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The Metropolis algorithm is a widely used procedure for sampling
from a specified distribution on a large finite set. We survey what is
rigorously known about running times. This includes work from statisti-
cal physics, computer science, probability, and statistics. Some new
results (Propositions 6.1�6.5) are given as an illustration of the
geometric theory of Markov chains. ] 1998 Academic Press

1. INTRODUCTION

Let X be a finite set and ?(x)>0 a probability distribu-
tion on X. The Metropolis algorithm is a procedure for
drawing samples from X. It was introduced by Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller [34]. The algo-
rithm requires the user to specify a connected, aperiodic
Markov chain K(x, y) on X. This chain need not be
symmetric but it must have K(x, y)>0 if and only if
K( y, x)>0. The chain K is modified by auxiliary coin
tossing to a new chain M with stationary distribution ?. In
other words, if the chain is currently at x, one chooses y
from K(x, y). Let the acceptance ratio be defined by

A(x, y)=
?( y) K( y, x)
?(x) K(x, y)

. (1.1)

If A(x, y)�1, the chain moves to y. If A(x, y)<1, flip a
coin with probability of heads A(x, y). If the coin comes up
heads, the chain moves to y. If the coin comes up tails, the
chain stays at x. Formally,

M(x, y)={
K(x, y) if A(x, y)�1; y{x

(1.2)
K(x, y) A(x, y) if A(x, y)<1

K(x, y)+ :
z :A(x, z)<1

K(x, z)(1&A(x, z))

if y=x.

* Both authors research partially supported by NSF Grant DMS
9504379 and Nato Grant CRG 950686.

The following lemma says that the new chain has ? as its
stationary distribution:

Lemma 1.1. The chain M(x, y) at (1.2) is an irreducible,
aperiodic Markov chain on X with

?(x) M(x, y)=?( y) M( y, x) for all x, y. (1.3)

In particular, for all x, y

lim
n � �

Mn(x, y)=?( y). (1.4)

Proof. Equation (1.3) is easily verified directly: if
A(x, y)>1, ?(x) M(x, y)=?(x) K(x, y), and A( y, x)<1,
so

?( y) K( y, x) A( y, x)=?(x) M(x, y).

The same conclusion holds if A(x, y)=1 and if A(x, y)<1.
The chain is clearly connected and is aperiodic by assump-
tion. Now, the basic convergence theorem for Markov
chains (see e.g., Karlin and Taylor [26]) implies the result.

Remark. In applications, X is often a huge set and the
stationary distribution ? is given as ?(x) B e&H(x) with
H(x) easy to calculate. The unspecified normalizing con-
stant is usually impossible to compute. Note that this con-
stant cancels out of the ratios A(x, y) so that the chain
M(x, y) is easy to run.

The limit result (1.4) is unsatisfactory. In applied work,
one needs to know how large n should be to have Mn(x, y)
suitably close to ?( y). One standard quantification of ``close
to stationarity'' is the total variation distance:

&M n
x&?&

=max
A/X

|Mn(x, A)&?(A)| with ?(A)= :
y # A

?( y).
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If this distance is small, then the chance that the chain is in
a set A is close to ?(A), uniformly. The techniques described
below give fairly sharp bounds on convergence in terms of
the size |X| and the geometry of a graph with vertex set X
and an edge from x to y if M(x, y)>0.

Section 2 describes a collection of examples where very
sharp results are known. These include a chain on the sym-
metric group drawn from our joint work with Phil Hanlon
and a variety of birth and death chains drawn from thesis
work of Eric Belsley and Jeff Silver. There are also results for
independence sampling base chains drawn from work by
Jun Liu. All of these chains are special, having a high degree
of symmetry. They give a collection of examples where the
correct answer is known, so different bounds can be com-
pared with the truth.

Section 3 describes work on statistical physics models
widely used in image analysis. These include the Ising model
and many variations. In low dimensions, away from ``criti-
cal temperatures'' and ``phase transitions'' the results show
that order n2 log n steps are necessary and suffice where n is
the number of lattice sites. In phase transition regions, the
running time can be exponential in n. The main work here
is due to Martinelli, Schonnman, Stroock, Zegarlinski, and
their co-authors.

Section 4 gives an overview of the geometric theory. This
consists of Poincare� , Cheeger, Nash, Sobolev, and log�
Sobelev inequalities.

Section 5 describes work on sampling from log concave
densities on convex sets. This work has been developed in
computer science by Frieze, Kannan, Lova� sz, Simonovits,
and their co-authors in connection with the celebrated
problem of computing the volume of a convex set. It uses
Cheeger's inequality and work transferring information
between discrete and continuous problems.

Section 6 describes some new work which allows sharp
bounds for Metropolis chains on low-dimensional grids.
This work is presented as an introduction to the geometric
theory of Markov chains developed in [8�11]. It gives
matching upper and lower bounds (up to good constants)
for problems like sampling from

?(i) B i(n&i) or ?(i) B e&(i&n�2)2

on [1, 2, ..., n&1], with the base chain being a reflecting
random walk.

The final section attempts to survey other literature,
extensions to general state spaces, and some of the many
improvements on the Metropolis algorithm which (currently)
seem beyond rigorous analysis.

Real applications of the Metropolis algorithm are wide-
spread. If the reader needs convincing, we recommend the
three discussion papers in the Journal of the Royal Statisti-
cal Society Ser. B 55, No. 3 (1993); these give many illustra-
tions and pointers to the huge applied literature.

We have made no attempt to cover closely related work
on annealing or the Gibbs sampler (Glauber dynamics). We
have attempted to give a reasonably complete picture of
what is rigorously known about the Metropolis algorithm.

2. EXAMPLES

This section reports work on examples where symmetry
allows careful analysis.

2.1. A Walk on the Symmetric Group

Let Sn denote the permutations of n items. In psycho-
physical experiments (e.g., ``rank these sounds for loud-
ness''), taste-testing, and preference studies, a variety of
nonuniform distributions on Sn are used. One family, the
Mallows model through the metric d, has form

?% (_)=%d(_, _0)�Z, (2.1)

with d( } , } ) a metric on Sn and _0 a centering permutation.
We take 0<%�1 and Z=Z(%, _0) a normalizing constant.
Thus, if %=1, ?% is the uniform distribution. If %<1, the dis-
tribution peaks at the permutation _0 and falls off exponen-
tially as _ moves away from _0 . A variety of metrics are in
use. For example,

d(_, _0)=minimum number of transpositions

required to bring _ to _0 (Cayley distance). (2.2a)

d(_, _0)=: |_(i)&_0(i)| (Spearman's footrule). (2.2b)

Detailed discussion can be found in Diaconis [6, Chap. 6],
Critchlow [4], or Fligner and Verducci [14].

For n large (e.g., n=52) the normalizing constant is
impossible to calculate and samples from ?% would
routinely be drawn using the Metropolis algorithm from the
base chain of random transpositions. Thus, if the chain is
currently at _, the chain proceeds by choosing i, j at ran-
dom in [1, 2, ..., n] and transposing, forming _$=(i, j) _. If
d(_$, _0)�d(_, _0), the chain moves to _$. If d(_$, _0)>
d(_, _0) a coin is flipped with probability %d(_$, _0)&d(_, _0). If
this comes out heads, the chain moves to _$. Otherwise, the
chain stays at _.

The running time of this chain for the Cayley distance was
analyzed in [7]. The following result shows that order
n log n steps are necessary and suffice for convergence.

Theorem 2.1. For fixed 0<%<1, let Mk be the kth
power of the Metropolis chain (2.1), starting at the identity,
with the Cayley metric (2.2a). Suppose

k=an log n+cn with a=
1

2%
+

1
4% \

1
%

&%+ ; c>0.
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Then

&Mk&?% &� f (%, c)

for f (%, c) an explicit function, independent of n, with
f (%, c)z0 as cZ�.

Conversely, if k= 1
2n log n&cn,

&Mk&?%&Z1 as cZ�.

Remarks. 1. The upper bound requires k=an log n+
cn while the lower bound shows 1

2 n log n&cn steps are not
enough. We conjecture that the lower bound can be
improved to showing that an log n&cn steps are needed.
This would prove that this chain has a sharp cutoff in its
convergence behavior.

2. The proof of Theorem 2.1 depends in crucial ways
on the choice of d as Cayley's metric. It uses delicate
estimates of all eigenvalues and eigenvectors, available
through symmetric function theory.

3. We conjecture that order n log n steps are necessary
and suffice for any reasonable metric (e.g., (2.2b)). At pre-
sent, the best that can be rigorously proved is that order n !
steps suffice and order n log n steps are necessary.

4. The paper [7] with Hanlon gives several other spe-
cial cases, where such careful analysis can be carried out:
Metropolis algorithms on the hypercube and families of
matchings. In these cases, the Metropolis chains (as at (2.1))
give a one-parameter family of deformations of transition
matrix of the base chain having interesting special functions
as eigenfunctions. Ross and Xu [38], have made a fasci-
nating connection between some of these twisted walks and
convolution of hypergroups.

5. Belsley [1] and Silver [41] have carried out a
delicate analysis of related cases: changing the base chain of
random walk on a path to a negative binomial distribution.
Their results are described further in Section 6. Again, the
eigenvalues are available in closed form. One sees here a new
phenomenon worth further investigation: the Metropolis
algorithm gives a one-parameter family of deformations
(the parameter is % in Theorem 2.1) with eigenvalues and
eigenvectors that deform to interesting special functions.

2.2. Independence Base Chains

Let ? be a probability on the finite set X. Consider as the
base chain repeated independent samples from a fixed prob-
ability p(x) on X. Thus K(x, y)= p( y) for all x. Jun Liu
[28] has explicitly diagonalized the Metropolis chain in this
case. To describe his results, let w(x)=?(x)�p(x). The chain
can be written

M(x, y)

={
p( y) min {1,

w( y)
w(x)=

p(x)+:
z

p(z) max {0, 1&
w(z)
w(x)=

if y{x,

if y=x.

(2.3)

Such a chain arises naturally when comparing the widely
used schemes of importance and rejection sampling with the
Metropolis algorithm. In these schemes an independent
sample is drawn from p. In importance sampling, averages
of functions with respect to ? are estimated by weighting the
sample value x by w(x). In rejection sampling, sample
values x are kept in the sample with probability w(x) and
thrown away otherwise. These are close cousins to the
Metropolis algorithm.

To describe Liu's results, let the states be numbered
(without loss) so that w(x1)�w(x2)� } } } �w(x |X| ). Write
w(i)=|(xi), ?(i)=?(xi), etc. Let

S?(k)=?(k)+ } } } +?( |X| ),

Sp(k)= p(k)+ } } } + p( |X| ).

Theorem 2.2 (Liu). The Metropolis chain (2.3) has
eigenvalues 1=;0>;1� } } } �; |X|&1�0 with

;j= :
i� j

?(i) \ 1
w(i)

&
1

w( j)+
=Sp( j)&

S?( j)
w( j)

=Sp( j)&
p( j)
?( j)

S?( j).

In particular, ;1=1&[ p(1)�?(1)]. Furthermore, the varia-
tion distance for the chain started at x is bounded by

4 &M k
x&?&2� :

x&1

j=1

?( j)
S?( j) S?( j+1)

;2k
j +

S?(x+1)
S?(x) ?(x)

;2k
x .

(2.4)

For the chain started at x,

4 &M k
x&?&2�

;2k
1

?(x)
. (2.5)

Proof. With hindsight, it is quite straightforward to
verify the result discovered by Liu: with states numbered as
above, an eigenvector corresponding to eigenvalue ;k is

(0, ..., 0, S?(k+1), &?(k), ..., &?(k)),
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where there are (k&1) zero entries. For reversible Markov
chains, the Cauchy�Schwarz inequality and the spectral
theorem give

4 &M k
x&?&2�"M k

x

?
&1"

2

2

= :
|X|&1

j=1

;2k
j f 2

j (x)�
;

*
2k

?(x)

(2.6)

with fj an orthonormal basis of right eigenfunctions for
the matrix M and B

*
=max[;1 , |; |X

*
|&1 |]. See, e.g., [11,

Proposition 3]. Normalizing the eigenfunctions and straight-
forward computation give (2.4) while (2.5) follows from the
rightmost inequality of (2.6).

Here is a simple example for comparison with later exam-
ples: take

X=[0, 1, 2, ..., n&1], ?( j)=% j�Z with Z=
1&%n

1&%

and 0<%<1 fixed. Take the base chain uniform on
X: p( j)=1�n. Thus the states are naturally ordered and
w( j)=n?( j). From the theorem,

;1=1&
1
n

1&%n

1&%

and the upper bound (2.5) gives

4 &M k
n&1&?&2�

1
(1&%) %n&1 \1&

1
n+

2k

.

This shows that k of order n2 steps suffice to achieve sta-
tionarity. (The extra n is needed to kill off the factor %&n.)
Use of all the eigenvalues, as at (2.4), shows that order n
steps actually suffice for any starting state. It is clear that at
least n steps are necessary; even if the chain starts at 0, the
most likely state, it takes order n steps to have a good
chance of moving once. See the following remarks.

Liu uses the results above to compare importance
sampling, rejection sampling, and the Metropolis algorithm
for estimating expected values like

:
x # X

h(x) ?(x).

Using the criterion of mean square error, he concludes,
roughly speaking, that the Metropolis algorithm and rejec-
tion methods have essentially the same efficiency, but
importance sampling can show big gains. Of course, this
application of the Metropolis algorithm is far from the
original motivation; importance sampling assumes we can
compute, or at least approximate, normalizing constants
while the Metropolis algorithm can proceed without them.

Remark. Jim Fill has graciously passed on the following
observation on Theorem 2.2. Things work out especially
neatly if the chain is started in state 1 (in the numbering
above). From the diagonalization given, one sees that

Mk(1, 1)=?(1)+(1&?(1)) ;k
1 ,

Mk(1, j)=?( j)(1&;k
1), 2� j.

Thus

&M k
1&?&=(1&?(1)) ;k

1 .

3. MODELS FROM STATISTICAL PHYSICS

Statistical physics has introduced a variety of models
which are also used to analyze spatial data and model
images in vision and image reconstruction. In this descrip-
tion, we restrict attention to binary spatial patterns in a por-
tion of a lattice. For simplicity, we also restrict attention to
the Ising model. The references cited apply to much more
general situations.

Thus let 4 be a finite connected subset of the lattice Z2.
Let

X=[x: 4 � Z2].

We think of Z2=[\1] and X as the set of two-colorings of
the sites in 4. If [\1] is replaced by [0, 1], we may think
of an element of X as a picture. Let s be a two-coloring of the
boundary of 4 (points in Z2&4 at distance 1 from points
in 4). This is a specified set of boundary conditions.

The Ising model is a probability distribution on X
specified by

?(x) B e;(�(i, j) xi xj+h �i xi), (3.1)

where the first sum is over neighboring pairs in Z2 with one
or both of i, j in 4 and the second sum is over i in 4. Here
;>0 is called inverse temperature and h, &�<h<�, is
called the external field strength. With ;, h, s fixed, (3.1) is
a well-specified probability measure on X. In applications, 4
is usually a square grid of size, e.g., 64_64 or 128_128, and
it is clearly impossible to calculate the normalizing constant
implicit in (3.1).

The Metropolis algorithm gives an easy way to generate
from ?; as base chain, let us take the following: pick i in 4
at random (uniformly) and change xi to &xi . This gives a
connected chain on X. Call this random single site updating.
This chain is periodic, but the Metropolis algorithm clearly
has some holding probability so the chain Mn(x, y) con-
verges to ?( y).
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There is a huge rigorous literature on properties of the
stationary distribution ? as a function of ;, h, and s. McCoy
and Wu [32] or Simon [42] give a careful extended discus-
sion. We will not review this here but merely mention that
there are regions of the ;, h plane where the behavior of the
boundary conditions s matter (phase transitions occur) and
regions where the behavior does not matter. Phase trans-
itions occur for h=0 and ;>;c and not otherwise. As will
be described, the Metropolis algorithm converges rapidly
for (;, h) away from the phase transition values (order
roughly |4| log |4| steps suffice). It is believed to take order
|4| p steps (with some p>2) to converge for h=0, ;=;c . It
takes an exponential number of steps to converge for h=0,
;>;c . The behavior of the constants involved as (;, h)
approach the critical values is currently under active study.
Schonmann [39, 40] gives a review of this fascinating
subject.

To state a precise result an annoying periodicity problem
must be dealt with. Let

M� (x, y)= 1
2 (I+M(x, y)) (3.2)

be a modified Metropolis chain.

Theorem 3.1 (Martinelli�Olivieri�Schonmann, [31]).
Let 4 be a square grid in Z2 with |4|=n. Then, for ;, h not
on the segment h=0, ;�;c , and any boundary condition s,
the Metropolis chain (3.2) for ? defined at (3.1) based on
random single site updating satisfies

&M� k
x&?&�Ae&Bk�(n log n)

with A, B explicit functions of ;, h which do not depend on
n, s, or the starting state x.

Remarks. 1. A very similar result was proved earlier
by Stroock and Zegarlinski [46]. Their result holds for
somewhat fewer values of ;, h (e.g., |h|�4 is required) but
is stronger in holding uniformly for all 4 (not just square
grids). They also give results which hold for larger dimen-
sions while the techniques of Martinelli�Olivieri�Schonmann
lean heavily on the assumption of Z2. A detailed comparison
is in Frigessi, Martinelli, and Stander [17].

2. For ;, h on the phase transition segment, things
change drastically. Results of Martinelli [30] and Thomas
[47] combine to show that the chain M� takes order eBn1�2

steps to converge. Again, B is a function of ;, h, and now s;
indeed in the critical segment the stationary distribution ?
depends strongly on the boundary conditions which now do
not wash away for large grids.

The proofs of the theorems above depend on detailed
study of the stationary distribution ? and build on years of
work by the statistical physics community. There is not

much hope of carrying them over in any straightforward
way to other high-dimensional uses of the Metropolis algo-
rithm such as the permutation distributions of Section 2.
There is one very useful ingredient which is clearly broadly
useful, the log�Sobolev inequality. The next section gives a
brief description of this emerging technique.

4. GEOMETRIC TECHNIQUES

A hierarchy of technical tools have emerged for studying
powers of Markov chains. At present, these go well beyond
bounds on eigenvalues. The geometric tools are named after
cousins from differential geometry and differential equa-
tions: inequalities of

Poincare� , Cheeger, Sobolev, Nash, log�Sobolev.

It is beyond the scope of this paper to give a thorough intro-
duction to these; we give a brief outline and pointers to
good expositions. Basic references are [8�11] with Sinclair
[44] a useful recent book.

For simplicity, we work in the context of reversible
Markov chains although one of the exciting breakthroughs
(see Fill [13] and [9, 10]) is that much can be pushed
through in the nonreversible case.

Let X be a finite set, K(x, y) an irreducible, aperiodic
Markov matrix on X. Let ? be the stationary distribution
and suppose (?, K) is reversible (so that ?(x) K(x, y)=
?( y) K( y, x)). Define an inner product on real functions
from X by ( f | g) =� f (x) g(x) ?(x). Then reversibility is
equivalent to saying the operator K which tales f to Kf (x)=
� K(x, y) f ( y) is self-adjoint on l2(?) (so (Kf | g)=
( f | Kg) ). This implies that K has real eigenvalues,

1=;0>;1� } } } �; |X|&1>&1,

and an orthonormal basis of real eigenvectors fi (so
Kfi=;i fi).

One aim is to bound the total variation distance between
Kn(x, } ) and ?( } ). This is accomplished by using the
Cauchy�Schwarz inequality to bound

4 &K n
x&?&2�"K n

x

?
&1"

2

2

= :
|X|&1

i=1

f 2
i (x) ;2n

i �
1

?(x)
;

*
2n (4.1)

with ;
*

=max(;1 , |; |X|&1 | ). This final bound is clearly
proved by Jerrum and Sinclair [23]. See also [8, Section 6].

Thus, one can get bounds on rates of convergence using
eigenvalues. Next, one needs to get bounds on eigenvalues.
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This can be accomplished by using the minimax character-
ization. This involves the quadratic form

E( f | f )=( (I&K) f | f )

= 1
2 :

x, y

( f (x)& f ( y))2 ?(x) K(x, y).

Then

1&;1=min
f

E( f | f )
var( f )

(4.2)

with

var( f )=� ( f (x)& f� )2 ?(x), f� =� f (x) ?(x).

Because of (4.2), bounds of var( f ) in terms of E( f | f )

var( f )�AE( f | f ),

or, equivalently, bounds on the l2(?) norm on functions
with f� =0:

& f &2
2�AE( f | f ).

give bounds ;1�1&1�A. Such bounds are called Poincare�
inequalities. An illustration of these techniques is given in
Section 6 below.

In [11] a simple technique for proving a Poincare�
inequality is given using paths #xy from x to y in a graph
with vertex set X and an edge from z to w if K(z, w)>0.
These paths had been suggested earlier by work of Jerrum
and Sinclair [23] to bound eigenvalues using conductance
(see our discussion of Cheeger's inequality below). It
emerged that whenever paths were available, their direct use
in Poincare� inequalities was preferable to their use via con-
ductance. For example, Jerrum and Sinclair's pioneering
work on approximation of the permanent used paths and
conductance to give a bound for the second eigenvalue of
the underlying chain

;1�1&
c

n12 .

Using just their calculations and replacing conductance by
Poincare� , [11] shows

;1�1&
c
n7 .

Sinclair [43] then went through several other arguments
(problems of generating graphs with given degree, dimer

problems) and obtained substantial improvements in every
case.

Cheeger's inequality bounds eigenvalues by considering
conductance, defined as

h= min
?(A)�1�2

�x # A, y # Ac ?(x) K(x, y)

?(A)
. (4.3)

Bounds on eigenvalues are obtained via

1&2h�;1�1&
h2

2
. (4.4)

These ideas were introduced into combinatorial work by
Alon and his coworkers for building expander graphs.
There, the quantity h is of interest. One builds graphs where
group theory can be used to bound ;1 and this gives bounds
on h. The idea of getting bounds on ;1 by getting bounds on
h directly is standard in differential geometry. It was intro-
duced in probabilistic contexts by Lawler and Sokal [27]
and independently by Jerrum and Sinclair [22, 23].

An interesting class of problems where graphs can be
embedded in Euclidean space and then tools from con-
tinuous geometry (Payne�Weinberger inequalities) can be
used to give direct bounds on h has been intensively studied
in computer science by Dyer, Frieze, Kannan and Lova� sz,
Simonovits. This leads to remarkable bounds for problems
like approximating the volume of convex sets. These seem
unobtainable by other methods at present writing.

Roughly, these bounds proceed by taking a fine mesh (the
underlying graph) in an ambient Euclidean space. Then, the
eigenvalues of the graph Laplacian are shown to be close to
the known eigenvalues of the combinatorial Laplacian.

A superb survey was given by Kannan [25]. A recent
very interesting effort along these lines is given by work of
Chung, Graham, and Yau. See Chung's book [2] and the
references therein.

Cheeger and Poincare� inequalities are fairly basic tools in
modern geometry. More refined results are obtainable by
using Nash, Sobolev, and log�Sobolev inequalities to which
we now turn. Details for the following can be found in
[9, 10].

While Poincare� inequalities bound the l2(?) norm in
terms of the quadratic form, Nash inequalities ask for more,
a bound on a power of the l2 norm. In terms of the form,
this appears as

& f &2+1�D
2 �B {E( f | f )+

1
N

& f &2
2= & f &1�D

1 . (4.5)

In (4.5), B, D, and N are constants which enter into any
conclusions.
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In [9] it is shown that (4.5) is equivalent to the conclusion
that powers of the kernel Mn decay like C�nD for 1�n�N.
This gives crude bounds: ``the N th power is roughly flat''
from which one can then use eigenvalue bounds. When
applicable, Nash inequalities allow elimination of the
?(x)&1 term in the upper bound (4.1).

One of the main accomplishments of [9] was a useful set
of conditions which imply Nash inequalities. These involve
the graph structure of the state space X with an edge from
x to y if K(x, y)>0. This allows a distance d(x, y)=length
of shortest path from x to y. Let B(x, r)=[z: d(x, z)�r] be
the closed ball around x with radius r. Define the volume of
B(x, r) as

V(x, r)= :
z # B(x, r)

?(z).

The first geometrical definition is moderate growth;
roughly, this says that the volume V(x, r) is bounded below
by rd at each x.

Definition 4.1. Fix A, d�1. A reversible Markov
chain (K, ?) has (A, d ) moderate growth if

V(x, r)�
1
A \r+1

# +
d

for all x # X

and integers r # [0, 1, 2, ..., #],

where # is the diameter of the graph.

The second geometrical definition is a local version of the
Poincare� inequalities described above. For any real function
f and integer r, set

fr(x)=
1

V(x, r)
:

z # B(x, r)

f (z) ?(z).

Definition 4.2. Let K, ? be a reversible Markov chain
with Dirichlet form E. Say (K, ?) satisfies a local Poincare�
inequality if there is a>0 such that for any real function f
and all positive integers r,

& f& fr&2
2�ar2E( f | f ).

As motivation, note that when r=#, the bound becomes

& f& f#&2
2=var( f )�a#2E( f | f )

which is a Poincare� inequality.
Section 6 contains several classes of examples of

Metropolis chains where moderate growth and local
Poincare� inequalities can be effectively demonstrated. One
of the main results of [9] shows that local Poincare� and

moderate growth imply Nash inequalities and that these in
turn lead to good upper and lower bounds on convergence.
For simplicity, we state one result in continuous time; let
H x

t ( y)=e&t(I&K )(x, y). This represents the chance of going
from x to y in time t if the steps occur at the jumps of a
Poisson process of rate 1.

Theorem 4.3. Assume a Markov chain (K, ?) satisfies
moderate growth and local Poincare� . Then, for all t>0 and
all x

2 &H x
t &?&�a1e&t�a#2

with a1=(e5(1+d ) A)1�2 (d�4)d�4.

Remark. 1. Conversely (see [9]), there are constants
a2 , a3 depending on A, a, d of the definitions (4.1)(4.2), such
that for all t>0,

sup
x

&H x
t &?&�a2e&a3 t�#2

.

2. Any irreducible chain satisfies moderate growth
and local Poincare� for some A, a, d. These constants enter
exponentially into a1 , a2 , a3 above. As shown in Section 5,
it all fits together and gives good bounds for the classes of
examples.

Sobolev inequalities are essentially equivalent to Nash
inequalities. They ask for bounds of form

& f &2
q�C {E( f | f )+

1
T

& f &2
2= ,

where q>2 and C, T are constants. See [9] for the equiv-
alence of Sobolev and Nash inequalities. See Chung and
Yau [3] for a development of Sobolev inequalities on
graphs.

Log�Sobolev inequalities give a tool that is not plagued
by the curse of dimension. Indeed, these inequalities were
invented by analysts in trying to get results in infinite
dimensions. A splendid introduction and survey to the con-
tinuous work is in Gross [19]. The volume this is contained
in has further useful articles. A careful account of log�
Sobolev inequalities for finite problems is in [10], from
which the present account is drawn.

We say a chain K satisfies a log�Sobolev inequality if

cL( f )�E( f | f )

for some c>0 and all f with

L( f )=:
x

f 2(x) log \ f 2(x)
& f &2

2 + ?(x).
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The best constant :=min(E( f | f ))�L( f ) is called the
log�Sobolev constant.

If such an inequality is available, then the continuous
time chain satisfies

2 &H x
t &?&2�\log

1
?

*
+ e&4:t

with ?
*

=minx ?(x). This is often a considerable improve-
ment over (4.1).

Going from Poincare� �Cheeger inequalities to Nash�
Sobolev inequalities necessitates more sophisticated use of
available information; paths must be used locally and addi-
tional information such as polynomial growth of the under-
lying graph must be incorporated.

Good log�Sobolev inequalities are yet more difficult to
prove. In fact, essentially the only nontrivial finite cases
where this value is known is for Markov chains on a 2-point
space, and the chain on the complete graph with all rows of
k equal to ?. See [10] for details. The situation is not all
bad; the log�Sobolev inequality for the direct product of
two Markov chains follows easily from this inequality for
the factors. This gives the log�Sobolev inequality for the
hypercube Zd

2 . Further, log�Sobolev inequalities with poor
constants can be extremely useful. Many mathematicians
are working hard on these problems and there is much
progress.

All of the proofs for the Metropolis algorithm for Ising
models cited in Section 3 use log�Sobolev inequalities. In
the language of Theorem 3.1, the authors show that both the
log�Sobolev constant : and the spectral gap *=1&;1 are
bounded below by const�n.

For another example, the running example in [10] is an
analysis of the rate of convergence of the Metropolis algo-
rithm for simulating from the binomial distribution on
[0, 1, 2, ..., n] from the base chain of nearest neighbor ran-
dom walk. It is shown that order n log n steps are necessary
and suffice for convergence to stationarity.

5. SAMPLING FROM LOG CONCAVE DENSITIES AND
VOLUME APPROXIMATION

Let K be a compact, convex set in Euclidean space Rd. Let
f be a log concave probability density on K. For example,
K might be the standard orthant where all coordinates are
positive and f might be a standard normal density restricted
to K. Consider the problem of sampling from f. This
problem has been intensively studied in recent years in close
connection with the problem of approximations to the
volume of K. A comprehensive survey is given by Kannan
[25]. We focus here on the parts of the work having to do
with the Metropolis algorithm.

5.1. Discrete Algorithms

Frieze, Kannan, and Polson [15] discretized the problem,
dividing Rd into hypercubes of size $ and running the
Metropolis algorithm on a graph with vertices as the centers
of cubes intersecting K, with an edge between vertices if the
cubes are adjacent. The weight at center x is the average of
f over the cube containing x.

They assume an approximation f� (x) (defined only on the
cube centers) is available which satisfies the approximation
and continuity requirements for some :>0,

(1+:)&1 f� (x)

� f� ( y)�(1+:) f� (x) for adjacent points x, y, (5.1)

(1+:)&1 $d f� (x)

�|
c(x)

f (z) dz�(1+:) $d f� (x), (5.2)

(1+:) $d&1f� (x)

�|
c(x) & c( y)

f (z) dz�(1+:) $d&1f� (x) (5.3)

for c(x), c( y) cubes having c(x) & c( y) of dimension d&1.
With these assumptions, it is sufficient to analyze the

Metropolis algorithm with weight f� (x) at x.
We state here a special case of their result, where

K=B(R), the Euclidean ball of radius R centered at 0, and
where f satisfies the following assumption on its support.
Consider the half line Lu=[ru: r # R+] with u # Rd. Let
h(r)=rd&1f (ru) be defined for r>0. This is a log concave
function of r if f is log concave. The following assumption
says that the tails of f are at the boundary of B(R). Let
R=r(u)=|Lu & K|. Let R1=|Lu & T |, where T is the union
of all cubes that intersect K. It is assumed that Lu & T is an
interval, that R1<2R, and, with s=R1&R,

h(r$)�K1h(r) for R&s�r�r$�r+s for some K1�1.

(5.4)

With these assumptions, the following result can be stated.

Theorem 5.1 (Frieze, Kannan, and Polson). Let f be a
log concave probability density which is positive on Rd and
satisfies (5.1)�(5.4). Let M(x, y) be the Metropolis algorithm
on the centers of cubes of side $ which intersect the ball B(R).
Assume $�R. Then

&M k
x&?&TV� f� (x)&1�2 (1&*)k,
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where

*&1=max {(1+:)3 (K0(K1+1)+K2

+2 - K0K1 K2 )
n
$

,
#2

6$2=t
d
2 \

#
$+

2

for #, the Euclidean diameter of the set of cubes involved (the
greatest distance between two such cubes),

K0=
#

4$
(#+2 - d $),

K1 is from (5.4), and K2=2K1(s�$+- d ). Here s is from
(5.4). The final approximation holds as :z0, K1t1,
K2<<K0 , and - n�# � 0.

Remarks. 1. This result is remarkable even in fixed
dimensions for a Gaussian density. Then it basically says
that a natural algorithm converges exponentially fast, in a
useful sense, that is, with reasonable constants.

2. In high dimensions, observe that the constants do
not get bad.

3. The above is a special case of the arguments. The
restriction to balls or the restriction (5.4) are not required.
The final result is more complicated to state.

4. In the end, the argument rests heavily on proper-
ties of convex sets in Euclidean space. It does not seem
easy to adapt the tools involved to more general graphs.
One interesting technical development seems broadly use-
ful: a technique is introduced for dealing with a small ``bad''
set of the stated space, where, e.g., ?(x) is very small. This
should not affect things, since basically the chain does not
visit small sets. However, the usual conductance approach
involves an infimum over all sets. A different, useful
approach for treating a small bad set appears in Lova� sz
and Simonovits [29].

5.2. Continuous Algorithms

Lova� sz and Simonovits have introduced a series of tech-
niques for analyzing a Metropolis algorithm for sampling
from a log concave density f on a compact convex set.
A Convenient recent reference is [29]. Their work analyzes
the following natural algorithm: suppose the chain is at x.
Pick y from the uniform distribution on a ball of radius $
centered at x. If y is not in K, the walk stays at x. If y is in
K, and f ( y)�f (x)�1, the walk moves to y. For f ( y)�f (x)<1,
the usual Metropolis coin flip is executed. The chain moves
to y or stays at x depending on the outcome.

This walk is analyzed without discretization. Following
Lawler and Sokal [27] they work with the tools of conduc-
tance in general state spaces. This must prove useful. The

heart of the argument is the same set of ideas about convex
geometry in Euclidean spaces that are used by Frieze,
Kannan and Polson. These have evolved from the original
work of finding polynomial algorithms for volume com-
putation due to Dyer, Frieze, and Kannan [12].

One main focus of [29] is getting good bounds on the
complexity of volume computation (they get an order
n7(log n)3 algorithm). The Metropolis algorithm enters
as a tool: for a convex body K, let .(x) be the smallest num-
ber t for which x # tK. Set f (x)=e&.(x). Then Vol(K)=
1�(n !) �Rn f (x) dx. Further, sampling from f gives an algo-
rithm for approximating Vol(K ).

Meyn and Tweedie [35] and Mengersen and Tweedie
[33] have begun work on extending the tools of Harris
recurrence to get useful quantitative results. They develop
the theory for abstract spaces but do try a simple example
of the Metropolis algorithm for sampling from the normal
distribution on R, the base chain being discrete time steps
from a different normal. Rosenthal [37] develops results for
general spaces that seem to give fairly good bounds.

6. LOW-DIMENSIONAL EXAMPLES

This section treats low-dimensional examples, probabil-
ity distributions on a low-dimensional grid with nearest
neighbor random walk ``Metropolized'' to the given station-
ary distribution.

Recall that a nearest neighbor walk on a grid of side
length n takes order n2 steps to reach stationarity in any
fixed dimension. If the target distribution has an exponen-
tial (or faster) fall-off from a central peak, our analysis
shows that the Metropolis chain reaches stationarity in
order n steps. This is the fastest possible; the chain has to
travel order n steps to go between opposite corners of the
grid. For some distributions with polynomial fall-off from a
certain peak, the analysis shows that a polynomial number
of steps suffice to reach stationarity. Examples are given to
show how these polynomials vary.

The analysis is described in some detail as an illustration
of geometric methods described in Section 4 above. In the
exponential case, one novelty is the use of different weights
in the Cauchy�Schwarz inequality. This suggestion of Alan
Sokal is shown to give improved results. In the polynomial
case, the Nash inequalities of [9] are the driving tool.

6.1. Exponential Fall-off

To fix ideas, consider a one-dimensional grid X=
[0, 1, 2, ..., n&1]. Let the base chain be the nearest
neighbor random walk with holding 1

2 at both ends. Repre-
sent the stationary distribution as

?(i)=z(a) ah(i), 0<a<1, (6.1)
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with z(a) the normalizing constant. Assume

h(i+1)&h(i)�c�1, 0�i�n&2. (6.2)

Thus ?(i) falls off at least exponentially from 0. Examples
are h(i)=ib, for b�1. For ? defined by (6.1) the Metropolis
chain becomes

M(i, i)=
1
2

&
ah(i+1)&h(i)

2

M(i, i+1)=
ah(i+1)&h(i)

2 = for 1�i�n&2,

M(i, i&1)=
1
2

M(0, 0)=1&
ah(1)&h(0)

2
, M(0, 1)=

ah(1)&h(0)

2

M(n&1, n&2)=M(n&1, n&1)=
1
2

. (6.3)

The main result is the following bound for the second eigen-
value of the chain.

Proposition 6.1. Assume (6.1)�(6.3). Then the second
eigenvalue of the chain satisfies

;1�1&
(1&ac�2)2

2
.

Remark. Thus, the eigenvalue is bounded away from 1
uniformly in the size of the state space. In remarks following
the proof, this will be used to show that order n steps are
necessary and suffice for total variation convergence.

Proof. The argument uses the path techniques of [11]
in a novel way. We have

1&;1=min
f

E( f | f )
var( f )

with the min taken over nonconstant f,

var( f )= 1
2 :

x, y

( f (x)& f ( y))2 ?(x) ?( y),

and the Dirichlet form

E( f | f )= 1
2 :

x, y

( f (x)& f ( y))2 Q(x, y)

for Q(x, y)=?(x) M(x, y). Choose paths: for x< y, #xy=
(x, x+1, x+2, ..., y). The same path is used backwards to
connect y to x. Then,

2 var( f )= :
x, y

| f (x)& f ( y)|2 ?(x) ?( y)

= :
x, y \ :

e # #xy

[ f (e+)& f (e&)]+
2

?(x) ?( y).

(6.4)

The inner sum will be bounded by the Cauchy�Schwarz
inequality. Usually, this is done with weights taken as 1
which gives a factor of |#xy |. The novelty here is to use
weights depending on the stationary distribution. For the
edge e, the weights are chosen as Q(e)%. Subsequent calcula-
tions show that any fixed % in (0, 1

2) will do, e.g., %= 1
4 . To

bring this out, we keep % as a parameter. Multiply and
divide f (e+)& f (e&) in (6.4) by Q(e)%. Writing |#xy |%=
�e # #xy

Q(e)&2%, we have

2 var( f )� :
x, y

|#xy |% :
e # #xy

Q(e)2%

_( f (e+)& f (e&))2 ?(x) ?( y)

=:
e

( f (e+)& f (e&))2 Q(e) Q(e)2%&1

_ :
#xy % e

?(x) ?( y) |#x, y |%

�2AE( f | f )

with

A=max
e

Q(e)2%&1 :
#xy % e

?(x) ?( y) |#xy | % .

To bound A, observe first that Q(i, i+1)=Q(i+1, i)=
?(i+1)�2. Next, the dominant term in |#xy |% is Q( y&1, y)&2%

(for x< y). Pull this out and bound the ratio with the other
terms using (6.2):

|#x, y | %�
(?( y)�2)&2%

1&a2c% .

Suppose that e=(i, i+1). The quantity to be bounded is

22% (1&a2c%)&1 Q(e)2%&1 :
0� j�i

i+1�k�n

?( j) ?(k)1&2%.

The sum in k is bounded above by

?(i+1)1&2%

1&ac(1&2%) .
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The sum in j is bounded above by 1. Combining bounds, we
have

A�
2

(1&ac(1&2%))(1&a2c%)
;

choosing %= 1
4 gives the bound announced.

Remarks. 1. In Proposition 6.1 the stationary dis-
tribution was chosen to have its maximum at 0. The same
argument works if the maximum is taken on at any point in
X. Thus h(i) decreases up to x0 and increases past x0 ; the
analog of (6.2) is assumed.

2. The easiest upper bound for total variation using
the eigenvalue bound of Proposition 6.1 is as follows. First,
bound the smallest eigenvalue ;n&1�&1+2 min M(i, i)�
&1+2( 1

2&ac�2)=&ac. Thus,

;
*

=max(;1 , |;n&1 | )�max \1&
(1&ac�2)2

2
, ac+ .

Now, the upper bound at (4.1) gives for any x # X

2 &M k
x&?&�?(x)&1�2 ;

*
k .

This is correct (up to constants) when h(x)=x; it says order
n steps are necessary and suffice to reach stationarity for any
starting position. If h grows faster, e.g., h(x)=x2, the bound
shows that for a walk starting at x=0, order n steps suffice.
For walks starting at n&1 the bound shows order h(n&1)
steps are sufficient. This is off. The following argument
shows how to conclude that for total variation convergence
order n steps suffice for any starting position, provided h
satisfies (6.2). Consider the walk started at n&1. This essen-
tially stays still or goes left. It is straightforward to show
that the chance that the walk hits 0 in the first 3n steps is
exponentially close to 1, with constants depending only on
(1&a). Once the walk hits zero, the argument above shows
it is close to stationarity in at most order n further steps.
This shows order n steps suffice for variation distance con-
vergence. We do not know how many steps are required to
make the l2 norm small.

3. The argument for Proposition 4.1 is fairly robust
and will handle many variations. It does depend on the
roughly unimodal nature of ?. (See Section 6.3 below for
more on this.) There are techniques in Deuschel and Mazza
[5] and Ingrassia [21] for bounding essentially arbitrary ?.
While these bounds are sharp (in the sense that there are
examples where they cannot be improved in nice examples
such as those of Proposition 6.1) they can be very far off,
suggesting that exponentially many steps are needed. Much
remains to be done in giving useful tools for natural
examples.

4. Consider the special case when h(i)=i. Then
Belsley [1] and Silver [41] have essentially given a com-
plete analysis of the Metropolis chain (6.3). We state some
of their results here to compare with what comes out of
general theory.

To begin with, the Metropolis chain reduces to biased
reflecting random walk on [0, ..., n&1]. The eigenvalues
and eigenvectors are classically known. For large n, ;1t

1&(1+a)�2+- a. Proposition 6.1 gives the bound ;1�
1&(1&a1�2)2�2. This is actually equal to the value of ;1 , up
to terms of order 1�n2.

The bound (4.1) gives two upper bounds for the total
variation distance; one using all the eigenvectors and eigen-
values and the second using just the second largest eigen-
value. Figure 1 shows the actual bounds as a function of the
number of steps k for a=0.3, a=0.9. In both cases N=50
and the starting state was chosen as 50 also. Figure 1 also
shows the exact total variation (dotted).

We see that the bound using the second eigenvalues is off
by a factor of 5 or more when a=0.9 and off by a factor of
about 2 when a=0.3. The bound using all the spectral data
does better.

Belsley [1] has worked out sharp asymptotics for varia-
tion convergence in this case. He shows that for an explicit
b(a), b(a) n+c(a) - n steps are necessary and suffice: if c(a)
is large and positive, the variation distance is close to zero.
If c(a) is large and negative, the variation distance is close
to one.

5. The restriction c�1 in (6.2) is made for simplicity.
If h(i+1)&h(i)�c>0, then h(i+1)�c&h(i)�c�1 and the
chain with a replaced by ac and h replaced by h�c satisfies
the conditions. This leads to the bound

;1�1&
(1&ac2�2)2

2
for c>0.

6. The argument goes through more or less as above
for two-dimensional versions with h(i, j), falling off at least
linearly from a single peak. Here one chooses paths which
move from x to y, first making the first coordinates equal,
then the second coordinates equal, and so on. We hope to
carry out a detailed analysis of the multimodal case on grids
in low dimension.

7. For the one-dimensional case, it is worth pointing
out that Cheeger's inequality can be used to give results
similar to those in Propositon 6.1. Lawler and Sokal [27]
do this when h(i)=i and generalize to trees. See [11, Sec-
tion 3] for further details. For higher-dimensional grids, we
find paths much easier to work with.

8. In light of the results for sampling from log concave
distributions in the continuous case (Section 5.2 above), it is
natural to inquire how this type of condition works in
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FIG. 1. (a) Total Variation Distance and Bounds Plot��a=0.3, N=50, n=50; (b) Total Variation Distance and Bounds Plot��a=0.9, N=50, n=50.

Proposition 6.1. While natural examples are easy to treat,
the following shows that some care is needed. Consider
the symmetric binomial distribution ?(i)=( n&1

i )�2n&1 on
[0, 1, 2, ..., n&1], with base chain reflecting random walk.
The Metropolis chain is easily comparable to the classical
Ehrenfest chain. The analysis shows the Metropolis chain
has c1�n�1&;1�c2 �n for explicit constants c1 , c2 . The
difference is this: the binomial falls off from its peak at n�2
exponentially, but at scale - n. It is (roughly) flat in a - n
neighborhood of n�2. The exponentials treated by Proposi-
tion 6.1 fall off exponentially at scale 1. A careful analysis
carried out in [10] shows that order n log n steps are
necessary and suffice for convergence in the binomial case.

6.2. Polynomial Fall-off

Consider X=[1, 2, ..., n], with the base chain of nearest
neighbor random walk with holding 1

2 at both ends. We
begin with a simple example. Take the stationary distribu-
tion

?(i)=zi, 1�i�n, z&1=n(n+1)�2. (6.5)

Thus ?(i) rises linearly from 1. The Metropolis chain
becomes

M(i, i&1)=(i&1)�(2i)
M(i, i)=1�(2i) = for 2�i�n&1

M(i, i+1)=1�2

M(1, 1)=M(1, 2)=1�2

M(n, n&1)=(n&1)�(2n), M(n, n)=1&(n&1)�(2n).

(6.6)

The following result shows that the walk (6.6) reaches
stationarity in order n2 steps. This is the same rate as the
base chain.

Proposition 6.2. There are explicit positive constants
A, B, C, D such that the Metropolis chain (6.6) satisfies

Ae&Bk�n2
�max

x
&M k

x&?&�Ce&Dk�n2

for all positive integer k, n.

Proof. We apply the geometric tools of [9]. Consider X
as a graph with an edge from i to j+1, 1�i�n&1. Write
|x& y| for the graph distance between x and y. Let
B(x, r)=[ y : |x& y|�r] and V(x, r)=�y # B(x, r) ?( y). The
diameter of X is #=n&1.

As in Section 4, a graph and stationary distribution have
(A; d ) moderate growth if V(x, r)�(1�a)((r+1)�#)d for all
x # X, and r=[0, 1, ..., #]. An elementary verification shows
that the Metropolis chain has (6,2) moderate growth.

For a real function f defined on X and positive r, set

fr(x)=
1

V(x, r)
:

y # B(x, r)

f ( y) ?( y).

We will verify in Section 6.3 below that the chain satisfies a
local Poincare� inequality:

& f & fi &2
2�ar2E( f | f ) with a=4. (6.7)

Finally, the smallest eigenvalue satisfies ;&�&1+
2 min(M(i, i))�&1+1�n.
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For reversible chains satisfying moderate growth and
local Poincare� inequalities, Theorem 4.3 shows that order
(diameter)2 steps are necessary and suffice for convergence.
This result gives Proposition 6.2.

Remarks. 1. Very similar bounds can be obtained for
stationary distributions of form ?(i)=zp(i), for positive
polynomial p. Some of this is explored in Section 6.3 below.

2. Preliminary computations indicate that similar
bounds hold for higher-dimensional grids when the station-
ary distribution has a unique maximum and polynomial
decay. Order (diameter)2 steps are necessary and sufficient
to reach stationarity.

6.3. Some Variations and Extensions

In Sections 6.1 and 6.2 above we explored fairly well
specified examples. In this section we give some general
results for unimodal distributions on X=[1, 2, ..., n]. For
distributions with a unique maximum, much of the above
goes through. For U-shaped stationary distributions, some
new behavior occurs. The results use the geometric
arguments of Section 4. While we are stating them as results
about the Metropolis algorithm, we note that all of the
examples here are birth and death chains and our results
may easily be re-said as giving an analysis of some general
classes of birth and death chains.

The first few propositions are about stationary distribu-
tions with a unique local maximum.

Proposition 6.3. Let ? have a unique local maximum at
k # [1, 2, ..., n]. Let M be the Metropolis chain for ? based on
nearest neighbor random walk. Then

;1(M)�1&
1

2n2 , (6.8)

(M, ?) satisfies a local Poincare� inequality (Definition 4.2)
with a=4, so

& f & fr&2
2�4r2E( f | f ). (6.9)

Proof. Choose paths #xy as in the proof of Proposi-
tion 6.1. Then, using the Poincare� inequality with weight 1,
;1�1&1�A with

A=max
e

1
Q(e)

:
#xy % e

?(x) ?( y) |#xy |.

Take the edge e=(i, i+1). Consider the case i+1�k.
Then

Q(e)= 1
2 min[?(i), ?(i+1)]= 1

2 ?(i).

Now, bounding |#xy |�n,

1
Q(i, i+1)

:
#xy % (i, i+1)

?(x) ?( y) |#xy |

�2n \ :
x�i

?(x)
?(i) +\ :

y�i+1

?( y)+ .

Since ?(x)�?(i)�1, for x�i�k the first bracketed term
above is at most n. The second bracketed term is at most 1;
hence the bound. If k�i, the argument works as well. This
proves (6.8).

To prove (6.9) we use the Poincare� argument locally as in
Lemma 5.2 of [9]. This gives

& f & fr&2
2�'(r) E( f | f )

with

'(r)=max
e

2
Q(e)

:
|#xy |�r
#xy % e

?(x) ?( y) |#xy |
V(x, r)

.

We must thus show '(r)�4r2. We proceed as above. If
i+1�k,

2
Q(i, i+1)

:
|#xy |�r
#xy % e

|#xy |
?(x) ?( y)

V(x, r)

�4r :
x�i

|x&i|�r

?(x)
?(i)

:
y�i+1

| y&x|�r

?( y)
V(x, r)

If k�i,

2
Q(i, i+1)

:
|#xy |�r
#xy % e

|#xy |
?(x) ?( y)

V(x, r)

�4r :
y�i

| y&i+1|�r

?( y)
?(i)

:
x�i

|x& y|�r

?(x)
V(x, r)

.

The term ?( y)�?(i) is smaller than 1. To bound

S= :
x�i

|x& y|�r

?(x)
V(x, r)

with y�i+1,
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observe that [i&r, ..., i&1]/B(x, r) because i&r�x�
i&1. Hence S�1,

2
Q(i, i+1)

:
|#xy |�r
#xy % e

|#xy |
?(x) ?( y)

V(x, r)
�4r :

y�i
| y&i+1| �r

1�4r2,

and the proof is complete.

Proposition 6.3 gives a very general eigenvalue bound. Of
course, this bound can be off, as the examples in Section 6.1
show. The examples in Section 6.2 show that this bound can
be sharp in natural examples. Proposition 6.3 also gives
local Poincare� inequalities quite generally. We turn next to
conditions for moderate growth (Definition 4.2).

Proposition 6.4. Let ? be any probability distribution
on [1, 2, ..., n]. Let ?~ be the nondecreasing rearrangement of
?. Assume that for some d>0, ?~ (x)�xd is decreasing in x.
Then, ? has (4d+1, d+1) moderate growth.

Proof. The argument uses the following elementary fact.
If f, g are positive functions on [1, 2, ..., n] and f �g is
decreasing, then F�G is also decreasing; here

F( y)= :
x� y

f (x), G( y)= :
x� y

g(x).

Clearly V(x, r)�V� (1, r)=?~ (1)+ } } } +?~ (r). Now the
elementary fact and the hypothesis given show

V� (1, r)
N(r)

=
V� (1, r)

�x�r xd is decreasing.

Let

N(r)= :
1�x�r

xd,

so

rd+1

d+1
�N(r)�

(r+1)d+1

d+1
.

We have

V� (1, r)
N(r)

�
V� (1, n)
N(n)

=
1

N(n)

so

V(i, r)�
N(r)
N(n)

�\ r
n+1+

d+1

�
1

4d+1 \r+1
n +

d+1

.

The 4d+1 uses the crude bound (r+1)�r�2, (n+1)�n�2
for r�1 (the case r=0 can be checked directly).

Remark. As an example, suppose ?(i) is proportional to
i d. Then, Propositions 6.3 and 6.4 combine with Theorem 4.2
to show that order n2 steps are necessary and suffice to
achieve stationarity. The same conclusions hold if ?(i) is
rearranged to take a unique local maximum in the middle of
[1, 2, ..., n].

It is natural to wonder what happens for multimodal dis-
tributions. We show that even a simple U-shaped distribu-
tion with both sides of the ``U '' linear can slow things down.
To fix ideas, take n=2k+1, k�2, and set X=[0, ..., n],

?(x)=
|x&n�2|+1�2

c(n)
, c(n)=

(n+1)(n+3)
4

. (6.10)

Theorem 6.5. The Metropolis chain M for ? at (6.10)
with base chain nearest neighbor random walk on X=
[0, 1, ..., n] satisfies

c1e&c2 t�(n2 log n)�max
x

&M x
t &?&�c3e&c4 t�(n2 log n).

Proof. We begin by proving

;1�1&
1

(n+1)(n+3)[2+log((n&1)�2)]
. (6.11)

To prove Eq. (6.11) use the Poincare� inequality with
weights Q(e)1�2 as in Section 6.1. This gives ;1�1&1�A
with

A= max
(i, i+1)

:
x�i

y�i+1

|#xy | 1�2 ?(x) ?( y)

with

|#xy |1�2= :
e # #xy

1
Q(e)

.

Clearly

A�max
x, y

|#xy |1�2�4c(n) :
k

j=0
\} j+1&

n
2 }+

1
2+

&1

=4c(n) \1+ :
k

j=1

1
j+

�4c(n)(2+log[(n&1)�2]).
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We next show directly that the chain M, ? satisfies a Nash
inequality

& f &2(1+2�d )
2 �a1n2 {E( f | f )+

a2

n2 & f &2
2= & f &4�d

1 (6.12)

with a1 , a2 universal constants and d=2.
To prove (6.12), break [0, ..., k, k+1, ..., n] into Part I:

[0, ..., k] and Part II: [k+1, ..., n]. Call M1 , M2 the kernels
restricted to the two halves. For f a function on [0, ..., n]
call f1 , f2 the restrictions to the two halves and ?1=2?,
?2=2? the stationary distributions. Now

& f1&2
2, ?1

+& f2&2
2, ?2

=2 & f &2
2, ? , (6.13)

E1( f1 , f1)+E2( f2 , f2)�2E( f | f ). (6.14)

From (6.13), (6.14) it is enough to prove (6.12) for M1 , M2 .
But we know this because each of these chains has moderate
growth and satisfies local Poincare� (Propositions 6.3 and
6.4). Then Theorem 5.7 of [9] shows (6.12) holds for each
half and so for M.

Now, as explained in Section 4, the Nash inequality
(6.12) implies that

&M x
t �?&2�a3 for t�n2

(Theorem 3.1 of [9]). This and the eigenvalue bound
combine (Lemma 1.2 of [9]) to show that for t=a5n2+
a6(n2 log n) c, c>0,

2 &M x
t &?&�"M x

t

?
&1"2

�a4 e&c.

This gives the required upper bound.
For the lower bound, observe that the chain started at 1

takes order n2 log n steps to hit k by an easy birth and
death chain argument. Thus &M x

t &?&� 1
2 for t<=n2 log n.

Further details are omitted.

Remark. The eigenvalue estimate (6.11) is of the right
order. To see this, use 1&;1=min(E( f | f )�var( f ))�
E( f | f )�var( f ) for any particular f. Choose

f (x)={
log \}x&

n
2 }+

1
2+ ,

&log \}x&
n
2 }+

1
2+ ,

if x�k,

if x�k+1.

Then straightforward calculus gives E?( f )=0,

var( f )�
3

4c(n)
(k+1)2 \log

k+1
2 +

2

,

E( f | f )�
2

c(n)
log

n+1
2

.

These give

;1�1&
a5

n2 log n
.

7. FINAL REMARKS

The Metropolis algorithm is the most widely used way of
changing the output of a Markov chain into a sampling
mechanism with a given stationary distribution ?. Hastings
[20] determined a large class of such mechanisms. To
explain his result, use the notation of Lemma 1.1. Let F
be a function from R+_R+ � R+ satisfying F (cu, cv)=
cF (u, v), F (u, v)=F (v, u), F (u, v)�min(u, v). For example
F (u, v)=uv�(u+v) or F (u, v)=min(u, v). Given a kernel
K(x, y) as in Lemma 1.1 define

MF (x, y)=K(x, y) F (1, A(x, y)),

A(x, y)=
?( y) K( y, x)
?(x) K(x, y)

, x{ y.

Then, it is straightforward to show that M(x, y) is revresible
with ? as its stationary distribution.

The usual Metropolis chain has F=min(u, v). Jun Liu
and Alan Sokal in personal communications have shown
that uv�(u+v) (called Barker dynamics) is the same thing as
the Gibbs sampler when applied to the usual Ising model.

It is natural to ask which of these procedures works best.
Peskun [36] gives an elegant extremal characterization of
the Metropolis algorithm in this class of chains. For
f : X � R a function of interest, the limiting variance of the
usual estimate of the mean value of f is

_2( f )= lim
n � �

n var {1
n

:
n

i=1

f (Xi)= ,

where X1 , X2 , ... is a realization of the chain.
Consider two chains P1 , P2 with the stationary distribu-

tion ?. Call P1 better than P2 if _2( f, P1)�_2( f, P2) for
all f. Peskun [36] proves that the Metropolis algorithm is
best in Hastings class of chains. His proof uses the following
elegant theorem: Let P1 , P2 be irreducible, reversible
Markov chains with respect to ?. If P1(x, y)�P2(x, y) for
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all x{ y then P2 is better than P1 . This is a careful way of
saying that an algorithm that holds less gets random faster.
In contrast, note that [16] shows that if one chain is said to
dominate a second if the first chain's second eigenvalue is
smaller, then the Metropolis algorithm is not always best;
things depend on temperature.

It is natural to compare the various dynamics in simple
examples to see how their rates of convergence compare.
In unpublished work, Jeff Silver has shown that any of
Hastings variations can be analyzed from the base chain of
simple random walk on an n-point path. To get an exponen-
tial stationary distribution the analysis of Section 6A goes
through without criminal difficulties to give the bound

;1(F )�1&
(1&a1�2)2

2
F (1, a&1).

We thus see that the convergence is (roughly) as quick for
any of these chains, e.g., order n steps are necessary and suf-
ficient for convergence. Of course, F (1, a&1)�1, so the
straight Metropolis is fastest. Silver [41] extends these com-
putations to a variety of other stationary distributionss on
finite and infinite sets. He also shows some ways in which to
beat the usual Metropolis chain.

Heuristically, one wants to choose the base chain K so
that its stationary distribution is close to ?. It is natural to
try to estimate ?, and change the base chain as information
about ? comes in. Gilks, Best, and Tan [18] is an early
interesting effort in this direction. There is much to do here.

We have not attempted tic survey other, closely related
algorithms for sampling from ?. To begin with, for low-
dimensional examples such as those of Section 6, there is a
large body of competitive technology. In high dimensions,
Glauber dynamics (known as the Gibbs sampler) is a
closely related method that is beginning to have some useful
finite sample convergence result. See Rosenthal [37] and
the references cited there. There are many further ideas in
the statistical physics literature. Sokal [45] gives a useful
review of cluster algorithms, multigrid Monte Carlo and
other techniques. Browsing through recent years of the
Journal of Statistical Physics will reveal hundreds of other
methods and variations.

All of these are fair game for careful mathematical
analysis
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