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Abstract. We study a Markov chain on generating n-tuples of a ®xed
group which arises in algorithms for manipulating ®nite groups. The
main tools are comparison of two Markov chains on di�erent but
related state spaces and combinatorics of random paths. The results
involve group theoretical parameters such as the size of minimal
generating sets, the number of distinct generating k-tuples for
di�erent k's and the maximal diameter of the group.

1 Introduction

This paper studies a new technique for generating random elements
of a ®nite group G. Let S be a set of generators of G. The classical
method for using S is to run a random walk: Starting at the identity,
repeatedly pick an element of S and multiply, say on the right. The
new method, suggested by work of Celler, Leedham-Greene, Murray,
Niemeyer and O'Brien involves a Markov chain on n-tuples of group
elements with n > jSj. To start, label the ®rst jSj coordinates by the
generators and the remaining nÿ jSj coordinates by the identity. At
each stage, a pair of coordinates �u; v� is chosen at random and the
element at u is multiplied (on the right) by the element at v or its
inverse. This product is output and also replaces the uth element in
the n-tuple. It is believed that the sequence of output elements ``gets
random'' substantially faster than the classical random walk based on
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S. We give the ®rst quantitative bounds for the Celler et al. algorithm.
Recently, Babai [4] proved that the diameter of the graph naturally
associated with the Celler et al. algorithm is at most O�n2� when
n � 2dlog jGje. This is a good indication that the chain might con-
verge rapidly but, by itself, it is not enough to obtain any reasonable
quantitative result for the convergence of the chain.

As an example, consider the symmetric group Sd with two gen-
erators, a transposition �1; 2� and an d-cycle �1; 2; . . . ; d�. Theory and
experiments developed in [15, 17] show that the classical walk based
on these generators takes about 18 d3 log d steps to get random. When
d � 52 this is about 60,000 steps. Experiments reported in [9, 30]
suggest that, using 10-tuples as described above, the output is random
after about 190 steps.

The new algorithm is motivated by applications in computational
group theory. E�cient computation with large groups often calls for
a source of pseudo-random elements of the group. These are used to
help ®nd the order of the group, decompose representations and for a
dozen other tasks. A good overview of the literature is in Finkelstein
and Kantor [24]. See also the recent survey of L. Babai [4]. For
example, the Neumann-Praeger algorithm [32] takes as input a set of
d � d invertible matrices with entries in a ®nite ®eld and tests if they
generate a subgroup between SLd and GLd . In problems of interest,
d 2 �30; 100� and the ®eld is small (e.g., Z=2Z). The ®rst trials of the
Neuman-Praeger algorithm used the given generating set to run a
classical random walk. This was run ``for a while'' to generate
``random elements''. Then, known properties of most elements of SLd

form a basis for testing. In a practical implementation, Holt and Rees
[30] found that the classical random walk required a huge number of
steps to get rid of obviously non-random features. They report that
the new algorithm worked well.

The present paper and a companion paper [20] provide the ®rst
quantitative bounds for the convergence of the Markov chain on
generating n-tuples used in the Celler et al. algorithm. Section 2
presents some background material including paths on groups and
tools from Markov chain theory such as Dirichlet forms, eigenvalues
and logarithmic Sobolev inequalities. Section 3 gives a careful de-
scription of the Markov chain introduced informally above. The
main result of this paper, Theorem 3.2, gives a quantitative bound for
the convergence of this chain to equilibrium for an arbitrary group.
Theorem 3.2 is proved in Section 5. It is applied to a collection of
examples in Section 7. We cite two examples here: First, for jGj � N
®xed and n large we show that order C1�N�n2 log n steps su�ce for
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randomness. As a second class of examples, for p-groups G of order
at most pb and with the exponent of G=�G;G� equal to px, we show
that order C2�b��npx�2�log p���log n� � �log log p�� steps su�ce for
randomness. The constants C1 and C2 are explicitly computable.
These results are e�ective when N or b are ®xed. For instance, for the
Heisenberg group mod �p�, jGj � p3, x � 1 and, for any c > 0,
5 � 28 � 75 ��np�2��log p��log log pn� � 4c� steps su�ce to make the walk
e1ÿc close to the uniform distribution. We also give results for the
symmetric group Sd with both d and n large.

The bound in Theorem 3.2 depends on four features of the un-
derlying group G:

(1) the minimum size m�G� of a generating set,
(2) the maximum size m�G� of a minimal generating set,
(3) the number f �k;G� of k-tuples that generates G,
(4) the maximum diameter D�G� over all generating sets.

These features are discussed in Section 6. Bounds or exact expressions
for m;m are often available. A reasonable amount is known about
f �k;G� thanks to P. Hall's work on abstract MoÈ bius inversion. Less is
known about D�G�. We show that, for p-groups of bounded class and
number of generators, the diameter is essentially the exponent of
G=�G;G� (Theorem 6.5), independently of which minimal generating
set is chosen.

Section 4 contains bounds on the least eigenvalue of the chain P .
These are important for results in discrete time.

The companion paper [20] studies the same chain for some
Abelian groups. See also [11, 12]. This was in fact o�ered as a chal-
lenge problem by David Aldous. The technique of [20] are similar,
but the technical details are much easier in the Abelian case. We
suggest looking at [20] before plunging into the present arguments.
We also show there that for G � Z=pZ, p prime, order n4�log p�3
steps su�ce using quite di�erent arguments. The main novel feature
in the present paper is the comparison of the chain of interest with a
simpler chain de®ned on a di�erent state space (Proposition 5.2).
This is inspired by what geometers call ``rough-isometries'' or
``quasi-isometries'' between metric spaces. Typically, a rough-
isometry forgets about the local topology and preserves the large
scale features of the space. For example Rd and Zd are roughly
isometric. More generally, the universal cover M of a compact
manifold N is roughly isometric to the fundamental group p1�N�.
What we do here is to introduce quantitative versions of these ideas
and apply them to ®nite state spaces.
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There are other approaches to generating pseudo-random ele-
ments. Babai [2] gives a general procedure which provably works in
polynomial time for general groups (see also [4]). For permutation
groups, there are e�cient algorithms for ®nding nested chains of
subgroups so the subgroup algorithm [22] can be used. The Celler
et al. algorithm is by far the most widely used, being implemented in
both ``Magma'' and ``Gap'', two of the main packages for computer
assisted manipulations of ®nite groups. The bounds we give for the
Celler et al. algorithm are fairly good for large n. However, in cases of
greatest practical interest, jGj is large and n is small. Even deter-
mining the size of the state space is di�cult in this case.

The algorithm we analyse is a symmetric version of the original
chain proposed by Celler et al. [9]. Section 8 shows how the same
analysis applies to a number of non symmetric versions of the chain
including the one used by Celler et al. [9]. In the symmetric version of
the algorithm, the stream of output elements has tied values. If
n-tuples are used, there is chance 1=�2n� that outputs two apart are
tied. The original non symmetric algorithm will similarly have quite
correlated output. One easy ®x for this problem is to multiply to-
gether larger subsets. Thus, working with n-tuples, ®x k < n. Choose
a subset of k places out of n uniformly at random, a permutation in Sk

uniformly at random, a sequence of length k of �1 uniformly at
random. Multiply the entries of the k ®rst chosen places in the chosen
order using the � signs to indicate inverses. The result is output and
also used to replace a randomly chosen one of the k entries. The
techniques of the present paper can be used to analyse this algorithm
for ®xed k. Another easy ®x for the problem of tied values is to use
large n.

Acknowledgement. We thank David Aldous, Rosemary Bailey, Jordan Ellenberg,

Fan Chung, David Gluck, Susan Holmes, Ron Graham, Charles Leedham-Green,
Barry Mazur, Dan Rockmore, Chris Rowley, BaÂ lint ViraÂ g and Thomas Yan for their
help with this paper. In an early draft of this paper we proved that, for any ®nite

group G and any n large enough, order �njGj�O�m� steps su�ce for the chain P to
reach uniformity (m � m�G� as above). BaÂ lint ViraÂ g's remarks on the manuscript led
us to an improved bound (based on the same argument) of order �log jGj�jGj2m

Mÿ2D2n3 log n where m � m�G�;M � f �m;G� and D are as above. This is a serious
improvement because M is often of order jGjm so that this bound is often of order
�log jGj�D2n3 log n. In the mean time, F. Chung and R. Graham [11] proposed a

simpli®ed and more naive version of our earlier proof and showed that order
jGjO�m�n2 log n steps are enough. This motivated us to tighten our argument again
and led us to the present version which gives a bound of order �log jGj�jGj2m

Mÿ2D2n2 log n.

254 P. Diaconis, L. Salo�-Coste



2 Background and notation

2.A. Paths on groups

We will use paths on a group G de®ned in a classical way as follows.
For each generating set S � G and each g 2 G ®x a sequence
si � si�g�, 1 � i � k, of minimal length k � jgjS such that si 2 S [ Sÿ1

and

g � s1 � � � sk :

Given a pair �g; h� 2 G� G, de®ne a path c � c�S; g; h� of minimal
length jcjS � jgÿ1hjS by writing

gÿ1h � s1 � � � sk

where k � jgÿ1hjS , si � si�gÿ1h� 2 S [ Sÿ1 and translating this path
by g on the left to obtain

c :g � x0; x1 � gs1; . . . ; xk � gs1 � � � sk � h :

For each s 2 S [ Sÿ1 and g 2 G, de®ne

NS�s; g� � #fi 2 f1; . . . ; jgjSg : si�g� � sg :

Let dS � maxg jgjS be the diameter of G with respect to S. Let

D � D�G� � maxfdS : S generates Gg �2:1�

be the maximum diameter of G. We will need the following elemen-
tary lemma.

Lemma 2.1 For any ®xed generating set S, s 2 S [ Sÿ1 and z;w � zs,
we have

#f�g; h� 2 G� G : c�S; g; h� 3 �z;w�g �
X
u2G

NS�s; u� � jGjdS � jGjD :

In particular, X
g;h:

c�S;g;h�3�z;w�

jc�S; g; h�j � jGjD2 :
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Proof. (cf. [16], p. 702) Observe that

#f�g; h� 2 G� G : c�S; g; h� 3 �z;w�g
� #f�g; u� 2 G� G : 9 i such that si�u� � s;

z � gs1�u� � � � siÿ1�u�g :

The natural bijection between the two sets above is given by
�g; h� ! �g; gÿ1h�. For each ®xed u, there are exactly N�s; u� elements
g 2 G such that �g; u� belongs to
f�h; u� 2 G� G : 9 i such that si�u� � s; z � hs1�u� � � � siÿ1�u�g :

Hence

#f�g; h� 2 G� G : c�S; g; h� 3 �z;w�g �
X
u2G

NS�s; u� :

This proves the lemma since, clearly, NS�s; u� � jujS � dS � D.

2.B. Markov chains

Let P be a reversible Markov chain on a ®nite state space X with
reversible measure p > 0 so that P �x; y�p�x� � P �y; x�p�y�. Set

Varp� f � � 1

2

X
x;y2X

j f �x� ÿ f �y�j2p�x�p�y� ; �2:2�

EP � f ; f � � 1

2

X
x;y2X

j f �x� ÿ f �y�j2P �x; y�p�x� �2:3�

and

Lp� f � �
X

x

j f �x�j2 log j f �x�jkf k2

� �2

p�x� �2:4�

where kf k2 �
ÿP

x j f �x�j2p�x�
�1=2

. The subscripts will be dropped
whenever no confusion could possibly arise. For the iterated kernel of
P , we will use the notation

P `x �y� � P `�x; y� �
X

z

P `ÿ1�x; z�P �z; y� :

To measure distances between probability distributions, we will use
the total variation distance
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kpÿ lkTV � max
A�X
jp�A� ÿ l�A�j � 1

2

X
x2X
jp�x� ÿ l�x�j :

Denote by

b0�P� � 1 � b1�P � � � � � � bjXjÿ1�P� � bmin�P � � ÿ1

the eigenvalues of the chain P and let

b�P� � max b1�P�;ÿbmin�P �f g :

Using (2.2) (2.3), the second largest eigenvalue b1�P � can be expressed
as

1ÿ b1�P� � min
EP � f ; f �
Varp� f � : f 6� 0

� �
:

A classical and easy bound (e.g., [23, 34]) on variation distance is
given by

kP `x ÿ pkTV �
1

2
���������
p�x�p b�P�` : �2:5�

The log-Sobolev constant a�P � of a reversible Markov chain �P ; p�
is de®ned as the largest non-negative number a such that

aLp� f � � EP � f ; f � �2:6�

for any function f . We will use a�P � to prove mixing rates that im-
prove upon those obtained through (2.5). More precisely, we will use
the following

Theorem 2.2 Let �P ; p� be a ( ®nite) reversible Markov chain. Then,
for all c > 0,

kP `x ÿ pkTV � 2eÿc for ` � 1� c
1ÿ b

� 1

4a
log log

1

p�x� :

We also consider the continuous time semigroup

Ht � eÿt�IÿP � � eÿt
X1
0

P n

n!
: �2:7�

The semigroup Ht has the advantage of avoiding parity problems. In
what follows the results stated for Ht could be replaced by similar
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bounds on the discrete time chain eP ` where eP � 1
2 �I � P �. For Ht, we

have

Theorem 2.3 Let �P ; p� be a ( ®nite) reversible Markov chain. Then, for
all c > 0,

kHx
t ÿ pkTV � e1ÿc for t � c

1ÿ b1
� 1

4a
log log

1

p�x� :

The di�erence between Theorem 2.3 and Theorem 2.2 is that no
bound on the least eigenvalue is required in Theorem 2.3. We refer
the reader to [18] for the proofs of Theorem 2.2, Theorem 2.3, and for
a discussion of the use of log-Sobolev inequalities for ®nite Markov
chains.

Remark. Although Theorem 2.2 and 2.3 are stated for total varia-
tion, their conclusions hold in fact in `2�p� (or chi-square) distance.
That is, kP `x ÿ pkTV and kHx

t ÿ pkTV can be replaced by k�P `x=p� ÿ 1k2
and k�Hx

t =p� ÿ 1k2 where k � k2 refers to the norm in `2�p�. It follows
that similar bounds also holds for the maximal relative errors

supx;y
P `�x;y�
p�y� ÿ 1
��� ��� and supx;y

Ht�x;y�
p�y� ÿ 1
��� ��� which are easily bounded in

terms of the `2 distance. See [18], Section 2.D and Theorem 3.7,
Corollary 3.8 of that paper. This remark applies to all the conver-
gence results stated in the present paper including the results of
Section 8 which deal with nonsymmetric chains.

3 The two Markov chains

Let us introduce some notation. Fix a ®nite group G and setZ � Gn.
For x; y in Z�Z, write

x � y if x and y differ exactly in one coordinate ;

and write

x � y if
x and y differ exactly in one coordinate, say xi 6� yi,

and there exists j 6� i such that yi � xix�1j .

(

If x � y with xi 6� yi, let

N�x; y�� the number of j such that xÿ1i yi � x�1j if xÿ1i yi 6� �xÿ1i yj�ÿ1
twice this number if xÿ1i yi � �xÿ1i yi�ÿ1 .

(
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Finally, let N�x� be the number of coordinates equal to the identity
in x.

With this notation the chain de®ned informally in the introduction
is given by the kernel

P�x; y� �
0 if x 6� y and x 6� y
N�x;y�
2n�nÿ1� if x � y

N�x�
n if x � y . (3.1)

8>><>>:
The chain P is not irreducible on Gn. Let S � G a set of generators.

Say S is minimal if no smaller subset of S generates G. De®ne m�G� to
be the maximum size of a minimal generating set. De®ne m�G� to be
the minimum size of a generating set. Note that often m�G� < m�G�.
For example, for Z=pqZ, with p; q primes, m�G� � 1, m�G� � 2. We
will constantly use the notation

m � m�G�; m � m�G� :

The numbers m�G�;m�G�, appear in the following slight generaliza-
tion of a result of Celler et al. [9] which gives a useful condition for
the walk at (3.1) to be irreducible on the set of generating sequences.

Lemma 3.1 Let G be a ®nite group and n � m�G� � m�G�. Then, the
chain P at (3.1) gives an irreducible symmetric Markov chain on the set
of n-tuples �x1; . . . ; xn� which generate G.

Proof. Fix a generating sequence �y1; . . . ; ym� with m � m�G�. Any n-
tuple �x1; . . . ; xn� which generates G can be brought to �y1; y2; . . . ; ym;
id; . . . ; id�. Indeed, a subsequence of length at most m�G� in
�x1; . . . ; xn� generates and so one can produce y1; . . . ; ym in the com-
plementary positions to this generating sequence. Using y1; . . . ; ym, we
can set all the remaining positions to the identity. Then, it is easy to
order the yi as we wish. This shows that the Markov chain (3.1) is
irreducible. Since it is symmetric and has some holding, it is ergodic.

Remark. For some classes of groups, the conclusion of Lemma 3.1
holds for all n � m�G� � 1. Diaconis and Graham [14] show this for
Abelian groups. They also show that the chain need not be connected
if n � m�G�.

We denote by X �Z the set of all generating n-tuples. We assume
throughout that n � m�G� � m�G� and consider X as the state space
of the chain P . Thus, P is irreducible, symmetric, aperiodic on X and
its stationary measure is p�x� � jXjÿ1. The following theorem de-
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scribes our quantitative bound on the convergence of the continuous
time process Ht � et�IÿP � associated with the chain P at (3.1) by for-
mula (2.7). The proof is given in Section 5. It combines Theorem 2.3
and the eigenvalue and log-Sobolev estimates of Corollary 5.3.

Theorem 3.2 For any group G and all n � 2m�G� � m�G� and all c > 0,
the semigroup Ht � eÿt�IÿP� associated to the chain P at (3.1) on
generating n-tuples satis®es

kHx
t ÿ pkTV � e1ÿc

for

t � 20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1D2n2

nÿm
m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2�

� �log�jGj ÿ 1�� log log jGjn� � � 4c� � :

Here M � M�G� is the number of distinct generating m-tuples and
D � D�G� is the maximum diameter of G.

For ®xed G and large n, our main result simpli®es to:

Theorem 3.3 For any ®xed group G and all n � 2m�G� � m�G�, the
chain P at (3.1) on generating n-tuples satis®es

kP `x ÿ pkTV � 2eÿc for ` � An2 log n� c� �; c > 0 :

Here A depends only on G.

In order to apply Theorem 3.2 to classes of groups where the size
of G is allowed to grow, it is crucial to have estimates on the four
group theoretical quantities m�G�; m�G�; D�G� and M�G�. These
quantities are studied in Section 6 which also gives pointers to the
literature. Speci®c examples are treated in Section 7. We want to
emphasize that the expression for t in Theorem 3.2 does not depend
too badly on the size of G. To illustrate this point, we state two special
cases that follow from Theorem 3.2 using results from Section 6:

Corollary 3.4 Let G be a p-group of order pb. Then, m � m � b. For all
n � 3b and c > 0, the semigroup Ht � eÿt�IÿP � associated to the chain P
at (3.1) on generating n-tuples satis®es

kHx
t ÿ pkTV � e1ÿc

for
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t � 320�1� 2b�2�bn2D2 �log pb� log log pbnÿ �� 4c
� �

:

Further, for such groups, 14 px � D � �2b�b�1px where px is the expo-
nent of G=�G;G�.

Corollary 3.5 Let G be the symmetric group Sd on d letters. Then,
m � 2, m � 2d. For n � 3d and c > 0, the semigroup Ht � eÿt�IÿP�

associated to the chain P at (3.1) on generating 3d-tuples satis®es

kHx
t ÿ pkTV � e1ÿc

for t � Ad2D2�d�log d�2 � c�. Here D is the maximum diameter of Sd

and A does not depend on d.

The proofs of these three corollaries of Theorem3.2 are in Section 7.

The quantitative study of P proceeds by comparison with the
chain Q on Z de®ned by

Q�x; y� �
0 if x 6� y and x 6� y
1

njGj if x � y
1
jGj if x � y . (3.2)

8><>:
This chain picks a coordinate uniformly at random and multiplies
this coordinate by a uniformly chosen element of G. Its stationary
measure is l�x� � jZjÿ1 � jGjÿn. It is a product chain with second
largest eigenvalue

b1�Q� � 1ÿ 1
n :

Its log-Sobolev constant can be computed exactly using Lemma 3.2
and Corollary A.5 in [18]. It is given by

a�Q� � �jGj ÿ 2�
njGj log�jGj ÿ 1� :

The comparison of the chains P and Q is treated in Section 5,
Proposition 5.2 and Corollary 5.3.

4 The lowest eigenvalue

To bound the discrete time chain P ` instead of the continuous time
chain Ht � eÿt�IÿP�, we need a bound on the least eigenvalue of P . We
will use a slight variation on Proposition 2 of [23], page 40.
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Suppose �K;p� is a reversible Markov chain on the ®nite state
space X. For each x 2 X, let Rx be some ®xed set of cycles of odd
length beginning and ending at x. Let R � [xRx. For each cycle r 2 R,
let jrj be its length. Finally, let h be a non-negative function de®ned
on R and such that, for each x 2 X,X

r2Rx

h�r� � p�x� :

Such a function h is called a ¯ow on odd cycles (we will later en-
counter other kinds of ¯ows for comparison between two chains).
Then, the argument in [23], page 40, easily gives

Lemma 4.1 With the above notation, for any ®nite reversible Markov
chain and any ¯ow h on odd cycles,

bmin�K� � ÿ1�
2

I�h�

where

I�h� � max
�x;y�

K�x;y�>0

1

K�x; y�p�x�
X
r2R

r3�x;y�

r�r; �x; y��jrjh�r�

0B@
1CA :

Here, r�r; �x; y�� is the number of times the edge �x; y� is used in r (one
can always assume that r�r; �x; y�� � 2 and, in our applications, it will
always be at most 1).

Lemma 4.1 will be used to give three lower bounds on the smallest
eigenvalue.

Proposition 4.2 The chain �P ; p� at (3.1) has its least eigenvalue
bounded by

bmin�P � � ÿ1�
nÿ m

n�nÿ 1�jGj�2D�G� � 1� :

Here m � m�G� and n � m�G� � m�G�.
Proof. This is a slight improvement on Proposition 3.3 of [20]. We
give the proof for completeness. We use Lemma 4.1 and the following
¯ow h on odd cycles: If one of the coordinates of x is the identity, set

Rx � frxg with rx � �x; x� :
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If none of the coordinates of x is the identity, ®x a generating subset S
occupying m coordinates fi1; . . . ; img of x and pick a coordinate, say
xi, not in this subset. Write xi as a word using elements in S. This
describes a path cx;i from x to xi where xi is the n-tuple with ith
coordinate the identity and all other coordinates equal to those of x.
Set

Rx � frx;i : i 62 fi1; . . . ; imgg

where rx;i is the cycle that goes from x to xi along cx;i, holds at xi for
one step and goes back to x. Now, for any cycle r, set

h�r� � 1
jRxj p�x� if r 2 Rx

0 otherwise .

�
Observe that jRxj � nÿ m when none of the coordinates of x is the
identity. Then, we have to bound

I�h� � max
�x;y�

P �x;y�>0

1

P�x; y�p�x�
X

r
r3�x;y�

jrjh�r� :

First, examine the case where x � y contains more than one coordi-
nate equal to the identity. Then, the quantity we have to bound
becomes n=N�x� � n=2.

Second, if x � y contains exactly one coordinate, say xi, equal to
the identity. Then, we have to bound

n 1�
X
g2G

2jgjx � 1

nÿ m

 !
� n�nÿ m� jGj�2D�G� � 1��

nÿ m
:

Here jgjx denotes the length of g in some generating set which de-
pends on x.

Finally, if x; y di�er at exactly one coordinate, say xi 6� yi, then we
have to bound

2n�nÿ 1�
N�x; y�

X
g2G

2jgjx � 1

nÿ m
� 2n�nÿ 1�jGj�2D�G� � 1�

nÿ m
:

Hence

I�h� � 2n�nÿ 1�jGj�2D�G� � 1�
nÿ m

:

This proves Proposition 4.2.
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Proposition 4.3 Assume that any generating set of G contains an ele-
ment of odd order at most T. Then the chain P at (3.1) with
n � m�G� � m�G� has its least eigenvalue bounded by

bmin�P � � ÿ1�
2

nT 2
:

Proof. Use the same technique as in the preceding proof. For any
x 2 X, there exists j such that xj has order t � T , t odd. For any k 6� j
de®ne rx;k to be the cycle of odd length from x to x obtained by
changing the kth entry to xkxj, xkx2j ; . . . ; xkxtÿ1

j , xk. Set Rx � frx;k :
k 6� jg and de®ne a ¯ow on odd cycles by setting h�r� � 1=�jXj�nÿ 1��
if r 2 [xRx and h�r� � 0 otherwise. Then,

I�h� � max
�x;y�

P�x;y�>0

1

P�x; y�p�x�
X

r
r3�x;y�

jrjh�r� � nT 2 :

This proves the desired inequality. Observe that Proposition 4.3
applies to any group of odd order. Actually, we do not have other
examples.

Given a subset S of G, let `�S� be the shortest length of a cycle
s1 � � � s`�S� � id of odd length with si 2 S [ Sÿ1 and `�S� � �1 if there
is no such cycle.

Proposition 4.4 Let L � maxS `�S� where the maximum is taken over
all generating sets of size m�G� � m. The chain P at (3.1) with
n � m�G� � m�G� has its least eigenvalue bounded by

bmin�P� � ÿ1�
2�nÿ m�

n�nÿ 1�L2 :

Proof.We can assume L <1. For any x 2 X, there exists J of size M
such that S � fxj : j 2 Jg generates G. Let ` � `�S� and s1 � � � s` � id
be a cycle of odd length ` with si 2 S [ Sÿ1. For any k 62 J de®ne rx;k

to be the cycle of odd length from x to x obtained by changing the kth
entry to xks1, xks1s2; . . . ; xks1 � � � s`ÿ1, xk. Set Rx � frx;k : k 6� jg and
de®ne a ¯ow on odd cycles by setting h�r� � 1=�jXj�nÿ m�� if
r 2 [xRx and h�r� � 0 otherwise. Then,

I�h� � max
�x;y�

P �x;y�>0

1

P �x; y�p�x�
X

r
r3�x;y�

jrjh�r� � n�nÿ 1�L2
nÿ m

:
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With Lemma 4.1, this gives the desired result. This result seems dif-
®cult to apply in practice.

5 Comparison

To complete the proof of Theorem 3.2 we need some notation. For
any sequence S � fs1; . . . ; skg of size k with si 2 G, any n-tuple
x � �x1; . . . ; xn� 2Z and any ordered k-tuple I � �i1; . . . ; ik� with
1 � i1 < � � � < ik � n, let xI

S be the n-tuple with ith coordinate �xI
S �i

given by

�xI
S�i �

xi if i 62 I
sj if i is the jth element of I .

�
�5:1�

Given a function f on X we set

~f �x� �
f �x� if x 2 X
1

M n
m� �
X
S;I

f �xI
S� if x 2Z nX

8><>:
where the sum runs over all generating sequences S of length m �
m�G� and all m-subsets I � f1; . . . ; ng, and M � M�G� is the number
of distinct generating m-tuples. The following lemma is easy.

Lemma 5.1 The chains �P ;p� and �Q; l� de®ned by (3.1), (3.2) satisfy

Varp�f � � jZjjXj Varl�
~f � ; �5:2�

Lp�f � � jZjjXjLl� ~f � : �5:3�

Proof. See Proposition 2.3 of [20]. Actually, any extension of f would
do the job here.

We now reach the crucial part of the comparison argument. The
Dirichlet forms EQ� ~f ; ~f � and EP �f ; f � must be compared.

Proposition 5.2 For any group G with m�G� � m, m�G� � m and n �
2m� m, the chains P and Q de®ned at (3.1), (3.2) satisfy

EQ� ~f ; ~f � � 20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m

nÿm
m

ÿ � nÿmÿm
m

ÿ �
M2D2n

jXj
jZjEP �f ; f �
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for all f : X! R. Here, M is the number of distinct generating
m-tuples.

Corollary 5.3 For any group G with m�G� � m, m�G� � m and n �
2m� m, the chain P de®ned at (3.1) satis®es

b1�P� � 1ÿ
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2mD2n2

and

a�P � �
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2�

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1 log�jGj ÿ 1�D2n2
:

Proof. We start by writing

EQ� ~f ; ~f � � 1

2njGjn�1
 X

x;y2X
x�y

j f �x� ÿ f �y�j2 � 2
X

x2ZnX;y2X
x�y

j ~f �x� ÿ f �y�j2:

�
X

x;y2ZnX
x�y

j ~f �x� ÿ ~f � y�j2
!

� 1

2njGjn�1 �R1 � 2R2 � R3� : �5:4�

We are going to bound R1;R2 and R3 in terms of

R� �
X
z;w2X
z�w

jf �z� ÿ f �w�j2 :

To this end, for each x 2 X, we need to pick an ordered m-tuple

I�x� � �i1�x�; . . . ; im�x��; 1 � ia�x� � n

such that

S�x� � �xi1�x�; . . . ; xim�x�� 2 Gm

generates G. Furthermore, we do this in a ``global'' way. Namely, ®x
any total order on the set of pairs �I ; S� where I runs over all ordered
m-tuples with entries in f1; . . . ; ng (i.e., m-subsets of f1; . . . ; ng) and S
runs over all generating m-tuples in Gm. Given x 2 X, de®ne
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I�x� � �i1�x�; . . . ; im�x��; S�x� � �xi1�x�; . . . ; xim�x�� �5:5�

to be the smallest such pair built on x. The ``global'' property referred
to above and which is an easy consequence of this construction is the
following:

If x; y 2 X, and K � �`1; . . . ; `k� are such that

xi � yi for i 62 K and also K \ I�x� � K \ I�y� � ;,
then I�x� � I�y� and S�x� � S�y� : �5:6�

8><>:
The heart of our argument is contained in the following technical

lemma which bounds expressions such asX
x;I ;S;K;W

jf �xI
S� ÿ f �xK

W �j2

in terms of R�. Here, typically, x is in X (or Z), I ;K are ordered
tuples with distinct entries in f1; . . . ; ng and S;W are generating tu-
ples with entries in G.

Lemma 5.4 We have the following bounds where I ;K run over all or-
dered m-tuples with distinct entries in f1; . . . ; ng, S;W run over all
generating m-tuples in Gm, j 2 f1; . . . ; ng and g 2 G.X

x2ZnX

X
I ;S;j;g

j62I

jf �xI
S� ÿ f ��xj

g�IS�j2 �
nÿ 1

m

� �
jGjm�1D2 R� : �5:7�

X
x2Z

X
I;S;j;g:xg

j2X
j62I;I\I�xj

g��;

jf �xI
S� ÿ f �xj

g�j2 � �1� m�2 nÿ 1

m

� �
jGjm�1D2 R� : �5:8�

X
x2Z

X
I ;S;K;W

I\K�;

jf �xI
S� ÿ f �xK

W �j2 � 4m
nÿ 1

mÿ 1

� �
nÿ m

m

� �
jGj2mD2 R� : �5:9�

X
x2X

X
I;S

I\I�x��;

jf �xI
S� ÿ f �x�j2 � m

nÿ 1

mÿ 1

� �
jGjmD2 R� : �5:10�

Proof. The proof starts with the basic idea of the comparison ma-
chinery, namely, constructing paths. Fix x, three ordered tuples I;K;
K 0 (possibly empty) with distinct entries in f1; . . . ; ng (i.e., we assume
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that I;K;K 0 are disjoint) and cardinalities jIj; jKj; jK 0j. Fix also three
tuples S;W ;W 0 (possibly empty) with entries in G and cardinalities jIj;
jKj; jK 0j. We will be only interested in cases where the following hy-
potheses are satis®ed:

�1� jIj � m and S is a generating m-tuple.
�2� either jKj � m and W is a generating m-tuple

or K � W � ; and xK 0
W 0 2 X; I�xK 0

W 0 � \ I � ; .

8<:
In our application, K 0 will always be either empty or a singleton
K 0 � fjg.

Under these hypotheses, we construct a path

c�x; I ; S;K;W ;K 0;W 0� from xI
S to �xK

W �K
0

W 0

as follows. Starting at xI
S we use the generating set S and the group-

paths c�S; h; h0�, h; h0 2 G, of Section 2 to set the entries of xI
S at K to

the desired values given by W unless I � K; S � W in which case there
is nothing to do. We always proceed from left to right to reach �xI

S�KW .
Then, if W is generating, we use the entries at W (i.e., the gener-

ating set W ) to set the entries of �xI
S �KW at I to their desired value xi,

i 2 I (proceeding from left to right and using the group-paths
c�W ; h; h0�, h; h0 2 G). Thus, we reach xK

W and again, if I � K; S � W ,
we skip this phase. Now, we set the entries at K 0 to the desired values
given by W 0 (using W and proceeding from left to right).

If W is not generating, then our hypotheses imply that K � W � ;.
In this case, we use the generating set S contained in xI

S and the
group-paths c�S; h; h0�, h; h0 2 G, to set the entries at K 0 to their de-
sired values given by W 0. We thus reach �xI

S �K
0

W 0 . By hypothesis,
K 0 \ I � ;, xK 0

W 0 2 X and I�xK 0
W 0 � \ I � ;. By de®nition, the entries at

I�xK 0
W 0 � form a generating set and we use them to set the entries at I to

their ®nal desired values xi, i 2 I . The paths c�x; I; S;K;W ;K 0;W 0� all
have the following properties. Any edge �z; z0� along c�x; I; S;K;W ;K 0;
W 0� satis®es z � z0 and the length of these paths is bounded by

jc�x; I; S;K;W ;K 0;W 0�j � jK 0jD if I � K; S � W
�jKj � jIj � jK 0j�D otherwise .

�
�5:11�

To prove the inequalities of Lemma 5.4, we start by bounding the
di�erences

jf �xI
S� ÿ f ��xK

W �K
0

W 0 �j2
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appearing on the left hand-side of each of these inequalities by

jf �xI
S� ÿ f ��xK

W �K
0

W 0 �j2 � jcj
X
�z;z0�2c

jf �z� ÿ f �z0�j2 ;

where c � c�x; I ; S;K;W ;K 0;W 0� and jcj is the length of this path. This
simply uses a telescoping sum and Cauchy-Schwarz. We now proceed
case by case.

Proof of 5.7. In this case, I � K; S � W , K 0 � fjg, W 0 � fgg and the
paths introduced above have length at most D by (5.11). We write
c�x; I; S; j; g� for c�x; I; S; I; S; fjg; fgg�. Thus

jf �xI
S� ÿ f ��xI

S�jg�j2 � D
X

�z;z0�2c�x;I;S;j;g�
jf �z� ÿ f �z0�j2 ;

andX
x2ZnX

X
I ;S;j;g

j62I

jf �xI
S� ÿ f ��xj

g�IS�j2 � D
X
�z;z0�
z�z0

X
x;I ;S;j;g

j 62I;c�x;I;S;j;g�3�z;z0�

jf �z� ÿ f �z0�j2 :

Given �z; z0� with z � z0 we have to count how many �x; I ; S; j; g� there
are such that j 62 I and c�x; I; S; j; g� 3 �z; z0�. Since z � z0, these two n-
tuples di�er exactly at one entry and, in the present case, it has to be
the j th. Thus, we know j. Now, we pick I among the nÿ1

m

ÿ �
possible

choices (recall that j 62 I). Knowing I, we can ®nd S just by scanning z
(because z di�ers from xI

S only at j). By the same token we ®nd all the
entries of x outside I [ fjg. Further, using the notation of Section 2
concerning group-paths, xj and g must satisfy

�zj; z0j� 2 c�S; xj; g� :

By Lemma 2.1, there are at most jGjdS � jGjD possible pairs �xj; g�
having this property. Finally, we obtainX

x2ZnX

X
I;S;j;g

j 62I

jf �xI
S� ÿ f ��xj

g�IS�j2 �
nÿ 1

m

� �
jGjm�1D2R�

which is (5.7).

Proof of 5.8. Here, K � W � ;, K 0 � fjg, W 0 � fgg and we set

c�x; I; S; ;; ;; fjg; fgg� � c�x; I; S; j; g�

Walks on generating sets of groups 269



(which has a di�erent meaning than in the proof of (5.7)). These
paths have length at most �jIj � 1�D � �m� 1�D by (5.11). We obtainX
x2Z

X
I;S;j;g:xg

j2X
j62I;I\I�xj

g��;

jf �xI
S� ÿ f �xj

g�j2 � �1� m�D
X
�z;z0�
z�z0

X
x;I;S;j;g:xg

j2X
j 62I;I\I�xj

g��;
c�x;I;S;j;g�3�z;z0�

jf �z� ÿ f �z0�j2 :

Fix an edge �z; z0� between points that di�er at one entry only, say the
kth. Observe that either k � j 62 I or j 6� k 2 I and consider each of
these cases separately.

If k � j, we pick I among the the nÿ1
m

ÿ �
possible choices with j 62 I .

Scanning z, we can now ®nd S and all the entries of x outside I [ fjg.
Since we know that I \ I�xj

g� � ;, we can also ®nd I�xj
g� and

W � S�xj
g� (here we are using property (5.6)). As in the proof of (5.7),

the number of possible choice for �xj; g� is bounded by jGjD because
xj and g must satisfy

�zj; z0j� 2 c�W ; xj; g� :

Thus, the case k � j will contribute at most a factor of nÿ1
m

ÿ �jGjm�1D
to our sum.

If k 2 I � fi1; . . . ; im�, we have to pick the remaining entries of I
among the nÿ1

mÿ1
ÿ �

possible choices. We also have to pick j among the
remaining nÿ m entries. Let a be such that k � ia. By scanning z, we
now easily ®nd g, the entries sb 2 S with b > a, the entries xib with
b < a, and the entries of x outside I [ fjg. Further, the pair �sa; xk�
must satisfy (in the notation of Section 2)

�zk; z0k� 2 c�S; sa; xk� :

By Lemma 2.1, there are at most jGjD such pairs. Thus, the case k 2 I
will contribute at most a factor of �nÿ m� nÿ1

mÿ1
ÿ �jGjm�1.

Putting the two cases together yieldsX
x2ZnX

X
I ;S;j;g:xj

g2X
j62I;I\I�xj

g��;

jf �xI
S� ÿ f �xj

g�j2

� �1� m� nÿ 1

m

� �
� �nÿ m� nÿ 1

mÿ 1

� �� �
jGjm�1D2R�

which yields (5.8).
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Proof of 5.9. Here, I;K are disjoint ordered m-tuples, S;W are gen-
erating m-tuples and K 0 � W 0 � ;. We write c�x; I; S;K;W � for
c�x; I; S;K;W ; ;; ;�. These paths have length at most 2mD by (5.11).
Starting as for (5.7) and (5.8), we haveX

x2Z

X
I;S;K;W

I\K�;

jf �xI
S� ÿ f �xK

W �j2 � 2mD
X
�z;z0�
z�z0

X
x;I;S;K;W

I\K�;;c�x;I;S;j;g�3�z;z0�

jf �z� ÿ f �z0�j2 :

We ®x points z and z0 � z that di�er at exactly one entry, say the jth.
Then, by construction, either j 2 I or j 2 K. We treat these two
cases separately. As they are very similar, we only give the details
when j 2 I . Assuming j 2 I, we pick the remaining entries of I , and
the entries of K: there are nÿ1

mÿ1
ÿ �� nÿm

m

ÿ �
possible choices. Now that

we know I � fi1; . . . ; img, j � ia and K, we can ®nd W , all the entries
of x outside I [ K, the entries xib with b < a and the sb 2 S with
b > a. Further, the pair �sa; xj� must satisfy (in the notation of
Section 2)

�zj; z0j� 2 c�W ; sa; xj� :

By Lemma 2.1, there are at most jGjD such pairs. Thus the case where
j 2 I contributes at most a factor

nÿ 1

mÿ 1

� �
nÿ m

m

� �
jGj2mD :

The same is true for the case where j 2 K. HenceX
x2Z

X
I;S;K;W

I\K�;

jf �xI
S� ÿ f �xK

W �j2 � 4m
nÿ 1

mÿ 1

� �
nÿ m

m

� �
jGj2mD2R�

which is (5.9).

Proof of 5.10. Here, K � K 0 � W � W 0 � ;. We write c�x; I ; S� for
c�x; I; S; ;; ;; ;; ;�. These paths have length at most mD by (5.11). We
haveX

x2X

X
I ;S

I\I�x��;

jf �xI
S� ÿ f �x�j2 � mD

X
�z;z0�
z�z0

X
x;I ;S

I\I�x��;;c�x;I;S�3�z;z0�

jf �z� ÿ f �z0�j2 :

We ®x z and z0 that di�er at exactly one entry, say the jth. Then,
necessarily, j 2 I . We pick the remaining entries of I � �i1; . . . ; im�
among the nÿ1

mÿ1
ÿ �

possible choices. De®ne a by j � ia. Now, scanning z
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yields the entries of x outside I , the entries xib with b < a, the sb 2 S
with b > a. We can also ®nd I�x� and S�x� just by looking at z because
of property (5.6) and the fact that I \ I�x� � ;. Further the pair
�sa; xj� must satisfy (in the notation of Section 2)

�zj; z0j� 2 c�S�x�; sa; xj�:

By Lemma 2.1, there are at most jGjD such pairs. Observe that it is
important that S�x� is known and ®xed in order to apply Lemma 2.1:
property (5.6) is used here. Finally, we get

X
x2X

X
I;S

I\I�x��;

jf �xI
S� ÿ f �x�j2 � m

nÿ 1

mÿ 1

� �
jGjmD2 R�

which is (5.10). This ends the proof of Lemma 5.4.
We now return to (5.4), i.e.,

EQ� ~f ; ~f � � 1

2njGjn�1 �R1 � 2R2 � R3�

and estimate R1;R2;R3 in terms of R� using Lemma 5.4.

Estimating R3: We start with R3 which is the easiest to deal with.
Write

R3 �
X

x;y2ZnX
x�y

j ~f �x� ÿ ~f �y�j2

� 1
n
m

ÿ �2M2

X
x;y2ZnX

x�y

X
I;S

f �xI
S�

 !
ÿ

X
I;S

f �yI
S�

 !�����
�����
2

� 1
n
m

ÿ �
M

X
x;y2ZnX

x�y

X
I;S

jf �xI
S� ÿ f �yI

S�j2 :

The last step uses the Cauchy-Schwarz inequality. Now observe that
for x; y 2Z nX with x � y, xI

S and yI
S are either equal or di�er only at

one position j 62 I. Let g � yj be the jth coordinate of y. Then, y � xj
g

and yI
S � �xI

S �jg. Thus, using the ®rst inequality (5.7) of Lemma 5.4, we
get
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R3 � 1
n
m

ÿ �
M

X
x2ZnX

X
j;g

xj
g2X

X
I;S

jf �xI
S� ÿ f ��xI

S�jg�j2

� 1
n
m

ÿ �
M
� nÿ 1

m

� �
jGjm�1D2R�

� �nÿ m�jGjm�1D2

nM
R� : �5:12�

Estimating R2: We now look at R2. We have

R2 � 1
n
m

ÿ �
M

X
x2ZnX

X
j;g

xj
g2X

X
I;S

jf �xI
S� ÿ f �xj

g�j2 : �5:13�

We are going to break the sum in (5.13) into two pieces. Call N1 the
set of �x; j; g; I� such that x 2Z nX, xj

g 2 X and I \ I�xj
g� � ;. Call N2

the set of �x; j; g; I� such that x 2Z nX, xj
g 2 X and I \ I�xj

g� 6� ;
where I�xj

g� is de®ned at (5.5). WriteX
x2ZnX

X
j;g

xj
g2X

X
I;S

jf �xI
S� ÿ f �xj

g�j2 �
X
N1

X
S

jf �xI
S� ÿ f �xj

g�j2

�
X
N2

X
S

jf �xI
S� ÿ f �xj

g�j2 : �5:14�

For N1, observe that x 2Z nX and xj
g 2 X imply j 2 I�xj

g�. It
follows that j 62 I . Thus, we can use the second inequality (5.8) of
Lemma 5.4 which yieldsX

N1

X
S

jf �xI
S� ÿ f �xj

g�j2 � �1� m�2 nÿ 1

m

� �
jGjm�1D2 R� : �5:15�

We now pass to N2. For each �x; j; g; I ; S� with jI \ I�xj
g�j � m � 1,

write

jf �xI
S� ÿ f �xj

g�j2 �
2

nÿmÿm�m
m

ÿ �
M

X
K;W

�I[I�xj
g��\K�;

jf �xI
S� ÿ f �xK

W �j2
�

� jf �xK
W � ÿ f �xj

g�j2
�

where K runs over all ordered m-tuples such that �I [ I�xj
g�� \ K � ;

and W � �w1; . . . ;wm� 2 Gm runs over all generating m-tuples (there
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are M of them). Here, we use the hypothesis that n � 2m�G� � m�G�.
This gives X

N2

X
S

jf �xI
S� ÿ f �xj

g�j2

� 2
nÿmÿm�1

m

ÿ �
M

 X
N2

X
S;K;W

j62K;I\K�;

jf �xI
S� ÿ f �xK

W �j2

�
X
N2

X
S;K;W

I�xj
g�\K�;

jf �xK
W � ÿ f �xj

g�j2
!

� 2
nÿmÿm�1

m

ÿ �
M

R� R0� � : �5:16�

For R0, we have

R0 � nÿ m
m

� �
M

X
�x;j;g;K�2N1

X
W

jf �xK
W � ÿ f �xj

g�j2 :

Hence the analysis used for N1 applies and yields

R0 � �1� m�2 nÿ 1

m

� �
nÿ m

m

� �
M jGjm�1D2 R� : �5:17�

We are left with the task of bounding

R �
X

�x;j;g;I�2N2

X
S;K;W

j62K;I\K�;

jf �xI
S� ÿ f �xK

W �j2

� �nÿ m�jGj
X

x;I;S;K;W
j62K;I\K�;

jf �xI
S� ÿ f �xK

W �j2 :

The factor �nÿ m�jGj counts the number of �j; g�, j 62 K. It follows
from the third inequality (5.9) of Lemma 5.4 that

R � 4m�nÿ m� nÿ 1

mÿ 1

� �
nÿ m

m

� �
jGj2m�1D2R� : �5:18�

Using (5.17) and (5.18) in (5.16), we getX
N2

X
S

jf �xI
S� ÿ f �xj

g�j2 �
2

nÿmÿm�1
m

ÿ �
M

R� R0� �
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� 2 1� 2m� 5m2
ÿ � nÿ1

m

ÿ � nÿm
m

ÿ �jGj2m�1D2

nÿmÿm�1
m

ÿ �
M

R� :

Using this and (5.15) in (5.14), (5.13), we conclude that

R2 � 3� 6m� 11m2
ÿ � nÿm

m

ÿ �
nÿmÿm�1

m

ÿ � jGj2m�1D2

M2
R� : �5:19�

Estimating R1: We now bound

R1 �
X

x;y2X
x�y

jf �x� ÿ f �y�j2 :

To each x and y in X correspond by (5.5) two m-tuples I � I�x� and
I�y� such that the associated m-tuples S�x� and S�y� generate G.
Moreover, if x � y, then they di�er only at one place, say j, and
y � xj

g where g � yj 2 G. If j 62 I�x�, change the value at j using the
generating set corresponding to I and the group-paths c�S�x�; xj; yj�.
Similarly, if j 62 I�y�, change the value at j using the generating set
corresponding to I�y� and the group-paths c�S�y�; xj; yj�. Call this
path c�x; y�. Its length is at most D. Let H1 be the set of the �x; y� for
which this construction works and H2 be the set of �x; y� such that
j 2 I�x� \ I�y�. For H1, using Cauchy-Schwarz, we haveX

�x;y�2H1

jf �x� ÿ f �y�j2 � D
X
�x;y�2H1

X
�z;z0�2c�x;y�

jf �z� ÿ f �z0�j2

� D
X

z;z02X
z�z0

X
�x;y�2H1
c�x;y�3�z;z0�

jf �z� ÿ f �z0�j2 :

We have to count how many times each �z; z0� appears. By con-
struction, �z; z0� determines j and all the coordinates of x and y except
the jth. Since �x; y� 2 H1, we know that either j 62 I�x� or j 62 I�y�. In
the ®rst case, S�x� � Sz;z0 is independent of xj by (5.6) and �xj; yj� must
belong to

f�u; v� : c�Sz;z0 ; u; v� 3 �zj; z0j�g :

Lemma 2.1 shows that there are at most jGjD such �xj; yj�. Similarly,
if j 62 I�y�, there are at most jGjD possible choices for �xj; yj�. It
follows that
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X
�x;y�2H1

jf �x� ÿ f �y�j2 � 2jGjD2R� : �5:20�

We must now deal with H2 where j 2 I�x� \ I�y�. Fix �x; y� 2 H2.
Let K;W be such that K is an ordered m-tuple of distinct integers
between 1 and n satisfying K \ I�x� � ;, and W � �w1; . . . ;wm� 2 Gm

is a generating m-tuple. Similarly, let K 0, W 0 be m-tuples such that
K 0 \ �I�y� [ K� � ; and W 0 generates. This is possible because
n � 2m� m. We pick uniformly at random among all the possible
�K;W ;K 0;W 0� and write

jf �x� ÿ f �y�j2 � 3

M2 nÿm
m

ÿ � nÿmÿm
m

ÿ �
�
X
K;W

K\I�x��;

X
K 0;W 0

K0\�K[I�y���;

jf �x� ÿ f �xK
W �j2 � jf �xK

W � ÿ f �xK 0
W 0 �j2

�

� jf �xK 0
W 0 � ÿ f �y�j2

�
:

This gives X
H2

jf �x� ÿ f �y�j2 � 3

M2 nÿm
m

ÿ � nÿmÿm
m

ÿ �
� mM jGj nÿ m

m

� �
D1 � mjGjD2 �M

nÿ m
m

� �
D3

� �
�5:21�

where

D1 �
X

x;K;W
K\I�x��;

jf �x� ÿ f �xK
W �j2

D2 �
X

x;K;W
K\I�x��;

X
K 0;W 0

K0\�K[I�y���;

jf �xK
W � ÿ f �xK 0

W 0 �j2

D3 �
X

�x;y�2H2;K 0;W 0
K0\I�y��;

jf �y� ÿ f �xK
W �j2 :

In (5.21), the factor mM jGj nÿm
m

ÿ �
in front of D1 accounts for the

variables j;W 0; g;K 0 where y � xj
g For j and K 0, we have taken into

account the facts that j 2 I�x� and K 0 \ K � ;. These variables do not
appear in D1. Similarly, the factor mjGj in front of D2 accounts for the
variables j; g where y � xj

g, taking into account the fact that j 2 I�x�.
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Finally the factor M nÿm
m

ÿ �
in front of D3 accounts for the variables W

and K (recall that K \ I�x� � ;).
Now, D1 can be bounded using the fourth inequality (5.10) in

Lemma 5.4. For D2, we can use inequality (5.9) of Lemma 5.4
whereas, for D3, we can use (5.8) since

D3 �
X

�x;y�2H2;K 0;W 0
K0\I�y��;

jf �y� ÿ f �xK
W �j2

�
X

x;K 0;W 0;j;g
K0\I�xj

g��;

jf �xj
g� ÿ f �xK

W �j2:

Hence,X
H2

jf �x� ÿ f �y�j2

� 3 nÿm
m

ÿ � n
m

ÿ �
M2 nÿm

m

ÿ � nÿmÿm
m

ÿ � mm2

n
� 4

mm2

n
� �nÿ m��1� m�2

n

 !
jGj2m�1D2R�

� 3 1� 2m� 6m2
ÿ � nÿm

m

ÿ � n
m

ÿ �
M2 nÿm

m

ÿ � nÿmÿm
m

ÿ � jGj2m�1D2R� :

This and (5.20) yield

R1 � 5� 6m� 18m2
ÿ � n

m

ÿ � nÿm
m

ÿ �
M2 nÿm

m

ÿ � nÿmÿm
m

ÿ � jGj2m�1D2R� : �5:22�

Using (5.12), (5.19) and (5.22), we obtain

EQ� ~f ; ~f � � 1

2njGjn�1 R1 � 2R2 � R3� �

� 5�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �
nÿm

m

ÿ � nÿmÿm
m

ÿ � jGj2mD2

njGjnM2
R�

� 20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �
nÿm

m

ÿ � nÿmÿm
m

ÿ � jXjjGj2mD2n
jZjM2

EP � f ; f �

because EP � 1
4n�nÿ1�R�. This ends the proof of Proposition 5.2.

Proof of Corollary 5.3 and Theorem 3.2. From Lemma 5.1 and Pro-
position 5.2, the second largest eigenvalue of P is bounded by
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b1�P� � 1ÿ
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2mD2n2
:

For the log-Sobolev constant, we get

a�P � �
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2�

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1 log�jGj ÿ 1�D2n2
:

These estimates and Theorem 2.3 give

kHx
t ÿ pkTV � e1ÿc

for

t � 20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1D2n2

nÿm
m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2� �log�jGj ÿ 1�� log log jGjn� � � 4c� �

with c > 0. This proves Theorem 3.2.

Remark. In the above proof, we have never used speci®cally the fact
that m is the minimum size of a generating set in G. This leads to the
following extensions of Corollary 5.3 and Theorem 3.2:

Theorem 5.5 For any group G with m�G� � m, m�G� � m, any m� � m,
and n � 2m� � m, the chain P de®ned at (3.1) satis®es

b1�P� � 1ÿ
nÿm
m�

� �
nÿmÿm�

m�

� �
M2
�

20�1� 2m��2 n
m�

� �
nÿm�

m�

� �
jGj2m�D2n2

and

a�P � �
nÿm
m�

� �
nÿmÿm�

m�

� �
M2
� �jGj ÿ 2�

20�1� 2m��2 n
m�

� �
nÿm�

m�

� �
jGj2m��1 log�jGj ÿ 1�D2n2

:

Further, for all c > 0, the semigroup Ht � eÿt�IÿP � associated to the
chain P at �3:1� on generating n-tuples satis®es

kHx
t ÿ pkTV � e1ÿc

for

t �
20�1� 2m��2 n

m�

� �
nÿm�

m�

� �
jGj2m��1D2n2

nÿm
m�

� �
nÿmÿm�

m�

� �
M2� �jGj ÿ 2�
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� �log�jGj ÿ 1�� log log jGjn� � � 4c� � :

Here M� � f �m�;G� is the number of distinct generating m�-tuples and
D � D�G� is the maximal diameter of G.

This extension is interesting because it may happen that
M � f �m;G� is small or di�cult to bound from below whereas
M� � f �m�;G� � jGjm� for certain m� > m. For instance, this happens
for cyclic groups of very composite order, see Section 6.C, Example 2.

6 Group combinatorics

This section discusses the four group theoretical parameters needed
to apply Theorem 3.2. There is a growing literature on group
combinatorics. See e.g., the surveys [5, 33]. We will use the following
notation. Given a group G, the lower central series G1 � G � G2

� � � � � Gi � � � is de®ned inductively by

Gi � �Giÿ1;G�

where, for any two subgroups H ;K, �H ;K� is the commutator group
generated by �h; k� � hÿ1kÿ1hk; h 2 H ; k 2 K. By de®nition, G is
nilpotent of class c if Gc 6� fidg and Gc�1 � fidg.

6.A. The size of minimal generating sets

Let G be a ®nite group and S � G be a set of generators. Say S is
minimal if no smaller subset of S generates G. Recall that we have
de®ned m � m�G� to be the maximum size of a minimal generating set
and m � m�G� to be the minimum size of a generating set. If S is a
generating set with jSj � m�G�, then deleting successive elements of S
results in a strictly decreasing sequence of subgroups. This shows that
m�G� is bounded by the length of the longest chain of subgroups in G.
If jGj �Q pap is the factorization of the size of G into distinct prime
powers, we see

m�G� � X�jGj� �
X

p j jGj
ap: �6:1�

In any solvable group, the length of the longest chain of subgroups is
exactly X�jGj� but, in general, X�jGj� only gives an upper bound.
Further, the length of the longest chain of subgroups is only an upper
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bound for m. There is a large literature on chains of subgroups in
permutation groups and ®nite groups of Lie type. See [33].

Example 6.A.a: Cyclic groups. Take G to be the cyclic group Z=rZ
where r �Qk

1 pai
i is a factorization of r into distinct prime powers

�ai 6� 0�. Then (6.1) gives m �Pk
1 ai whereas, of course, m � k. Here,

m � 1.

Example 6.A.b: The symmetric group. Take G to be the symmetric
group Sd . Then, for primes p � d, ap � �d=p� � �d=p2� � � � � � d=
�p�1ÿ 1=p�� � 2d=p: Thus,

m�Sd� � 2d
X
p�d

1

p
� 2d log log d :

In fact, using results of Babai [3] and Cameron et al. [8], m�Sd� � 2d.
This follows from an exact formula for the length of the longest chain
of subgroup in Sd . The longest chain only gives an upper bound on m.
Indeed, preliminary computations based on the classi®cation of
simple ®nite groups seems to indicate that m�Sd� � d ÿ 1. The
classical generating set S � f�1; 2�; �2; 3�; . . . ; �d ÿ 1; d�g shows m�Sd�
� d ÿ 1. Observe also that m�Sd� � 2 (e.g., the transposition �1; 2�
and the long cycle �1; . . . ; d� generate).

Example 6.A.c: p groups. Let jGj � pa for some prime p. For such
groups, m�G� can be explicitly determined. We need a bit of ele-
mentary group theory connected with the Burnside basis theorem.
Suzuki [35], p. 93, is a splendid reference. Let U�G� � U be the
Frattini subgroup, i.e., the intersection of the subgroups of order
paÿ1. This is a normal subgroup and the Burnside basis theorem says
the quotient G=U is isomorphic to a vector space over the ®eld Z=pZ.
If jG=Uj � pb, Burnside's theorem says S generates G if and only if
the images of S generate G=U as a linear space. Thus, G can be
generated by b generators. Further, if S is a generating set with
jSj � b, the images of S in G=U generate and so some subset of size b
in S generates G. Thus we have proved

for a p ÿ group G with jG=Uj � pb; m�G� � m�G� � b : �6:2�

For instance, let G be the group of upper-triangular n� n matrices
with ones on the diagonal and entries mod p, p prime. Thus
jGj � pn�nÿ1�=2. It is well known that U�G� is the subgroup with zeros
just above the diagonal. Thus, jG=Uj � pnÿ1 and m�G� � nÿ 1. This

280 P. Diaconis, L. Salo�-Coste



is a good deal smaller than the bound (6.1). A simple set of generators
is si with ones on the diagonal, a one in position �i; i� 1� and zeros
elsewhere, 1 � i � nÿ 1. For example, when n � 3, G is the Heisen-
berg group with entries mod p. The two generators are

1 1 0
0 1 0
0 0 1

0@ 1A; 1 0 0
0 1 1
0 0 1

0@ 1A :

For many further examples, see [19], Section 5.C.
Isaacs [31] gives some bounds for m�G� for p-groups. Among other

things, he shows that, if p � 3 and G is non Abelian,
m�G� � f ÿ p � 3 with f the dimension of a faithful characteristic
zero representation. Observe that in the case of the Heisenberg group,
f � p is the smallest possible degree of such a representation and
Isaacs' bound reads m�G� � 3 whereas the right answer is 2. There are
slight variants where Isaac's bound is sharp.

Example 6.A.d: Nilpotent groups. If G is nilpotent, G is the direct
product of its Sylow p-groups: G �Qk

1 S�pi� where the pi's are the
distinct primes that divide jGj. Clearly, m�G� �Pk

1 m�S�pi�� whereas
m�G� � maxi m�S�pi��.

Example 6.A.e: Metacyclic groups. If p; q are primes such that q
divides p ÿ 1, there exists exactly one non-Abelian group of order pq.
It is a semidirect product H�p; q� � Z=qZ / Z=pZ. These have
m�G� � m�G� � 2. See [5].

6.B. The number of generating tuples

Let f �k;G� be the number of ordered k-tuples that generate G. We are
interested in this number for at least two reasons:

First, when n is large enough, namely n � m�G� � m�G�, Lemma
3.1 shows that our walk is irreducible on the set of all generating
n-tuples. Thus, f �n;G� � jXj is the size of the natural state space X
of the chain P at (3.1).

Second, our main result, Theorem 3.2, involves the quantity

M � M�G� � f �m�G�;G� :

In order to apply Theorem 3.2, it is crucial to have good lower
bounds on this M , if possible of the type M � cjGjm�G� where c does
not depend on G. Similarly, Theorem 5.4 requires lower bounds on
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M� � f �m�;G� for some ®xed m� � m. A simple yet useful observa-
tion for our purpose is that

the ratio f �k;G�=jGjk is an increasing function of k : �6:3�

In this section we show how to use MoÈ bius inversion on the sub-
groups of G to give a formula for the size of the state space. This is
work of P. Hall (1936) [27]. A clear elementary exposition appears in
Constantine [10]. A recent survey is in [29]. The role of MoÈ bius
inversion comes from the observation that, with obvious notation,

jGjk �
X

fidg�H�G

f �k;H� :

Thus,

f �k;G� �
X

fidg�H�G

jH jkl�H ;G� �6:4�

with l�H ;G� the MoÈ bius function of the interval �H ;G�. This function
is known for several classes of groups. We describe results for nil-
potent groups. Such a group is the direct product of its Sylow p-
groups. Now, if G �Q`

1 Gi where jGij � pai
i are distinct prime powers,

any subgroup H of G has the form H �Q`
1 Hi with Hi a subgroup of

Gi. Further, the partial order �Hi�`1 � �H 0i �`1 () Hi � H 0i ; 1 � i � `
coincides with the inclusion ordering on subgroups of G. It is
standard that the MoÈ bius function factors

l�H ;G� �
Ỳ
1

l�Hi;Gi� :

Hence, f �k;G� also factors and

f �k;G� �
Ỳ
1

f �k;Gi� :

To treat nilpotent groups it is thus enough to determine the
MoÈ bius functions of p-groups with p a prime. For p-groups, l�H ;G�
is zero unless H contains the Frattini subgroup U�G�. If H contains
U�G� and has index p` in G, then

l�H ;G� � �ÿ1�`p `
2� � :

The determination of MoÈ bius functions for other classes of groups is
not simple. P. Hall [27] treats PSL2�Z=pZ� and GaschuÈ tz [25] treats
solvable groups.
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Example 6.B.a: p-groups. Start with G � �Z=pZ�`, p prime. Here
U�G� � fidg. The number of subgroups of index pi is equal to the
number N�`; `ÿ i� of linear subspaces of dimension `ÿ i in �Z=pZ�`.
It is well known that the numbers N�`; m� are given by the p-binomial
coe�cients

N�`; m� � N�`; `ÿ m� � `

m

� �
p
� �p

` ÿ 1� � � � �p`ÿm�1 ÿ 1�
�pm ÿ 1� � � � �p ÿ 1� :

Thus,

f �k; �Z=pZ�`� �
X̀
i�1
�ÿ1�i `

`ÿ i

� �
p
pk�`ÿi�� i

2� �:

Lemma 6.1 For k � `,

f �k; �Z=pZ�`� � p`k 1ÿ p` ÿ 1

p ÿ 1
pÿk

� �
:

Further, for p � 2 and k � `, f �k; �Z=2Z�`� � 1
4 2

`k.

Proof. For i � 3, we have

`
`ÿi

ÿ �
ppk�`ÿi�� i

2� �
`

`ÿi�1
� �

p
pk�`ÿi�1�� iÿ1

2� � �
�p`ÿi�1 ÿ 1�pÿk�iÿ1

pi ÿ 1
� 1

Thus, i 7! `
`ÿi

ÿ �
ppk�`ÿi�� i

2� � is a decreasing function of i � 2. It follows
that

f �k; �Z=pZ�`� � p`k ÿ p` ÿ 1

p ÿ 1
p�`ÿ1�k � p`k 1ÿ p` ÿ 1

p ÿ 1
pÿk

� �
:

When p � 2 and ` � k, this bound is poor but there is another way to
bound f �k; �Z=pZ�`�. Restricting ourselves to k � ` for simplicity, its
is easy to see that

f �`; �Z=pZ�`� � �p` ÿ 1��p` ÿ p� � � � �p` ÿ p`ÿ1�

where each factor represents the number of vectors in �Z=pZ�` that
are linearly independent of the previously chosen vectors. Thus, using
(6.3),

f �k; �Z=pZ�`� � p`k �
Ỳ
1

�1ÿ pÿi� � p`keÿ1=�pÿ1� :
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This proves the last assertion of the lemma.

Let now G be ®nite p-group with Frattini subgroup U � U�G�.
Since a set S of k elements of G generates G if and only if the pro-
jection of S to the Frattini quotient G=U generates G=U, we have:

f �k;G� � jUjkf �k;G=U� :

Since G=U � �Z=pZ�m�G� is an elementary Abelian p-group, Lemma
6.1 yields the following.

Lemma 6.2 Let G be a ®nite p-group. Put m � m�G�. For k � m, the
number f �k;G� of k-tuples that generate G satis®es

f �k;G� � jGjk 1ÿ pm ÿ 1

p ÿ 1
pÿk

� �
:

Further, for p � 2 and k � m, f �k;G� � 1
4 jGjk.

Example 6.B.b: Nilpotent groups. The results obtained for p-groups
and the factorisation property let us now compute f �k;G� for any
nilpotent group G. Indeed, we simply have to write G as the product
of its Sylow p-groups G �QpjjGj S�p� where p runs over all primes
that divide jGj. Here, we recall that m � m�G� � maxp m�p� where
m�p� � m�S�p��. For any k � m,

f �k;G� �
Y
pjjGj

f �k;S�p�� :

In particular,

Lemma 6.3 Let G be a nilpotent group with Sylow decomposition
G �QpjjGj S�p�. Set m � m�G� and m�p� � m�S�p��. For k � m,

f �k;G� � 1

4
jGjk

Y
pjjGj
p 6�2

1ÿ pm�p� ÿ 1

p ÿ 1
pÿk

� �
:

If 26 j jGj the factor 1=4 can be removed.

Remark. For the cyclic group G � Z=rZ with r �Qpjr pa�p�, m � m�p�
� 1 and f �k;G� � 1

8 rk if k � 2 whereas

f �1;G� � r
Y
pjr
�1ÿ 1=p� :
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Here, r 7! f �1;Z=rZ� � /�r� is the classic Euler function. This shows
that there are cases where jGjÿ1f �1;G� ! 0 as r tends to in®nity.
However, we have

lim inf
r!1

f �1;Z=rZ� log log r
r

� eÿc

where c is the Euler constant (See [28], pg. 267).
Using the results presented above, one sees that there exists an

explicit constant e > 0 such that, for any nilpotent group G,

f �m�G�;G� � e
jGjm�G�

log log jGj
whereas

f �k;G� � 1
8jGjk if k > m�G� :

Example 6.B.c: The alternating and symmetric groups. It is known
[1, 5] that the probability that a randomly selected pair of permuta-
tions in Sd generates Ad or Sd is 1ÿ 1=d � O�1=d2�. Thus

jAd jÿ2f �2;Ad� ! 1 as d !1

and

jSd jÿ2f �2; Sd� ! 3=4 as d !1 :

This shows that for G � Ad or Sd there exists a constant c indepen-
dent of d such that, for all k � 2,

f �k;G� � cjGjk:

Example 6.B.d: G � PSL2�Z=pZ�, p prime. For this group, m � 2
whereas m seems unknown. P. Hall [27] studies f �k;G�, k � m � 2.
He obtained manageable formulas which show that f �k;G� is of the
same order as jGjk � �12 p�p2 ÿ 1��k when k � 2. Actually, limk!1 f �k;
G�=jGjk � 1 and limjGj!1 f �k;G�=jGjk � 1, k � 2.

6.C. The maximum diameter

The maximum diameter is a di�cult quantity to bound except in a
few special circumstances. The di�culty comes from the fact that, in
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general, we do not know or understand most generating sets of a
group. We start with a di�cult result of Babai and Seress concerning
permutation groups. See [5, 6, 7].

Example 6.C.a: Permutation groups. For the alternating group Ad ,
Babai and Seress [6] prove that

D�Ad� � �1� o�1��e
����������
d log d
p

:

They show in [7] that this result extends to any permutation group of
degree d. In particular,

D�Sd� � �1� o�1��e
����������
d log d
p

:

Further, they show that any transitive permutation group G of degree
d satis®es

D�G� � ec�log d�3D�Ad�

for some c > 0. This last result is important because Babai and Seress
[6] conjecture that, for every simple group G,

D�G� � �log jGj�O�1� : �6:5�

In the case of Ad or Sd this amounts to conjecturing that there exists a
independent of d such that

D�Ad�;D�Sd� � da : �6:6�

Indeed, for all we know at present writing it is possible that a � 2.

Example 6.C.b: Metacyclic groups. For the metacyclic groups
H�p; q� � �Z=qZ� / �Z=pZ� with q; p primes and qj�p ÿ 1� of exam-
ple 6.A.e, Babai et al. [5] state that, for ®xed q,

D�H�p; q�� � O p1=�qÿ1�
� �

whereas for q � pe with e > 1=2,

D�H�p; q�� � O�q� :

In both cases the estimate is optimal.

Example 6.C.c: p-groups and nilpotent groups. To state our bound on
the maximum diameter requires some classical notation.

286 P. Diaconis, L. Salo�-Coste



Let G be a nilpotent group of class c with lower central series
G1 � G � G2 � � � � � Gc � fidg. The lower central series of G=Gi is
([35],II, pg. 13) G=Gi � G2=Gi � � �Gi=Gi � fidg:

Simple commutators in a set fg1; . . . ; grg are de®ned inductively as
follows. The simple commutators of length 1 are the gi's. Simple
commutators of length ` in the gi's are commutators of the form
c � �c0; g� with c0 a simple commutator of length `ÿ 1 and
g 2 fg1; . . . ; grg. Thus, a simple commutator c of length ` has form

c � ��� � � �x1; x2�; . . . ; �x`�

with xi 2 fg1; . . . ; grg. There are r` possible simple commutators of
length ` (of course some of these may be equal). Written out as a
word in gi; gÿ1i such a commutator involves 2` � 2`ÿ1 ÿ 2 elements. If
G is generated by fg1; . . . ; grg then Gi=Gi�1 is generated by the simple
commutators of length i mod �Gi�1� ([26], Theorem 10.2.3). The
following theorem bounds the diameter of a nilpotent group in terms
of the exponent of G=�G;G�. The corollaries that follow give bounds
on the maximum diameter.

Theorem 6.4 Let G be a nilpotent group with class c. Let fg1; . . . ; grg be
a minimal set of generators of G. Then the diameter c of G in these
generators satis®es

1
2�exp�G=�G;G�� ÿ 1� � c � �2r�c�1 exp�G=�G;G��

where exp�G=�G;G�� is the exponent of G=�G;G�.

Example: The Heisenberg group mod�k� has class 2 and
exp�G=�G;G�� � k. Theorem 6.5 shows that any set of two generators
has diameter essentially k, uniformly in k.

Corollary 6.5 Let G be a p-group with class c and Frattini rank b (i.e,
jG=Uj � pb). Then the maximum diameter D�G� satis®es

1
2�exp�G=�G;G�� ÿ 1� � D�G� � �2b�c�1 exp�G=�G;G�� :

Proof of Theorem 6.4. The theorem holds trivially for Abelian groups
(class c � 1). For clarity, we ®rst prove the case c � 2. Let
e � exp�G=�G;G��. Then for any g 2 G, ge 2 �G;G�. Hence, any g can
be written

g � ga1
1 � � � gar

r w
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with 0 � ai < e and w 2 �G;G�. Now, �G;G� is generated by f�gi; gj�;
i 6� jg, so the class 2 case is proved if exp��G;G�� � e. For this, recall
that in general, if x; y are such that �x; y� 2 Z�G�, then �xu; yv� � �x; y�uv.
This follows from the formula �xy; z� � yÿ1�x; z�y�y; z�. In particular,
�xe; y� � �x; y�e for all x; y 2 G because c � 2 implies �G;G� � Z�G�.
Now xe 2 �G;G� � Z�G�, so �xe; y� � �x; y�e � id.

Inductively, suppose we have shown that, for any group G of class
cÿ 1 generated by fx1; . . . ; xrg, any element is expressible as

ca1
1 � � � ca`

`

with ci simple commutators in fx1; . . . ; xrg and 0 � ai < exp�G=�G;
G��.

Let G be a group of class c with lower central series
G � G1 � G2 � � � � � Gc � fidg. Then Gc � Z�G� ([26], 10.2.1) and
G=Gc have class cÿ 1. Set exp�G=�G;G�� � e. If G is generated by
fg1; . . . ; grg, then G=Gc is generated by �gi � gi mod�Gc�. Thus, with
obvious notation, any �g 2 G=Gc can be written

�g � �ca1
1 � � � �ca`

`

with �ci simple commutators in f�g1; . . . ; �grg and

0 � ai < exp��G=Gc�=�G=Gc;G=Gc�� � exp�G=�G;G�� � e :

Here we have used the fact that

�G=Gc�=�G=Gc;G=Gc� � �G=Gc�=��G;G�=Gc� � G=�G;G� :

Now, if �gi is chosen in G as �gi � giwi, wi 2 Gc, any g 2 G can be
written as

g � ca1
1 � � � ca`

` w; w 2 Gc :

Furthermore w � zu1
1 � � � zuk

k with zi simple commutators of length c
and ui non-negative integers. For any such z � �x; y� with x a simple
commutator of length cÿ 1 and y 2 fg1; . . . ; grg, ze � �x; y�e �
�xe; y� � 1. Hence, we can assume that 0 � ui < e. This shows that the
inductive assumption passes from class cÿ 1 to class c. It also proves
the claimed upper bound: there are at most r � r2 � � � � � rc simple
commutators and any of them involves at most 2c�1 generators.

For the lower bound, check the bound in G=�G;G�.
Remark. We have chosen to work with simple commutators for
clarity. The proof goes through as stated with what Marshall Hall
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[26], Chapter 11, calls basic commutators. There are fewer of these so
the constant in the upper bound can be slightly improved.

It may happen that the automorphism group of a p-group G acts
transitively on minimal generating sets. In this case, the diameter is
the same for any minimal generating set. This happens for the Hei-
senberg group mod �p�. We now give another example.

Example 6.C.d: The Burnside group B(3, r). The group B�3; r� is the
largest group generated by r elements and whose exponent is 3. It is
known that this group is ®nite, nilpotent of class 3 and has order 3t�r�

with t�r� � r � r
2

ÿ �� r
3

ÿ �
. Here, m � m � r and the maximum diam-

eter D is bounded above by r3. This can easily be shown by using the
collection formula (e.g. [26], pg 178±182) and the fact that the au-
tomorphism group of B�3; r� acts transitively on the sets of all gen-
erating r-tuples.

7 Examples of walks on generating sets

This section applies the tools developed above to some examples. We
treat ®xed G with n large, cyclic groups, p-groups of small class, the
Burnside group B�3; r�, metacyclic groups and the symmetric group.
Throughout, for G a ®nite group, we write m for the minimum size of
a generating set and m for the maximum size of a minimal generating
set (Section 6.A). We write M for the number of generating m-tuples
in G and D for the maximum diameter of G (Section 6.C). Finally p is
the uniform distribution on the set of all generating n-tuples.

Example 1: Fixed G, large n. As a ®rst result, our estimates show that
for any ®xed ®nite G and all su�ciently large n, order n2 log n steps
su�ce for convergence.

Theorem 7.1 There is an explicit function C�N� > 0 such that, for any
®nite group G of order at most N , for any n � 2m� m, for any c > 0
and ` � C�N�n2�log n� c�, the Markov chain P de®ned at (3.1) satis-
®es

kP `x ÿ pkTV � 2eÿc

for any starting state x.

Proof. Theorem 2.2 shows that, for every x,

kP `x ÿ pkTV � 2eÿc for ` � 1� c
1ÿ b

� 1

4a
log log

1

p�x�
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with b � maxfb1; jbminjg and a the log-Sobolev constant. Proposition
4.2 bounds

bmin � ÿ1�
nÿ m

n2jGj�2D� 1� :

Corollary 5.3 shows that

bÿ 1 � 1ÿ
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2mD2n2
:

These bounds show that there is C1�N� such that, if G has order at
most N ,

b � 1ÿ C1�N�
n2

:

Corollary 5.3 further bounds

a�P� �
nÿm

m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2�

20�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1 log�jGj ÿ 1�D2n2
� C2�N�

n2
:

Here we have used the very crude bounds m;m;D � jGj, M � 1. Also
p�x� � 1

jGjn so log log 1
p�x� � C3�N� log n: Combining bounds completes

the proof.

Remarks. 1. A crude bound on C�N� is �20N�3N�6. Theorem 3.2 gives
a more precise result.

2. The best lower bound we know is c�G�n log n. Indeed, this many
steps are required to have a good chance of hitting every coordinate
(from the classical coupon collectors result). We conjecture that this
is the right answer. The only case where this has been proved is for
G � Z=2Z [12].

3. The above result can be re®ned in special cases to give more
explicit constants. We now turn to these developments.

Example 2: The cyclic group G=Z=rZ. Roughly we show that order
�n2 log n�r2�log r�a steps su�ce for convergence (for some a).

Theorem 7.2 Let G � Z=rZ with r�Qk
1 pai

i the prime decomposition
of r.

1. For n � 2k and c > 0, there is a constant A such that,

kP `x ÿ pkTV � 2eÿc for ` � A�nr�2��log r��log log rn� � c� :
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2. For n � k � 2 and c > 0, working in continuous time, there is a
constant A such that

kHx
t ÿ pkTV � e1ÿc for t � Ar2�log r�4�log log r�2

��log r��log log r� � c� :

Proof. For G � Z=rZ, m � 1, m � k, and

M � r
Yk

1

1ÿ pÿ1i

ÿ �
:

As shown in Section 6.A,

lim inf
jGj!1

M=jGj � 0

but there exists a constant c1 such that

M � c1jGj
log log jGj : �7:1�

For part (1), we use Theorem 5.5 with m� � 2. Lemma 6.3 shows
that M� � f �2;G� satis®es M� � c2r2 for some constant c2. The
maximum diameter is bounded by r=2. Using these estimates in
Theorem 5.5 yields

b1 � 1ÿ C1

�nr�2 and a � C2

�nr�2 log r

with constants C1;C2. Proposition 4.2 bounds the least eigenvalue
bmin from below by ÿ1� nÿk

n2r2. Hence, Theorem 2.2 yields the claim in
part (1).

For part (2), use Theorem 3.2, the lower bound (7.1) and the
obvious estimate 2k � r.

Remark. We conjecture that �log r�an log n steps are enough for
convergence in both cases (for some a > 0). This conjecture is proved
in [20] when n is ®xed and r is a prime. This is the only case where the
kind of dramatic speedup reported by Celler et al. has been proved.

Example 3: p-groups. Our results are fairly sharp when applied to p-
groups of bounded class and number of generators. We have devel-
oped things in continuous time.
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Theorem 7.3 Let G be a p-group with Frattini-rank and class both
bounded by N . There is a function A�N� > 0 such that for all n � 3N
and c > 0, the chain (3.1) satis®es

kHx
t ÿ pkTV � e1ÿc for t � A�N�n2p2x��log p��log log p� � c�

where px � exp�G=�G;G��.
Proof. Theorem 6.4 shows that the maximum diameter is of order px

up to constant multiples depending on N . For p-groups, m � m � b.
Corollary 5.3 shows that there are A1�N�;A2�N� such that

b1�P� � 1ÿ A1�N�
n2p2x

and a�P � � A2�N�
n2p2x log p

:

The bound for a uses jGj � pA3�N� for some constant A3�N� (of order
NO�N�). Using these ingredients in Theorem 3.2 completes the proof.

The following result gives a bound for general p-groups in terms of
the maximum diameter D. This implies Corollary 3.4 above. The
proof is the same as for Theorem 7.3.

Theorem 7.4 For any p-group of Frattini-rank b and all n � 3b, c > 0,
the chain (3.1) satis®es

kHx
t ÿ pkTV � e1ÿc for t � 320�1� 2b�b�2�nD�2

��log jGj��log log jGjn� � 4c� :

Remarks. 1. Specialize to the Heisenberg group mod p (say p is an
odd prime). Then, x � 1, b � m � m � 2 and D is of order p. The
theorems show that order �pn�2 steps su�ce (up to logarithmic fac-
tors). Any element has order p which is odd, so that we can use
Proposition 4.3 to bound the least eigenvalue from below by ÿ1� 2

np2.
This can be used to show

kP `x ÿ pkTV � 2eÿc for ` � 104�np�2 �log p3��log log p3n� � 4c
� �

for any c > 0.
2. Similar results can be obtained for nilpotent groups.
3. In all cases above we conjecture that for n � 3b, order

�log jGj�a n log n steps su�ce for convergence with small universal a.

Example 4: The Burnside group B(3, r). Let G � B�3; r� be the
Burnside group; this is generated by r elements and all elements in G
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have order 3. Every r-generator exponent 3 group is a homomorphic
image of B�3; r�. M. Hall [26] contains a clear description showing
that B�3; r� is ®nite, nilpotent of class 3 and has order 3t�r� with
t�r� � r � r

2

ÿ �� r
3

ÿ �
.

Theorem 7.5 Let G � B�3; r�. For n � r2; r � 3 and c > 0, the chain
(3.1) satis®es

kP `x ÿ pkTV � 2eÿc for ` � Ar15�log r � c�

with an explicit constant A.

Proof. Here, m � m � r and the maximum diameter D is bounded by
r3. By Lemma 6.2 the number M of generating r-tuples is bounded
below by M � 1

2 jGjr. Applying Proposition 4.3, we ®nd that the least
eigenvalue is bounded by ÿ1� 2

9n. Further, for any n � 3r, Corollary
5.3 yields

b1�P� � 1ÿ 720 nÿ2r
r

ÿ �
n
r

ÿ �
r8n2

and a�P � � 720 nÿ2r
r

ÿ �
n
r

ÿ �
r11n2

:

If n � 3r these bounds are exponentially bad in r. For n � r2, r � 3,
they give

b1�P � � 1ÿ 1

7200r12
and a�P � � 1

7200r15
:

These use r2ÿ2r
r

� �
r2

r

� �
� 1ÿ 2rÿ1

r2ÿr�1
h ir

� eÿ2 � 10ÿ1
.

which in turn

follows from log�1ÿ u� � ÿ2u for 0 < u < 5=7). Using these ingre-
dients in Theorem 2.2 completes the proof.

Remark. It is straightforward to show that at least r5= log r steps are
necessary for convergence.

Example 5: Metacyclic groups. For p; q primes satisfying qj�p ÿ 1�, let
G � H�p; q� be the unique non-Abelian group of order pq. The group
H�p; q� is the semidirect product of Z=pZ by Z=qZ. Here, all minimal
generating sets have two elements so that m � m � 2. Further, there
exists a numerical constant c such that M � cjGj2. For q ®xed and p
large, the maximum diameter is of order p1=�qÿ1�. See Examples 6.A.e,
6.C.b. Corollary 5.2 yields

b1�P� � 1ÿ A
n2p2=�qÿ1�

:
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Theorem 3.2 shows that a running time of order n2p2=�qÿ1��log p�
�log log pn� su�ces to reach uniformity.

For p� < q, � > 1=2, the diameter D is O�q�. Hence

b1�P � � 1ÿ A

�nq�2

and Theorem 3.2 shows that a time of order �nq�2�log q��log log qn�
su�ces. We conjecture that, for G � H�p; q�, a running time of or-
der �log jGj�an log n su�ces for convergence for a universal constant
a.

Example 6: The symmetric group. For the symmetric group Sd on d
letters we have the following.

Theorem 7.6 Let G � Sd . For n � m� 4 and c > 0, the semigroup
Ht � eÿt�IÿP� associated to the chain P at (3.1) satis®es

kHx
t ÿ pkTV � e1ÿc

for

t � An6D2

�nÿ m�4 ��log�d!���log log�d!�n� � c� :

In particular, for n � 3d and c > 0,

kHx
t ÿ pkTV � e1ÿc

for t � A�nD�2��d log d��log n� � c�. Here D is the maximum diameter
of Sd and A is a constant independent of n and d.

Proof. It is plain that m�Sd� � 2. Further (see Example 6.B.c), almost
3/4 of the pairs in Sd � Sd generate Sd . Thus, M � a�d!�2 for some
numerical constant a. For n � m� 4, Theorem 3.2 gives the an-
nounced result. One also knows (see Example 6.A.b) that d ÿ 1 �
m � 2d, hence the result for n � 3d.

Remark. In the special case where n � 3d, Corollary 3.5 follows. In
this case, a running time of order d3D2�log d�2 su�ces. Using
D � O�e

���������
n log n
p

� (cf., 6.C.a) gives a running time subexponential in d.
It is conjectured that D � O�dA� for some A. On this conjecture, our
estimates give a polynomial bound on the running time. It is easy to
show that order d2 steps are necessary in this case. Roughly, this
analysis also works for classical ®nite simple groups.
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8 Remarks on non-reversible versions of the walk

The chain proposed by Celler et al. [9] in their algorithm for gener-
ating random elements of a ®nite group G is not exactly the chain P at
(3.1) studied in the previous sections but a close cousin that we will
call eP . To describe eP , consider again the set of all generating n-tuples
of group elements. Let S be a generating set with jSj < n. Start the
walk by labeling the ®rst jSj coordinates with the elements of S and
label all the remaining coordinates with the identity. The basic step of
their walk is as follows: Pick a pair of coordinates �u; v� uniformly at
random and multiply the group element at u by the element at v,
either on the right or on the left, each with probability 1=2.

To be more precise, denote by g�v� the vth coordinate. The chains
P and eP di�er in the following way: Once the ordered pair �u; v� of
coordinates has been chosen uniformly at random the mechanism for
P is

replace g�u� by either g�u�g�v�
or g�u�g�v�ÿ1

�
each with equal probabilty

whereas the mechanism for eP is

replace g�u� by either g�u�g�v�
or g�v�g�u�

�
each with equal probabilty .

From a practical point of view the algorithm eP has the important
advantage that it does not require computing g�v�ÿ1. From a theo-
retical view-point the main di�erence between these two chains is that
P is reversible whereas eP is not if G 6� �Z=2Z�k. Both chains have the
uniform distribution as their stationary measure because they are
doubly stochastic (see below).

To describe formally the chain eP , we introduce some notation. For
x; y 2Z � Gn, write

x ' y if
x and y differ exactly in one coordinate, say xi 6� yi;
and there exists j 6� i such that yi � xixj or xjxi :

�
If x ' y with xi 6� yi, leteN�x; y� � �the number of j such that xÿ1i yi � xj�

� �the number of j such that yixÿ1i � xj� :

Finally, let N�x� be the number of coordinates equal to the identity.
Then
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eP �x; y� � 0 if x 6' y and x 6� y
~N�x;y�
2n�nÿ1� if x ' y
N�x�

n if x � y .

8>><>>: �8:2�

It is useful to write eP as the sum of two pieces, a right piece R and a
left piece L de®ned as follows. The basic steps for the chains R; L are
the same as before except that, after picking �u; v� uniformly at
random, we replace g�u� by g�u�g�v� for the chain R and by g�v�g�u�
for the chain L. Thus, eP � 1

2�R� L� : �8:3�

Finally, consider the chains R�; L� where, after picking �u; v�
uniformly at random, we replace g�u� by g�u�g�v�ÿ1 for the chain R�

and by g�v�ÿ1g�u� for the chain L�.
It is easy to verify that R; L are doubly stochastic with adjoint (i.e.,

transpose) R�;L� (``adjoint'' refers to the space `2�Z� whereas
``transpose'' refers to the matrices). This of course implies that eP is
doubly stochastic with adjoint eP � � 1

2 �R� � L��.
Further, P � 1

2 �R� R��. There is obviously a ``left'' version of P
which is equal to 1

2 �L� L��. Lemma 3.1 generalizes (with the same
proof) as follows.

Lemma 8.1 Let G be a ®nite group and n � m�G� � m�G�. Then, the
chains

R; L;R�;L�; eP ; P
are all irreducible, doubly stochastic, aperiodic Markov chains on the
set X � Gn of n-tuples �x1; . . . ; xn� which generate G. They all have the
uniform distribution p�x� � jXjÿ1 as stationary probability.

We show below that all our other results also extend to the chains
R;L;R�; L�; eP . In particular, we have

Theorem 8.2 Let K denote any one of the chains R; L;R�;L�; eP . For any
group G, all n � 2m�G� � m�G� and all c > 0, the semigroup
Ht � eÿt�IÿK� associated to the chain K on generating n-tuples sat-
is®es

kHx
t ÿ pkTV � e1ÿc

for
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t � 40�1� 2m�2 n
m

ÿ � nÿm
m

ÿ �jGj2m�1D2n2

nÿm
m

ÿ � nÿmÿm
m

ÿ �
M2�jGj ÿ 2� �log�jGj ÿ 1�� log log jGjn� � � 2c� � :

Here M � M�G� is the number of distinct generating m-tuples and
D � D�G� is the maximum diameter of G.

Proof. First, we observe that the de®nitions (2.2)±(2.4) make perfect
sense for non-reversible chains. This allows us to extend the de®ni-
tions of b1�P� and a�P� to non-reversible chains (note that b1�P � is
not, in general, an eigenvalue of P ). Now, there is a version of
Theorem 2.3 for non-reversible chains. Namely, (see [18], Theo-
rem 3.7).

Theorem 8.3 Let P be a ®nite Markov chain with stationary measure p.
Then, for all c > 0,

kHx
t ÿ pkTV � e1ÿc for t � c

1ÿ b1
� 1

2a
log log

1

p�x� :

To ®nish the proof when K � R or R�, we only have to observe that

ER � ER� � EP :

This follows readily from the de®nition

ER�f ; f � � 1

2

X
x;y

jf �x� ÿ f �y�j2R�x; y�p�x�

because R��x; y�p�x� � R�y; x�p�y� and P �x; y� � 1
2 �R�x; y� � R��x; y��.

Of course, all the results obtained for P also holds for the left version
of P and the above analysis works for L and L�. Finally, the desired
result for eP � 1

2 �R� L� follows.
Similar results can be obtained in discrete time for the chains

K� � 1
2 �I � K� where K is one of the chains R; L;R�;L� or eP and I is

the identity matrix. For this, use Theorem 3.7' of [18].
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