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SUMMARY. We develop Bayesian versions of three classic probability problems: the
birthday problem, the coupon collector’s problem and the matching problem. In each
case, the Bayesian component involves a prior on the underlying probability mechanism.

Sometimes this appreciably changes the answer, sometimes not.

1. Introduction

We are going to re-analyse some basic problems of elementary proba-
bility from a Bayesian point of view. As an example, consider the familiar
birthday problem. If k balls are randomly dropped into n boxes, what is the
chance of a match, that is, that 2 or more balls are dropped into the same
box? The classical answer assumes that the balls are dropped uniformly
and independently into each box. Under these assumptions, if n = 365, the
chance of a match is approximately 1/2 when k& = 23 balls are dropped. In
contrast, consider a practical demonstration of the birthday problem on the
first day of a class. Are the birthdays of the students reasonably considered
as balls dropped uniformly into 365 categories? After all there are well-
known weekend/weekday effects, and perhaps seasonal and lunar trends for
birth rates. On reflection, the instructor may conclude that the chance p; of
a student being born on day ¢ is not uniform and in fact is not known.

A Bayesian approach puts a prior distribution on the p; and computes
the chance of a match. We treat this problem with a variety of priors in
Section 2. We also develop a general result for Dirichlet priors using Stein’s
method for Poisson approximation.
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Section 3 treats the coupon-collector’s problem. If £ balls are dropped
randomly into n boxes what is the chance that each box contains at least
one ball? (an event we call covering). Using classical computations, if k =
n logn+0n for some 6 the chance of covering is approximately e’ when n
is large. For example, when n = 365, k = 2287 there is about a 50% chance
of covering. We give useful approximations to the probability of covering
for a variety of prior distributions. For example, under a uniform prior,
when n = 365, k = 191,844 balls are required to have probability 50% of
covering. This dramatic change shows that naive use of a uniform prior in
high dimensional problems can have unforeseen consequences whereas adding
a prior only makes a small change in the birthday problem.

Section 4 treats the matching problem. A deck of cards labelled 1,2,...,n
is shuffled. What is the chance that a card labelled ¢ is in position 7 for some
i? Classically, the chance of at least one match is 1 — 1/e to very good
approximation, assuming that the cards are uniformly mixed. Here we first
argue that the classical answer is also a Bayesian answer for some natural
priors. We then develop some priors that incorporate notions of arrange-
ments that are not uniform, and assess the chance of a match using Monte
Carlo Markov chain methods.

The birthday problem, coupon collectors problem, and matching prob-
lem are three principal examples of Feller’s great Volume I. Our examples
show that a Bayesian view can lead to new perspectives on these classical
problems. In the final section we review available Bayesian work on some
other basic probability tools and point to some open problems. The ap-
pendix contains some standard facts about the Dirichlet distribution which
are used in our treatment.

2. The Birthday Problem

We begin with a summary of the classical treatment of the birthday
problem. Following this, a Bayesian analysis is given for a uniform prior, a
symmetric Dirichlet prior, and then a more general Dirichlet prior.

2.1 Classical birthdays. Von Mises (1932) introduced the birthday prob-
lem: If k£ balls are dropped independently and uniformly into n boxes, the
chance that at least one box contains two or more balls is

k—1 .
P(at least one match) = P(match) = 1— P(no matches) = 1— H (1 - i) .

. n
=1

The following asymptotic approximation is useful.
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PROPOSITION 2.1 Ifn and k are large in such a way that: (g) /n— A

then in the classical birthday problem:

P(match) =1 —e

PROOF. Write

]:1;[11<1 1) —exp ('glog (1- E))

Expand the log using log(1 — z) = —z + O(z?) to see that the exponent is

(5)

k.3

REMARKS.

1. Setting p = 1 — e and solving the resulting equation for k gives a

good approximation to the k needed to obtain probability p of a match.

For example, when p = % We get k = +/2nlog2 = 1.2/n.
When n = 365, k = 1.2y/n = 22.9.

. A second way to see Proposition 1 (and somewhat more) is to prove

that the number of matches has an approximate Poisson(A) distribu-
tion. From this, P(No Match) = e~*. For careful treatments using
Stein’s method see Arratia, Goldstein and Gordon (1989), Barbour,
Holst and Janson (1992, pp.104-107) or Stein (1990) who treats the
non-uniform case. A review of many variations of the birthday prob-
lem: varying cell probabilities, multiple matches, close matches, etc is
in Aldous (1989, pp.108-110) and Diaconis and Mosteller (1989).

It is certainly possible for a Bayesian to accept classical computations
based on a multinomial with all p; = 1/n, by using a point prior at this
pi. Cases in which the underlying probability mechanism is unknown
are treated next.

2.2 Birthdays under a uniform prior. In coin tossing a standard prior

is the uniform on [0, 1]. A standard prior on the n—dimensional simplex A,
is the uniform distribution U where all vectors p have same density.

The probability of a match, averaged over (p1,po,...,pn), represents the

chance of success to a Bayesian statistician who has chosen the uniform prior.
As is well known, (Bayes, 1764, Good, 1979, Diaconis and Efron, 1987) such a
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uniform mixture of multinomials results in Bose-Einstein allocation of balls
in boxes, each configuration, or composition (ki, ks, ..., k,) being equally
likely with chance 1/ (k+z_1). For this simple prior, it is again possible to
do an exact calculation:

PROPOSITION 2.2 Under a uniform prior on A,

"1 —i/n
P,(match) =1 — - . 2.1
( ) g <1+z/n> (21)

If n and k are large in such a way that k?/n — X, then

P(match) =1 — e, (2.2)

PrOOF. Represent the uniform mixture of multinomials using Polya’s
urn (see Johnson and Kotz, 1975).

Thus consider an urn containing n balls labelled 1,2, 3,...,n. Each time
a ball is chosen at random and replaced along with an extra ball having the
same label.

The chance that the first k& balls have different labels is

n—lxn—Z ><n—(k—l)
n+1 n+2 n+(k+1)

This gives (2.1) and (2.2) follows by writing the product as the exponential
of ¢ Mog(1 —i/n)/(1 +i/n), expanding the logs and using log(1 — z) =
—z 4+ O(z?) as in the proof of Proposition 1. n

Thus in order to obtain a 50-50 chance of a match under a uniform prior
k must be .83y/n. When n = 365, this becomes k = 16, and for k = 23,
P,(match) = .75.

The uniform prior allows some mass far from (1/n,1/n,...,1/n) and
such “lumpy” configurations make a match quite likely.

The uniform prior studied above is a special case of a symmetric Dirichlet
prior D, on A,, with ¢ = 1. We next extend the calculations above to a
general ¢. For c increasing to infinity, the prior converges to point mass
0(1/n,1/n,...,1/n) and thus gives the classical answer. When ¢ converges to 0,
D, becomes an improper prior giving infinite mass to the corners of the
simplex, thus for small ¢, the following proposition shows that matches are
judged likely when k = 2.
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PROPOSITION 2.3 Under a symmetric Dirichlet prior D, on A,,

P.(match) =1 kf[l (n—i)e
c =1- —.
i net

This is proved like Proposition 2.2, using the Polya urn description of
the Dirichlet, starting with nc balls in the urn.

In order for the probability of a match to be about 1/2 ; k. = [1/2 +
V21og(2)nc/(c + 1)]. The following table shows how k. depends on ¢ when
n = 365:

c |5 1 2 5 20 oo
k. |14 17 19 21 23 23

The next section treats a similar computation with a general Dirichlet
prior for which no neat formula is available thus making Poisson approxima-
tion necessary.

2.3 Birthdays with general Dirichlet priors. Consider the birthday prob-
lem in the classroom setting described above in a class with students born
the same year. Should one suppose that they are uniformly distributed in
that year? A first reply can be motivated by the additional fact that in
recent years there are an increasing number of induced births most often
performed on weekdays, when a full staff is available. This decreases to
about 70% the rate of births on weekend days as compared to weekdays.
Less precisely there may also be lunar and seasonal trends.

If the students are judged exchangeable then de Finetti’s theorem is
in force: The birthdays may be regarded as chosen with probabilities p =
(p1,p2,-..,pn) where p is considered to have some distribution.

We carry out the calculation for a Dirichlet prior with parameter a =
(a1,a9,...,a,) with a; > 0. The next result shows that the number of
matches has a Poisson distribution. Following this we specialize the choice
of a to values that fit the considerations above.

PROPOSITION 2.4 Consider a Dirichlet prior Dg on A, with a = (a1, as,. ..
an) and A=ay +as+ -+ an. If k and n — oo in such a way that:

n

k
%;ai(ai +1) — A\,

then the number of boxes with two or more balls has a limiting Poisson(\)
distribution.



A BAYESIAN PEEK INTO FELLER VOLUME I 825

PROOF. Let K = (K1, Ks,...,K,) be the box counts after dropping
k balls into n boxes using the Multinomial/Dirichlet law with parameter
a = (ay,as,...,a,). Then

P (K 1=k, Ko=ko,... ,Kn:kn):Pd(%):P(lekl, oy Yo=ky| Z Yi=k)
(2.3)
where the Y;’s are independent negative binomials (a;, p;) with distribution

: jg—1 : s
PYi=j) = ( B} 1>p;~h<1 — ).
(2

For a; > 1, the laws of Y;’s are log-concave. Thus from Joag-Dev and
Proschan (1983), the law of (K1, Ko, ..., K,) is negatively associated, that
is: if f,g: N" — R are bounded and increasing in each coordinate,

E[f(K)g(K)] < E(f(K))E(9(K)).

Let Z; = T{k,<9}- This is an increasing function and so (Z1, Za, ..., Zy)
are negatively associated. Now Barbour, Holst and Janson (1992) provide a
Poisson approximation for W = Z; + Z3 + - - - + Z,, through their Corollary
2.c.2, with bounds on the error. Let A = E(W), 02 = var(W), they show:

1L (W) = Poyl|ry. < (1 —e M) (1—0%/A)

To evaluate means and variances we denote as before z(;) = z(z +
1)---(z+j—1) and use:

P&(kla"'akn) = M( ’ )

Ag \kiooky
i) ) (A = ai) ey (&
P =) = WAz 0l
Ak)
i = P(Boxi>2) = 1—P(Boxi<l1)
_ (A—ad)w  (a:)i(A = ai)g-1)
Ay Ak)
my; = P(Boxi>2 and Box j > 2)

= 1—{1—7Ti—|-1—ﬂ'j—P((0,0),(O,l),(l,O),(1,1))}
(A—a;—ap)p)  aik(A—a;—ar)k-1)
+
Ak Ak
ajk(A —a; —ap) 1)  aiajk(k —1)(A = a; — ap)(—2)
+ +
Ak Ak

= m+7;+

_1,
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with A =7 + mo + -+ 7, and 02 = 31" | m(1 —
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) + Zi.—,éj(ﬂ-ij — 7ri7rj).
O

REMARKS.

1. It follows under the assumptions of Proposition 4 that

Pj(match) =1 — e,
for a probability of approximately 1/2 we need:

AAT1)
Yai(a; +1)

This reduces to the cases treated above when all a;’s are equal to a
constant c.

k=1.2

Consider our class example with n = 364 = 7 x 52 for convenience. We
construct a 2 parameter family of Dirichlet priors writing a; = Am;,
with m; +m9 - - -4+ m, = 1. Assign weekdays parameter m; = a, weekends
m; = ya, with 260a + 104ya = 1. Here v is the parameter ‘ratio of
weekends to weekdays’, (roughly we said v = .7) and A measures the
strength of prior conviction. From Proposition 4, the chance of a match
is approximately

1
260 + 104"

(5)

1—e, with A= —21__
e~ ", with A G+1)

{a?A(260 + 104+*) +-1}, a =

We give some values to show the impact of varying A and v when
n = 364. The following table shows the value of k£ needed to have
probability approximately 1/2 of a match:

4715 7 1

1 22 22 22
364 | 16.1 16.3 16.4
728 | 184 18.6 18.8
00 222 224 226

Small values of A force strong concentrations of the prior on the lumped
values. The value A = 364 is roughly comparable to a uniform prior.

Here believable variations in y make small difference to the conclu-
sions. The main change comes from varying A. We conclude that for
the birthday problem, believable uncertainties only change classical
conclusions by a small amount.
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3. We have proved a Poisson approximation for more general priors. If n
and k are large, with

n
P { <k> > pi < A} = F(\) weakly,
2) =

then the number of matches is approximately an F' mixture of Poi-
sson (\) variables. In the examples above, F' is a point mass at .
We have also used tree like priors which have F' continuous. These
results are attractive in showing that the only feature of the prior that
matters is the length of the vector (p1,p2,...,pn) : 3. p?. Efron (1993)
has developed some technology for assigning meaningful priors to one
function of many parameters.

4. A different approach to the proof of proposition 2.4 and numerical
computation, uses the conditional representation (2.3). From here,
Le Cam’s method (see Holst(1978)) may be used, perhaps combined
with Edgeworth corrections to prove limit theorems or get numerical
approximations. These approaches remain useful when some a; < 1.
Then the negative binomial is no longer log-concave, so the proof based
on Barbour, Holst and Janson’s version of Stein’s method breaks down.

5. There is another approach to using Stein’s method which is also useful
for completely general a;. This is based on the use of an exchangeable
pair as in Stein (1986). This was our first approach to proof. Since
the same argument can be used in the coupon collector’s problem, we
detail it here. For K = (Ki,...,K,) with a Dirichlet/multinomial
law from parameter a, we construct K’ so that the pair (K, K') is
exchangeable. The argument is simple: regard K as a replacement of
k balls in n boxes, choose a ball uniformly at random and delete it,
giving k, then add a ball to box 7 with probability (a; +k;)/(k+A—1).
It is easy to check that this works, and then the techniques of Stein
(1986) are in force.

6. We cannot leave off discussion of the birthday problem without remark-
ing that the classical computation underlying Proposition 1 yields the
strongest finite form of de Finetti’s basic representation theorem; see
Diaconis and Freedman (1981).

3. The Coupon Collector’s Problem

We begin by reviewing the classical analysis of the coupon collector’s
problem. This is followed by a closed form answer for the Bayesian analysis
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under a uniform prior and approximate analyses under a general Dirichlet
prior.

3.1 Classical coupons. Laplace (1812) introduced the original coupon
collector’s problem: if k£ balls are dropped uniformly and independently into
n boxes, the chance that all boxes are covered is

P(cover) = Z(—l)j (n) (1 —j/”)]c
j=0 J

Useful approximations to this expression were given by Von Mises (1939),
see also Erdos and Renyi (1961) who show that if

k~mnlogn+0n, —oo <0 <oo

0

then P(cover) ~e © . (3.1)

For example, P(cover) = 1/2 for § = 0.366. When n = 365 this gives
k = 2287 or as Feller (1968) puts it: in a village of 2300 inhabitants it
is about even odds that every birthday is covered. For P(cover) = .99,
0 = 4.60. When n = 365, this gives k = 3832.

Modern approaches to studying the coupon collector’s problem introduce
a random variable W, the number of empty cells when k balls are dropped
into n boxes. One observes

E(W)=n(1—1/n)f
and then shows that if n and ¥ — oo in such a way that E(W) — X, then
P(W =j) — e "N /4. (3.2)

From this P(cover) = P(W = 0) = e~ *. Writing k = n logn + On gives
A =e"? 50 (3.2) implies (3.1).

A rigourous version of the Poisson limit theorem with good error terms
is in Barbour, Holst and Janson (1992). See also Rosen (1970) for the
case of varying probabilities and Aldous (1992) for many variations and
applications.

3.2 Coupons under a uniform prior.

PRrROPOSITION 3.5 Under a uniform prior on A,

P(cover) = (f;: 1) /(n:;ﬁ; 1) . (3.3)
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If n and k are large in such a way that k/n*> — 0 > 0 then

P(cover) = ¢~ (1 + 0 (1/n)). (3.4)

PrOOF. Under the uniform prior, all configurations are equally likely
with probability given by the denominator in (3.3). The numerator counts
the number of configurations which cover.

The limiting approximation in (3.4) is easily proved by simplifying the
ratio, exponentiating and expanding log(1 —z) as in Proposition 1 above.

REMARKS. Using a uniform prior radically changes things: the classi-
cal result (3.1) shows a sharply changing probability in a neighbourhood of
nlogn. The uniform prior gives a gradually changing probability in a neigh-
bourhood of n2. For example, P,(cover) = 1/2 for § = 1.44. When n = 365
this will need k = 191,844. For P,(cover) = .99, # = 99.5 and n = 365 gives
k = 13,255, 888.

It is not hard to understand these results: under a uniform prior, the
minimum p; is of order 1/n2, so it takes k of order n? to have a good chance
of dropping at least one ball in each box.

3.3 General Dirichlet prior. The cover probability will be derived from
a Poisson approximation due to Barbour, Holst and Jansen (1992,page 129).
Let a = (a1,a9,...,a,) with a; >0, A =a; +as +--- + a,. Let W be the
number of empty cells under a Dirichlet multinomial allocation. Then for
any B C {0,1,2...}, they show

[P{W € B} — Pox(B)| < (1— e (1 — 02/)) (3.5)

with A = E(W), 0 = var(W). These are explicitly given by letting A\ = 3 p;
and 02 = %, pi(1 — p;) + Sosp (i — pipi) and writing;

—(A—a;) —(A—a;—ay)
pi = ( (_kA) )7 Dik = ( (_kA) )7 i 7é k.
k k

The inequality (3.5) shows that the Poisson approximation holds pro-
vided o2 is close to A. Note that W is a sum of negatively correlated indi-
cators so that o2 < \.

As an example, take the symmetric case where a; = ¢, 1 <14 < n. For ¢
a fixed integer ,

(ecn—1)...(cn—¢)
en+k—1)...(en+k—c)’
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Now np has a finite limit if and only if & ~ On(ct1/¢. Notice that this agrees
with the results of the previous section when ¢ = 1. The same asymptotics
hold for any fixed ¢ > 0 using (3.5). We may conclude:

COROLLARY 3.1 Under a Dirichlet (c,c,...) allocation with ¢ > 0 fized

P,(cover) ~ e /D for k ~ onleth/e (3.6)

REMARKS.

1. We see that the parameter ¢ enters in a complex fashion and clearly
makes a tremendous difference.

2. When n = 365, we compute k. needed to have P(cover) = 1/2:

c | 1 2 3 4 5 10 20 00
kc|191,844 16,000 8,841 6,994 4,555 3176 2685 2297

We do not have a reasonable conjecture for the Bayesian probability
of covering under more general priors (as in Remark 4 in Section 2).

4. The Matching Problem

We treat the matching problem and show that the classical computation
has a natural Bayesian interpretation under a uniform prior. We then work
with informative priors, first by Monte Carlo and then by analytic methods.

4.1 A classical and Bayesian matching. The matching problem asks for
the number of fixed points in a uniformly distributed random permutation.
It was stated and solved by Montmort (1708). In modern notation, if W is
the number of fixed points of a random permutation of n objects, then for
any B C {0,1,2,...,}

|P(W € B) — Poy(B)| <2"/(n+ 1)L (4.1)
There is a “match” if W > 1. It follows that:
P(match) = P(W >1)~1—1/e (4.2)

For a history of the matching problem and many variations (decks of cards
with repeated values, almost matches etc.) see Takacs (1980).

The matching problem can be stated in several scenarios: a hat checker
returning hats having lost the checks, a teacher returning homeworks in a
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random manner, mixed up letters put into envelopes at random. In these
variations, the uniform distribution is suspect.

Consider demonstrating the matching problem with a borrowed deck of
cards. The cards are turned up one at a time calling ‘ace of spades’,‘two
of spades’, etc. in a fixed order. If the deck is believed well shuffled, then
a Bayesian will have a uniform prior over all n! orders and the classical
computation described above is also the Bayesian computation. Suppose
next that the first few cards turned over are hearts. You may well think
that the cards were used in a game where the final arrangement clumps the
suits. Half a dozen other patterns could easily provoke a similar reaction.
These reactions are not compatible with a uniform prior. In the next few
sections we explore alternatives to the uniform prior.

4.2 Clumping. One natural alternative to uniformity is that the cards of
like suit or value tend to be close together. For 7 a permutation of n objects,
consider the statistic:

T(r)=#{i: |mip1 —m|=1,1<i<n,mp1 =m} (4.3)

This measures the number of cards adjacent in the original ordered deck
which are still adjacent. A variety of other clumping statistics will be dis-
cussed below.

A nonuniform distribution on permutations which permits varying prob-
abilities for such clumps may be specified by putting an exponential family
through T

Py(m) = Ze 1™ 0 < 0 < . (4.4)

Here 6 is a parameter and Z is a normalizing constant. Note first that 8 = 0
gives the uniform distribution. For 6 > 0, the distribution P concentrates
on permutations with large values of T. As # — oo, Py concentrates on
2n specific permutations: the cyclic shifts of the identity and their reversals.
To calibrate 0, note that under Py, T has an approximate Poisson(2) distri-
bution. It follows that, for fixed 8 and large n, under Py, T is approximately
Poisson(2e?). Thus, if you think “there are about k adjacent values”, then
0 = log(k/2). Of course, a prior could also be used for 6.

The following table shows the probability of a match with prior Py when
n = 52 for various values of . We note that the prior hardly changes things.
As 0 tends to infinity Py(match) tends to 1/2.

0 0 0.5 1 2 5 10 20 100 200
E(T) 20 32 51 11.8 345 342 313 313 326
Py (Match) .64 .62 .61 .62 45 .46 .56 .52 .51
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The foregoing table is based on an implementation of the Metropolis al-
gorithm for sampling from Py. There is one subtlety here which may be of
independent interest. A naive version of the Metropolis algorithm uses a
base chain. This will here be defined by specifying a set S of permutations
(in this case all transpositions). The walk takes place on the set of all n!
permutations. If the process is currently at the permutation 7, choose s € S
uniformly and compute o = sw. If T'(o) > T'(w), the process moves to o. If
T(0) < T(m), flip a coin with probability of heads Py(c)/Py(m). If the coin
comes up head, the process moves to o. If the coin comes up tail, the pro-
cess stays at w. This describes the Metropolis algorithm. Hammersley and
Handscomb (1965) or Diaconis and Saloff-Coste (1998) give further details.

To get the right answer from this simulation procedure it is important
to realize that the statistic T' has some invariance properties. It takes its
maximum value n at the identity permutation and at all cyclic shifts and
their reversals. Thus Py has 2n “peaks’.

If one used the Metropolis algorithm based on local changes, (e.g., S is all
transpositions), it takes time of order e to escape from a peak. The statistic
of interest “match/no match” is not invariant under the symmetries of T,
one could easily report a wrong answer. Indeed, since e? = 20 and 2'0 = 103,
then €2 = e x 2017 = e x 128 x 10?° = 3 x 10?2 so that in this case an order
of 10%? steps would have been necessary just to escape from one peak.

We ran the Metropolis algorithm based on random transpositions coupled
with cyclic shifts and reversals. After proposing a transposition and choosing
to make that step, a random cyclic shift is made and with probability 1/2,
a reversal is made.

Each entry in the forgoing table was computed using 10,000 steps of
a Monte Carlo simulation based on this refined version of the Metropolis
algorithm. Figure 1 shows an example of one run for 8 = 200, the figure
shows the evolution of both T" and the number of fixed points. We see that
the first 1000 steps or so do not suffice to stabilize the distribution of T'. The
simulations were started at random permutations.

The discussion above has been for the statistic 7' of (4.3). There are
several other natural statistics, for example W(m) = Y0 | |7(i + 1) — 7(i)].
One could also consider statistics to identify clumping of cards of like value
and suit. These can be combined in the form ) w; Py, 1, or using }_ 0;T; in
the exponent. It seems plausible that any such complex mixture would lead
to an approximate uniform distribution. We do not know of any theoretical
justification for this belief.

The next two sections explore other models for non-uniform distributions.
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Figure 1: 10,000 Metropolis Steps

4.3 Badly shuffled cards. Suppose a deck of cards is initially in known
order 1,2,3...n and is riffle shuffled £ times. We take each shuffle according
to the Gilbert-Shannon-Reeds (GSR) distribution;

e The deck is cut in half according to a binomial distribution.

e Then the cards are interleaved by being dropped from the two hands
alternately according to the following scheme:

— If at this stage the left hand has L cards in it, and the right hand
R cards,

— the chance that the next card comes from the left hand will be
L/(L+ R)

— the chance that the next card comes from the right will be R/(L+
R)

This specifies a probability distribution over single shuffles which is
actually uniform. Experiments reported in Diaconis (1988) show that
the GSR distribution matches the way people ordinarily shuffle. See
Bayer and Diaconis (1992) for more background.
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Let Py be the distribution on permutations after £ independent GSR shuffles.
Bayer and Diaconis (1992) show that as & — oo, Pj converges to uniform.
This happens (roughly) for k¥ = (3/2)logyn. Let W (m) denote the number
of fixed points of the permutation 7. The distribution of W under P is
studied in Diaconis, McGrath and Pitman (1994) who prove:

THEOREM 4.1 Under k GSR shuffles, the number of fized points satis-

fies:
Ey(W)=142"F 4272 ... 4 o-(n=Dk (4.5)

For large n, and fized k, W has an approzimate negative binomial distribu-
tion, for 5 =0,1,...,

P(W =j) ~ (" pi(1—p)f, f=2kp=27F (4.6)

In particular, P,(match) ~1 — (1 — 27k)2k-

REMARKS.  After & = 1 shuffle, Ey (W) ~ 2, P;(match) = 3/4, as
opposed to uniform where Py, ~ 1—1/e. Already at 2 shuffles: P»(match) =
.6836, P, (match) = .6321. After only a few shuffles, the chances agree.
Thus again, using a non-uniform prior on permutations only changes the
answer slightly for the matching problem.

4.4 Cayley distance and Fwen’s sampling formula. A useful family of
non-uniform distributions on permutations is provided by Mallow’s models:

Qo = ¢(0)gU™™) 0 <o <1, (4.7)

where j is a fixed center (often taken to be the identity) and d is a metric
on permutations. Thus, if 8 = 1, @Qy is uniform. For 0 < 6 < 1, Qg is largest
at my and falls off exponentially.

In this section we take d = Cayley’s distance: d = minimum number of
transpositions to bring 7 to .

See Diaconis (1988) or Marden (1995) for references and background. In
particular it is proved in Diaconis (1988) that d is invariant under re-labelling
and satisfies:

d(m,mp) = n — # cycles in (7my ")

Further, for Cayley distance it is known that the normalizing constant is
given by

- 1
0)=|| ————
() 1:[ 1+60—1)
=1
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PROPOSITION 4.6 Under Mallow’s model defined with the Cayley dis-
tance and with wy =1, the number of fized points satisfies:

n

For any A C {0,1,2...,},
QoW € 4) — Poyjp(A)] <+ 7+ 7o (4.9)
0 =T \0 T T 1) '

PROOF. (4.8) will follow from the group theoretic discussion below. For
(4.9), write

1
17— - pn—cm) — i
Qo() I I T 00— 1)9 , where ¢(m) = #cycles in 7.

By changing from 6 to 7 = 1/6, we can rewrite Q:
Qr(m) = 7 /T (1 4 n)

and retrieve a measure on permutations studied by Arratia, Barbour and
Tavaré (1992, p.521). 0

REMARKS. Arratia, Barbour and Tavaré (1992) and many other writers
cited by them derive properties of many further functionals of © under Q.
One further property is given below.

If P is any probability on permutations, we may want to say “P only
holds roughly”. One way to do this is to convolve P with a measure such
as Qg of (4.7). Here Qg * P(m) = 3 P(nro~1)Qy(0) is close to P(m) when
is close to zero. The following result shows how the expected value in the
matching problem changes under such a change in priors.

PROPOSITION 4.7 Let P be a probability on the permutation group. Let
Qg be defined by (4.7) with w9 = id and d as Cayley distance. Then, the
expected number of fixed points W under Qg x P is:

(1-9)

1 _~ @7
T a0 18

(k—1)

with p the expected number of fixed points under P.
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PROOF. Let p(m) be the usual n-dimensional representation of = via
permutation matrices. Then for any probability P, the expected number of
fixed points is u(P) = Tr(P(p)), where P(p) = 3 P(m)p(r). Now p can be
decomposed as a direct sum p = p; + py of a 1-dimensional trivial repre-
sentation and an n — 1 dimensional irreducible representation (see Diaconis,
1988, chapter 2, for background).

The probability Qg(m) = Qy(c ') is constant on conjugacy classes, so
for any irreducible representation py, Q(pl) = cI for a constant c¢. Thus, in
an appropriate basis, Q(p) is a diagonal matrix with a one in the (1,1) entry
and ¢ in the n—1 other diagonal entries. Further, in this basis, P(p) is block
diagonal with a one in the (1,1) entry, zeros elsewhere in the first row and
column, and some (n — 1) x (n— 1) block at the bottom right. By invariance
of the trace under change of basis, the trace of this (n — 1) x (n — 1) block
must be p(P) — 1.

Now @ P(p) = Q(p)P(p) has trace 1 + ¢(u — 1). Finally using the
argument above with P replaced by Qp, ¢ = (u(Q) — 1)/(n — 1). Now
w(Qg) =n/(1+6(n—1)) is easy to see directly, for u(Qy) is n x Qqp(n(1) = 1)
by invariance, and

n 1
Qo(n(1) =1) = — o)
’ z:l_Il 1+ 9(2 a 1) w:n%l
-t Tasei-n-—- 1
1406 —1) 5 O(n —1)
Thus (1—6)
M(Qe)zm and A= b O

From the analyses above, we see that the prior only makes a small differ-
ence in the analysis of the classical matching problem. Of course, there are
differences; the rate of convergence to Poisson appears to be very different
if we compare the 1/n rate in (4.9) to 2™/(n + 1)!.

The matching problem is often given in terms of letters in envelopes or
hats returned from a cloakroom. Bayesian analyses of the hat/cloakroom
version depend on the situation. For instance, if the cloakroom attendant
did not keep tickets, the chances are there would be special hats that would
be remembered, thus favouring permutations with a certain number of fixed
points (the specially noticeable hats). The secretary might remember certain
of the letters, because of known clients, or postal codes and so on.
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5. Final Remarks

We have collected here a brief review of some other Bayesian versions
of standard probability problems. There are several recent textbooks which
survey the active development of the Bayesian approach to statistics. Berger
(1995), Bernardo and Smith (1995), Robert (1993) and Schervish (1995)
develop axioms and tools available. We restrict our attention to our theme
and briefly review Bayesian versions of standard probability problems.

5.1 Laws of large numbers and de Finetti’s theorem.  Let X, Xo,...
be an infinite sequence of binary exchangeable random variables. Let S, =
X1+ Xo+ -+ X,,, de Finetti’s law of large numbers asserts that

Sp/n converges almost surely to a limit 6 € [0, 1]. (5.1)

This 0 is a random variable whose law we will call . The law p of (5.1)
uniquely determines the law of {X;}2°; through de Finetti’s representation:

P{Xi=e,...Xp =€y} = / (1 — )5 pu(de)

where S, =e; +e2 +--- e, and {¢;};—, is any binary sequence.

The literature on de Finneti’s theorem and its extensions is reviewed
in Aldous (1985), Diaconis (1988), and Diaconis and Freedman (1984) and
Lauritzen (1988).

5.2 Central limit theorem. Let Xy, Xo,...... be an infinite sequence
of binary exchangeable random variables. The central limit theorem states
that, for 6 the limit of (5.1)

P{nY2(8, —nf) <o) / o((p(1 - p)22)u(dp).  (5.2)
Thus, as expected, one has fluctuations of order n'/2 about the random mean
nf; the shape of the fluctuations being a scaled mixture of Gaussians, with
the mixing measure determined by u.

Again, this theorem admits sweeping generalizations giving a Bayesian
version of the general central limit problem. Here mixtures of normals are
replaced by mixtures of general infinitely divisible laws. Perhaps the best
recent results, and a survey of previous work appears in Fortini, Ladelli and
Regazzini (1996).

5.3 Comparisons. It can be confusing to compare conclusions from
the classical and Bayesian versions of the central limit theorem. Classically,
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if one flips a fair coin n times, one expects Gaussian fluctuations of size
n'/2 about n/2. The Bayesian result (5.2) looks much more complex. The
difference is this:

the Bayesian analysis is not assuming the coin is “fair” but rather build-
ing on the fact that the long term frequency is “unknown”.

Consider a classical statistician contemplating repeated flips of a drawing
pin (thumb tack), what predictions could be made about the next n flips?
The question doesn’t make sense classically, one would have to get some data
and try things out.

With substantial data the Bayesian and frequentist predictions agree:
the data swamps the prior and the posterior is basically point mass at the
observed frequency of successes. With moderate amounts of data the prior
still comes in: Diaconis and Freedman (1988) is a recent reference giving
bibliographical pointers and bounds for this classical work of Laplace (1812).
Beckett and Diaconis (1994) examine real flips of real thumb tacks and show
that the basic exchangeability assumption is open to question.

Consider a Bayesian analysis of repeated trials, with a uniform prior. The
number of successes in the next n trials is uniform on {0,1,2...,n}. The
central limit theorem says it has roughly n'/? fluctuations about nf, where
6 is uniform on [0,1]. This is not useful. Of course, with a tightly peaked
prior, the situation would be different. Further the Bayesian central limit
theorems are useful in justifying the use of Normal models in applications.

5.4 Some further examples.  There is much further work to be done
incorporating uncertainty and prior knowledge into basic probability calcu-
lations.

Our interest in this area was stimulated by Scarsini (1988). His paper
studies optimal play in a game of heads and tails where the player has an
exchangeable prior for the outcomes. Chamberlain and Rothschild (1981)
study the question “ What’s the chance that my vote matters in an election
with 2n other people?”. In a classical analysis, with each voter assumed
to vote for one of two sides with probability 1/2, the chance that one vote
breaks a tie is around (7n)~'/2. If a uniform prior is used the chance is
only 1/n.

DasGupta (1995) studies how the odds change in a game of craps if the
chances for the die are not assumed known. Armero and Bararri (1996)
studies features of the basic single server queue under an exponential model
with a prior on the parameters.

L.J. Savage (1973) and Engel (1992) give Bayesian developments of prob-
lems like Buffon’s needle using subjectivist versions of Poincarés early efforts
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on the “method of arbitrary functions”. This work shows that for some prob-
lems essentially any prior will lead to the same final answer. This in turn
agrees with the classical distribution. This is typically a case for problems
with sensitive dependence on initial conditions.

5.5 Further problems. This paper has only scratched the surface of a
rich terrain. There are dozens of juicy examples in Feller’s book (not to
mention volume 2). Sometimes priors matter, sometimes not. We have used
conjugate priors. Sometimes only one feature of the prior matters. It seems
worthwhile to make a catalog of examples to help us understand Bayesian
robustness.
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