Since 2012 he is full professor at the Otto-von-
Guericke University of Magdeburg. His scientific focus
is  on the development and implementation of efficient
 approach for a new test-scenario in complex problem solving, J.

numerical methods to support modeling, simulation, and
optimization of complex dynamic processes in science and
engineering, industry, services, and commerce. A special
focus is given to the integration of methods from nonlin-
ear,  mixed-integer, dynamic, and stochastic optimization.

dx.doi.org/10.1016/j.jocs.2012.06.005

	A decomposition approach for a new test-scenario in complex problem solving
	1 Introduction
	2 The IWR Tailorshop-model
	3 A tailored decomposition approach
	4 Numerical results
	5 Summary and outlook
	References


