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Abstract. We study a Markov chain on generating n-tuples of a fixed
group which arises in algorithms for manipulating finite groups. The
main tools are comparison of two Markov chains on different but
related state spaces and combinatorics of random paths. The results
involve group theoretical parameters such as the size of minimal
generating sets, the number of distinct generating k-tuples for
different £’s and the maximal diameter of the group.

1 Introduction

This paper studies a new technique for generating random elements
of a finite group G. Let S be a set of generators of G. The classical
method for using S is to run a random walk: Starting at the identity,
repeatedly pick an element of S and multiply, say on the right. The
new method, suggested by work of Celler, Leedham-Greene, Murray,
Niemeyer and O’Brien involves a Markov chain on n-tuples of group
elements with n > |S|. To start, label the first |S| coordinates by the
generators and the remaining n — |S| coordinates by the identity. At
each stage, a pair of coordinates (u,v) is chosen at random and the
element at u is multiplied (on the right) by the element at v or its
inverse. This product is output and also replaces the uth element in
the n-tuple. It is believed that the sequence of output elements ““gets
random” substantially faster than the classical random walk based on
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S. We give the first quantitative bounds for the Celler et al. algorithm.
Recently, Babai [4] proved that the diameter of the graph naturally
associated with the Celler et al. algorithm is at most O(n?) when
n = 2[log|G||. This is a good indication that the chain might con-
verge rapidly but, by itself, it is not enough to obtain any reasonable
quantitative result for the convergence of the chain.

As an example, consider the symmetric group S; with two gen-
erators, a transposition (1,2) and an d-cycle (1,2,...,d). Theory and
experiments developed in [15, 17] show that the classical walk based
on these generators takes about §d° logd steps to get random. When
d = 52 this is about 60,000 steps. Experiments reported in [9, 30]
suggest that, using 10-tuples as described above, the output is random
after about 190 steps.

The new algorithm is motivated by applications in computational
group theory. Efficient computation with large groups often calls for
a source of pseudo-random elements of the group. These are used to
help find the order of the group, decompose representations and for a
dozen other tasks. A good overview of the literature is in Finkelstein
and Kantor [24]. See also the recent survey of L. Babai [4]. For
example, the Neumann-Praeger algorithm [32] takes as input a set of
d x d invertible matrices with entries in a finite field and tests if they
generate a subgroup between SL; and GL,. In problems of interest,
d € [30,100] and the field is small (e.g., Z/27Z). The first trials of the
Neuman-Praeger algorithm used the given generating set to run a
classical random walk. This was run “for a while” to generate
“random elements”. Then, known properties of most elements of SL;
form a basis for testing. In a practical implementation, Holt and Rees
[30] found that the classical random walk required a huge number of
steps to get rid of obviously non-random features. They report that
the new algorithm worked well.

The present paper and a companion paper [20] provide the first
quantitative bounds for the convergence of the Markov chain on
generating n-tuples used in the Celler et al. algorithm. Section 2
presents some background material including paths on groups and
tools from Markov chain theory such as Dirichlet forms, eigenvalues
and logarithmic Sobolev inequalities. Section 3 gives a careful de-
scription of the Markov chain introduced informally above. The
main result of this paper, Theorem 3.2, gives a quantitative bound for
the convergence of this chain to equilibrium for an arbitrary group.
Theorem 3.2 is proved in Section 5. It is applied to a collection of
examples in Section 7. We cite two examples here: First, for |G| =N
fixed and n large we show that order C;(N)n*logn steps suffice for
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randomness. As a second class of examples, for p-groups G of order
at most p® and with the exponent of G/[G, G| equal to p®, we show
that order Cs(b)(np®)*(logp)[(logn) + (loglogp)] steps suffice for
randomness. The constants C; and C, are explicitly computable.
These results are effective when N or b are fixed. For instance, for the
Heisenberg group mod (p), |G| =p®, @ =1 and, for any ¢ >0,
5.28.75 .(np)*|(log p)(loglog p") + 4c] steps suffice to make the walk
e!=¢ close to the uniform distribution. We also give results for the
symmetric group S; with both d and » large.

The bound in Theorem 3.2 depends on four features of the un-
derlying group G-

(1) the minimum size m(G) of a generating set,

(2) the maximum size 72(G) of a minimal generating set,
(3) the number f(k, G) of k-tuples that generates G,

(4) the maximum diameter D(G) over all generating sets.

These features are discussed in Section 6. Bounds or exact expressions
for m,m are often available. A reasonable amount is known about
f(k, G) thanks to P. Hall’s work on abstract Mobius inversion. Less is
known about D(G). We show that, for p-groups of bounded class and
number of generators, the diameter is essentially the exponent of
G/|G, G] (Theorem 6.5), independently of which minimal generating
set is chosen.

Section 4 contains bounds on the least eigenvalue of the chain P.
These are important for results in discrete time.

The companion paper [20] studies the same chain for some
Abelian groups. See also [11, 12]. This was in fact offered as a chal-
lenge problem by David Aldous. The technique of [20] are similar,
but the technical details are much easier in the Abelian case. We
suggest looking at [20] before plunging into the present arguments.
We also show there that for G = Z/pZ, p prime, order n*(logp)’
steps suffice using quite different arguments. The main novel feature
in the present paper is the comparison of the chain of interest with a
simpler chain defined on a different state space (Proposition 5.2).
This is inspired by what geometers call ‘“‘rough-isometries” or
“quasi-isometries” between metric spaces. Typically, a rough-
isometry forgets about the local topology and preserves the large
scale features of the space. For example R and Z? are roughly
isometric. More generally, the universal cover M of a compact
manifold N is roughly isometric to the fundamental group =;(N).
What we do here is to introduce quantitative versions of these ideas
and apply them to finite state spaces.



254 P. Diaconis, L. Saloff-Coste

There are other approaches to generating pseudo-random ele-
ments. Babai [2] gives a general procedure which provably works in
polynomial time for general groups (see also [4]). For permutation
groups, there are efficient algorithms for finding nested chains of
subgroups so the subgroup algorithm [22] can be used. The Celler
et al. algorithm is by far the most widely used, being implemented in
both “Magma” and “Gap”’, two of the main packages for computer
assisted manipulations of finite groups. The bounds we give for the
Celler et al. algorithm are fairly good for large n. However, in cases of
greatest practical interest, |G| is large and »n is small. Even deter-
mining the size of the state space is difficult in this case.

The algorithm we analyse is a symmetric version of the original
chain proposed by Celler et al. [9]. Section 8 shows how the same
analysis applies to a number of non symmetric versions of the chain
including the one used by Celler et al. [9]. In the symmetric version of
the algorithm, the stream of output eclements has tied values. If
n-tuples are used, there is chance 1/(2n) that outputs two apart are
tied. The original non symmetric algorithm will similarly have quite
correlated output. One easy fix for this problem is to multiply to-
gether larger subsets. Thus, working with n-tuples, fix £ < n. Choose
a subset of £ places out of #» uniformly at random, a permutation in S;
uniformly at random, a sequence of length £ of 41 uniformly at
random. Multiply the entries of the & first chosen places in the chosen
order using the =+ signs to indicate inverses. The result is output and
also used to replace a randomly chosen one of the k& entries. The
techniques of the present paper can be used to analyse this algorithm
for fixed k. Another easy fix for the problem of tied values is to use
large n.

Acknowledgement. We thank David Aldous, Rosemary Bailey, Jordan Ellenberg,
Fan Chung, David Gluck, Susan Holmes, Ron Graham, Charles Leedham-Green,
Barry Mazur, Dan Rockmore, Chris Rowley, Balint Virag and Thomas Yan for their
help with this paper. In an early draft of this paper we proved that, for any finite
group G and any n large enough, order (n|G|)O@ steps suffice for the chain P to
reach uniformity (m = m(G) as above). Balint Virag’s remarks on the manuscript led
us to an improved bound (based on the same argument) of order (log|Gl|)|G|*"
M~2D?nlogn where m = m(G), M = f(m,G) and D are as above. This is a serious
improvement because M is often of order |G|" so that this bound is often of order
(log|G))D*nlogn. In the mean time, F. Chung and R. Graham [11] proposed a
simplified and more naive version of our earlier proof and showed that order
|G|O(@n2 logn steps are enough. This motivated us to tighten our argument again
and led us to the present version which gives a bound of order (log|G|)|G|*"
M~2D?n? logn.
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2 Background and notation
2.A. Paths on groups

We will use paths on a group G defined in a classical way as follows.
For each generating set S C G and each g € G fix a sequence
si = si(g), | <i <k, of minimal length k = |g|¢ such thats; € SUS™!
and

g:sl...sk .

Given a pair (g,h) € G x G, define a path y = y(S,g,4) of minimal
length |y|g = |g~'hl|g by writing

gilh:s]...sk

where k = |g7'h|, s; = s:(g7'h) € SUS™! and translating this path
by g on the left to obtain

Vig =X0, X] =gSl, .-, Xk =gS1 S =h .
For each s € SUS™! and ¢ € G, define
Ns(s,9) = #{i € {1,..., lgls} = si(g9) = s} -
Let dy = max, |g|g be the diameter of G with respect to S. Let
D = D(G) = max{ds : S generates G} (2.1)

be the maximum diameter of G. We will need the following elemen-
tary lemma.

Lemma 2.1 For any fixed generating set S, s € SUS™! and z,w = zs,
we have

#{(g,h) € Gx G:9(S,9,h) 3 (z,w)} =Y _ Ns(s,u) < |Glds <|G|D .

ueG

In particular,

> (S.g,m)] <[GID* .
g,h:
7(8.9,h)3(z.w)
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Proof. (cf. [16], p. 702) Observe that

#{(g:h) € GX G :7(S,9,h) 3 (z,w)}
= #{(9,u) € G x G : Fi such that s;(u) = s,

z=gsi(u) --si1(u)} .

The natural bijection between the two sets above is given by
(g,h) — (9,97 'h). For each fixed u, there are exactly N(s,u) elements
g € G such that (g,u) belongs to

{(h,u) € G x G : 3 isuch that s;(u) = s,z =hs;(u)---s;i1(u)} .
Hence

#{(g.h) € Gx G:9(S,9.h) 3 (z.w)} = D Ns(s.u)

ueG

This proves the lemma since, clearly, Ns(s,u) < |u|g < ds < D.

2.B. Markov chains

Let P be a reversible Markov chain on a finite state space 4 with
reversible measure 7 > 0 so that P(x, y)n(x) = P(y,x)n(y). Set

Var,(f Z | f(x) ‘n(x)n(y) | (2.2)
,yef
Z | £(x) = fW)PP(x,y)7(x) (2.3)
JGI
and
S@N
=2 /) g7 ) =00 24)

where ||f]l, = (>, |/ (x)|2n(x))l/ ®. The subscripts will be dropped
whenever no confusion could possibly arise. For the iterated kernel of
P, we will use the notation

Pi(y) = P'(x,y) = ZPﬁlxz (z,y) .

To measure distances between probability distributions, we will use
the total variation distance



Walks on generating sets of groups 257
I~y = max |(4) =33 In(w)
2.
Denote by
Bo(P) =12 Bi(P) = > Big1(P) = Prin(P) > —1
the eigenvalues of the chain P and let
B(P) = max{p(P), —fmin(P)} -

Using (2.2) (2.3), the second largest eigenvalue 5, (P) can be expressed
as

1—p,(P) = mm{Va(r{:(]j:))

A classical and easy bound (e.g., [23, 34]) on variation distance is
given by

f;éO} :

1

mllpy < W

The log-Sobolev constant o(P) of a reversible Markov chain (P, n)
is defined as the largest non-negative number « such that

for any function f. We will use «(P) to prove mixing rates that im-
prove upon those obtained through (2.5). More precisely, we will use
the following

1P = BP)" . (2.5)

Theorem 2.2 Let (P,n) be a ( finite) reversible Markov chain. Then,
for all ¢ >0,

1 e
Pl - <27 for £ > 14—+ logl :
We also consider the continuous time semigroup
0 P
H = U-P) — ¢ Zﬁ : (2.7)

0

The semigroup H, has the advantage of avoiding parity problems. In
what follows the results stated for H, could be replaced by similar
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bounds on the discrete time chain P where P = 1(I + P). For H,, we
have

Theorem 2.3 Let (P, nt) be a (finite) reversible Markov chain. Then, for
all ¢ > 0,

|~ mllgy < e fors=

1

—log log—— .
- ﬁl m(x)
The difference between Theorem 2.3 and Theorem 2.2 is that no
bound on the least eigenvalue is required in Theorem 2.3. We refer
the reader to [18] for the proofs of Theorem 2.2, Theorem 2.3, and for
a discussion of the use of log-Sobolev inequalities for finite Markov
chains.

Remark. Although Theorem 2.2 and 2.3 are stated for total varia-
tion, their conclusions hold in fact in ¢?>(n) (or chi-square) distance.
That is, |Pf — 7|ty and ||HX — 7|1y can be replaced by ||[P!/n] — 1],
and ||[H*/n] — 1]|, where || - ||, refers to the norm in £2(r). It follows

that similar bounds also holds for the maximal relative errors
sup,, P;(();)y ) _ 1‘ and sup, , H;I(();)y ) _ 1‘ which are easily bounded in
terms of the ¢*> distance. See [18], Section 2.D and Theorem 3.7,
Corollary 3.8 of that paper. This remark applies to all the conver-

gence results stated in the present paper including the results of
Section 8 which deal with nonsymmetric chains.

3 The two Markov chains

Let us introduce some notation. Fix a finite group G and set Z = G".
For x,y in & x &, write

x ~y if x and y differ exactly in one coordinate ,

and write

+1

[ x and y differ exactly in one coordinate, say x; # yi,
~ 1 .
ey and there exists j # i such that y; = xx;

If x = y with x; # y;, let

J

the number of j such that x; 'y, = x*1 if x; 1y, # (x;1y,) ™!
N(x,y)= /

twice this number if x; 'y, = (x; 1)
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Finally, let N(x) be the number of coordinates equal to the identity
in x.

With this notation the chain defined informally in the introduction
is given by the kernel

0 if xs¢yand x#y
N(x, : ~
Pry)={ w1 x~y
N i =y (3.1)

The chain P is not irreducible on G". Let S C G a set of generators.
Say S is minimal if no smaller subset of S generates G. Define m(G) to
be the maximum size of a minimal generating set. Define m(G) to be
the minimum size of a generating set. Note that often m(G) < m(G).
For example, for Z/pgZ, with p,q primes, m(G) = 1, m(G) = 2. We
will constantly use the notation

m=m(G); m=m(G) .

The numbers 7(G), m(G), appear in the following slight generaliza-
tion of a result of Celler et al. [9] which gives a useful condition for
the walk at (3.1) to be irreducible on the set of generating sequences.

Lemma 3.1 Let G be a finite group and n > m(G) + m(G). Then, the
chain P at (3.1) gives an irreducible symmetric Markov chain on the set
of n-tuples (xy,...,x,) which generate G.

Proof. Fix a generating sequence (yi, .. .,V,) with m = m(G). Any n-
tuple (xi,...,x,) which generates G can be brought to (y,32, .-, Vm,
id,...,id). Indeed, a subsequence of length at most m(G) in
(x1,...,x,) generates and so one can produce yi,..., ), in the com-
plementary positions to this generating sequence. Using yy, . .., V,, We
can set all the remaining positions to the identity. Then, it is easy to
order the y; as we wish. This shows that the Markov chain (3.1) is
irreducible. Since it is symmetric and has some holding, it is ergodic.

Remark. For some classes of groups, the conclusion of Lemma 3.1
holds for all n > m(G) + 1. Diaconis and Graham [14] show this for
Abelian groups. They also show that the chain need not be connected
if n =m(G).

We denote by 2 C Z the set of all generating n-tuples. We assume
throughout that n > m(G) + m(G) and consider 2" as the state space
of the chain P. Thus, P is irreducible, symmetric, aperiodic on Z and
its stationary measure is n(x) = |%]'. The following theorem de-
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scribes our quantitative bound on the convergence of the continuous
time process H, = e'/~") associated with the chain P at (3.1) by for-
mula (2.7). The proof is given in Section 5. It combines Theorem 2.3
and the eigenvalue and log-Sobolev estimates of Corollary 5.3.

Theorem 3.2 For any group G and all n > 2m(G) + m(G) and all ¢ > 0,
the semigroup H, = e """ associated to the chain P at (3.1) on
generating n-tuples satisfies

|H} — mllpy < e~

for
20(1 + 2]’}1)2(;) (nr—nm) |G|2m+1D2n2
(") MGl - 2)

x [(log(|G| — 1))(loglog|G[") + 4c] .

Here M = M(G) is the number of distinct generating m-tuples and
D = D(G) is the maximum diameter of G.

For fixed G and large n, our main result simplifies to:

Theorem 3.3 For any fixed group G and all n > 2m(G) + m(G), the
chain P at (3.1) on generating n-tuples satisfies

|Pf = mtllpy <27 for €>An*llogn+c], ¢>0.

Here A depends only on G.

In order to apply Theorem 3.2 to classes of groups where the size
of G is allowed to grow, it is crucial to have estimates on the four
group theoretical quantities m(G), m(G), D(G) and M(G). These
quantities are studied in Section 6 which also gives pointers to the
literature. Specific examples are treated in Section 7. We want to
emphasize that the expression for ¢ in Theorem 3.2 does not depend
too badly on the size of G. To illustrate this point, we state two special
cases that follow from Theorem 3.2 using results from Section 6:

Corollary 3.4 Let G be a p-group of order p*. Then, m = < b. For all
n > 3band c > 0, the semigroup H, = e ""=P) associated to the chain P
at (3.1) on generating n-tuples satisfies

|} — mf|lpry < e~

for
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t = 320(1 +2b)*""n?D*[(log p*) (loglog p™") + 4c] .

Further, for such groups, ‘l‘ p’ <D< (21))Z’Jrl p” where p® is the expo-
nent of G/|G, G].

Corollary 3.5 Let G be the symmetric group Sy on d letters. Then,
m=2, m<2d. For n=3d and ¢ >0, the semigroup H, = e /=P
associated to the chain P at (3.1) on generating 3d-tuples satisfies

|H} — 7|y <e'™
for t = Ad*D?[d(log 0l)2 + c|. Here D is the maximum diameter of S,
and A does not depend on d.
The proofs of these three corollaries of Theorem 3.2 are in Section 7.

The quantitative study of P proceeds by comparison with the
chain Q on & defined by

0 if xtyand x#y
Ox,y) = ¢ e 1 x~y
‘1?' ifx=y . (3.2)

This chain picks a coordinate uniformly at random and multiplies
this coordinate by a uniformly chosen element of G. Its stationary
measure is u(x) = [Z|"' =|G|™". It is a product chain with second
largest eigenvalue

ﬂl(Q):l_% .

Its log-Sobolev constant can be computed exactly using Lemma 3.2
and Corollary A.5 in [18]. It is given by

(62
9 = Gl log(G] 1) -

The comparison of the chains P and Q is treated in Section 5,
Proposition 5.2 and Corollary 5.3.

4 The lowest eigenvalue
To bound the discrete time chain P’ instead of the continuous time

chain H, = e"~"), we need a bound on the least eigenvalue of P. We
will use a slight variation on Proposition 2 of [23], page 40.
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Suppose (K, ) is a reversible Markov chain on the finite state
space Z. For each x € &, let X, be some fixed set of cycles of odd
length beginning and ending at x. Let ¥ = U,X,. Foreach cycle ¢ € X,
let |o| be its length. Finally, let 6 be a non-negative function defined
on X and such that, for each x € %,

> 0(e) =n(x) .

ogeX,

Such a function 0 is called a flow on odd cycles (we will later en-
counter other kinds of flows for comparison between two chains).
Then, the argument in [23], page 40, easily gives

Lemma 4.1 With the above notation, for any finite reversible Markov
chain and any flow 0 on odd cycles,

ﬁmin(K) > -1 +i

1(0)
where
1
19:1’1’13,)(7 r\o, (X, 0'90'
= Ry 22 710 ()l
K(x,y)>0 #3()

Here, r(a, (x,)) is the number of times the edge (x,y) is used in o (one
can always assume that r(a,(x,y)) < 2 and, in our applications, it will
always be at most 1).

Lemma 4.1 will be used to give three lower bounds on the smallest
eigenvalue.

Proposition 4.2 The chain (P,n) at (3.1) has its least eigenvalue
bounded by

n—m

PunlP) = = e GIeD@) + 1)

Here m = m(G) and n > m(G) + m(G).

Proof. This is a slight improvement on Proposition 3.3 of [20]. We
give the proof for completeness. We use Lemma 4.1 and the following
flow 0 on odd cycles: If one of the coordinates of x is the identity, set

¥, ={o,} with o, =(x,x) .
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If none of the coordinates of x is the identity, fix a generating subset S
occupying m coordinates {i, ..., i} of x and pick a coordinate, say
x;, not in this subset. Write x; as a word using elements in S. This
describes a path y ; from x to x’ where x' is the n-tuple with ith
coordinate the identity and all other coordinates equal to those of x.
Set

Zx: {O-XJ IiQ{il,...,im}}

where oy, is the cycle that goes from x to x' along Vx> holds at x' for
one step and goes back to x. Now, for any cycle g, set

0(c) = { srlx) if o€ X,

0 otherwise

Observe that |X,| = n —m when none of the coordinates of x is the
identity. Then, we have to bound

|
1(0) = max ——— olf(a) .
© ) P(x,y)m(x) ;)' )

First, examine the case where x = y contains more than one coordi-
nate equal to the identity. Then, the quantity we have to bound
becomes n/N(x) < n/2.

Second, if x = y contains exactly one coordinate, say x;, equal to
the identity. Then, we have to bound

) <1 Ly 2ot 1) _ nln = +|G|2D(G) + 1))

e - m n—m
Here |g|, denotes the length of g in some generating set which de-
pends on x.
Finally, if x, y differ at exactly one coordinate, say x; # y;, then we
have to bound

2n(n —1)—=2|g[, + 1 2n(n —1)|G|(2D(G) + 1)
N(x,y) quG n—nm = n—m

Hence

2n(n — 1)|G|(2D(G) + 1)

n—m

1(0) <

This proves Proposition 4.2.
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Proposition 4.3 Assume that any generating set of G contains an ele-
ment of odd order at most T. Then the chain P at (3.1) with
n > m(G) +m(G) has its least eigenvalue bounded by

2
ﬂmin( )— -1 +? :

Proof. Use the same technique as in the preceding proof. For any
x € 4, there exists j such that x; has order t < T, t odd. For any k # j
define o4 to be the cycle of odd length from x to x obtained by
changing the kth entry to xx;, xksz., o X X Set = {0y
k # j} and define a flow on odd cycles by setting 0(a) = 1/[|Z|(n— 1)]
if o € U,Z, and 0(g) = 0 otherwise. Then,

1(0 max al0(o <nT2.
O T 2

This proves the desired inequality. Observe that Proposition 4.3
applies to any group of odd order. Actually, we do not have other
examples.

Given a subset S of G, let ¢(S) be the shortest length of a cycle
sy -+ - Sy(s) = id of odd length with s; € SUS™! and ¢(S) = +oc if there
is no such cycle.

Proposition 4.4 Let L = maxg ((S) where the maximum is taken over
all generating sets of size m(G) =m. The chain P at (3.1) with
n > m(G) +m(G) has its least eigenvalue bounded by

2(n —m)

Brnin (P) = —1 +m .

Proof. We can assume L < co. For any x € %, there exists J of size M
such that § = {x; : j € J} generates G. Let £ = /(S) and sy -- -5, = id
be a cycle of odd length ¢ with s; € SUS™!. For any k ¢ J define o, 4
to be the cycle of odd length from x to x obtained by changing the kth
entry to xpSy, XpS182, ..., XkS] - - Sp—1, Xg. Set X, = {Ux,k ik 75]} and
define a flow on odd cycles by setting 0(c) = 1/[|Z|(n —m)] if
o € U,X, and 0(o) = 0 otherwise. Then,

n(n — )I?
1(60 :max al0(o .
(0) nax 5 Z! 10( —

P(x,y)>0 69 x.)
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With Lemma 4.1, this gives the desired result. This result seems dif-
ficult to apply in practice.

5 Comparison

To complete the proof of Theorem 3.2 we need some notation. For
any sequence S = {s,...,sx} of size k with s; € G, any n-tuple
x=(x1,...,x,) € Z and any ordered k-tuple I = (iy,...,i;) with
1 <ij <. <iy <n, let x§ be the n-tuple with ith coordinate [x],
given by

=0 e 6

s; if i1is the jth element of /

Given a function f on Z we set

f(x) fxeZ

fx) = m;f(xg) ifxez\a

m

where the sum runs over all generating sequences S of length m =
m(G) and all m-subsets I C {1,...,n}, and M = M(G) is the number
of distinct generating m-tuples. The following lemma is easy.

Lemma 5.1 The chains (P,n) and (Q, i) defined by (3.1), (3.2) satisfy

Var,(f) < % Var,(f) , (5.2)
2|, 7
Z(f) Smgu(f) . (5.3)

Proof. See Proposition 2.3 of [20]. Actually, any extension of f would
do the job here.

We now reach the crucial part of the comparison argument. The
Dirichlet forms &o(f, f) and &p(f, f) must be compared.

Proposition 5.2 For any group G with m(G) = m, m(G) =m and n >
2m + m, the chains P and Q defined at (3.1), (3.2) satisfy

20(1 + 2m)* (") ("™ |G|*" |7
(n—ﬁ) (n—?n—m)MzDzn |!2P|

m

gQ(f)fN) < (g)P(faf)
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for all f:2 — R. Here, M is the number of distinct generating
m-tuples.

Corollary 5.3 For any group G with m(G) =m, m(G) =m and n >
2m + m, the chain P defined at (3.1) satisfies

(nfﬁ) (n 7ﬁfm)M2

O = L o R () G D
and
()06
a(P) > 20(1 +2m)2(:1) (n;m)|G|2m+l log(|G| — 1)D2n2 .

Proof. We start by writing

Solf.f) = |G|n+1<2|f VP2 DT )=o)

xyex XeX\X yek
X~y X~y

+ If(X)—f(y)\2)

XyeXT
X~y

= W (Rl + 2R, + R3) . (54)

We are going to bound R;, R, and Rj3 in terms of

Re=Y"11(E) -

zZwel
=W

To this end, for each x € Z, we need to pick an ordered m-tuple

I(x) = ((1(x), ..., im(x)), 1 <i,(x)<n
such that
S(x) = (i (w)s - -+ ¥ip() € G”

generates G. Furthermore, we do this in a “‘global” way. Namely, fix
any total order on the set of pairs (/,S) where / runs over all ordered
m-tuples with entries in {1,...,n} (i.e., m-subsets of {1,...,n})and S
runs over all generating m-tuples in G”. Given x € 4, define
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I(x) = (i1(x), - - -, im(x)), Sx) = (xi(x)s - -+ Xi(x) (5.5)

to be the smallest such pair built on x. The “global” property referred
to above and which is an easy consequence of this construction is the
following:

Ifx,ye %, and K = (¢y,...,¥¢) are such that
x;=y fori¢ K and also KNI(x) =KNI(y) =0,
then I(x) =1(y) and S(x) =S(y) . (5.6)

The heart of our argument is contained in the following technical
lemma which bounds expressions such as

ORI Alh

xISK W

in terms of R.. Here, typically, x is in Z (or &), I,K are ordered
tuples with distinct entries in {1,...,n} and S, W are generating tu-
ples with entries in G.

Lemma 5.4 We have the following bounds where 1,K run over all or-
dered m-tuples with distinct entries in {1,...,n}, S, W run over all
generating m-tuples in G", j € {1,...,n} and g € G.

> Y e -l < (" e oee

xeZ\X 1,5.j,9
J#l

> X e s asm?(" oo e L s8)

x€Z I.S.jgxlex

JELINI(x])=0
—1\/m—m
Iy _ £(xKV? < 4 n mp p (s
2 3 ) = sl <an( 7 ) (U ")I6PD R (59)
7Ir;K:’(/)
n—1 m
> S e -swf <n( ) )oro R (S0
xeZ IS m—
1N (x)=0

Proof. The proof starts with the basic idea of the comparison ma-
chinery, namely, constructing paths. Fix x, three ordered tuples /, K,
K’ (possibly empty) with distinct entries in {1,...,n} (i.e., we assume
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that /,K, K’ are disjoint) and cardinalities |/|, |K|, |K’|. Fix also three
tuples S, W, W’ (possibly empty) with entries in G and cardinalities |/|,
|K|, |K’|. We will be only interested in cases where the following hy-
potheses are satisfied:

(1) |I] =m and S is a generating m-tuple.
(2) either |K| =m and W is a generating m-tuple

In our application, K’ will always be either empty or a singleton
K'={j}.
Under these hypotheses, we construct a path

(e, 1,8, K, W,K',W') from x to [x[f,,]g,’,

as follows. Starting at x§ we use the generating set S and the group-
paths y(S,h, k'), h,h' € G, of Section 2 to set the entries of x% at K to
the desired values given by W unless I = K, S = W in which case there
is nothing to do. We always proceed from left to right to reach [xg]ﬁ,

Then, if W is generating, we use the entries at W (i.e., the gener-
ating set W) to set the entries of [x}]5, at I to their desired value x;,
i €1 (proceeding from left to right and using the group-paths
y(W.,h, '), h,h' € G). Thus, we reach x5, and again, if / = K,S = W,
we skip this phase. Now, we set the entries at K’ to the desired values
given by W’ (using W and proceeding from left to right).

If W is not generating, then our hypotheses imply that K = W = ().
In this case, we use the generating set S contained in x4 and the
group-paths y(S, 4, /'), h, i € G, to set the entries at K’ to their de-
sired values given by W’. We thus reach [xg][f,,, By hypothesis,
K'NnI=40, x’fy/, € % and I(xlpf,/,) NI = (. By definition, the entries at
I(x%,) form a generating set and we use them to set the entries at / to
their final desired values x;, i € I. The paths y(x,1,S, K, W,K', W') all
have the following properties. Any edge (z,Z') along y(x,1,S,K, W,K’,
W') satisfies z &~ z/ and the length of these paths is bounded by

K'|D ifI=K, S=w

! ! < .
(e, 1,8, K, W, K", W')| < {(|K| +I|+|K'|)D  otherwise .

(5.11)

To prove the inequalities of Lemma 5.4, we start by bounding the
differences

f (k) — F(S 0
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appearing on the left hand-side of each of these inequalities by

() = ()P < Bl Yo @) = 1P

(=7)ey

where y = y(x,1,S,K, W,K', W') and |y| is the length of this path. This
simply uses a telescoping sum and Cauchy-Schwarz. We now proceed
case by case.

Proof of 5.7. In this case, I = K,S = W, K' = {j}, W = {g} and the
paths introduced above have length at most D by (5.11). We write
’))(x’I’ S?j? g) fOI' ’y(x7]7 S7[7 S7 {j}7 {g})' Thus

fes) =P <D Y 1@ s,

(z.2)ey(x,1,S,j.9)

and
2
> > Il <D > [f @) = f()I" -
XEJ\?ISJLJ ZZ/ x1.S.j.9
Jgl zs’ JEIy(x,1,8./,9)3(z,2)

Given (z,7) with z &~ Z/ we have to count how many (x,7, S, j,g) there
are such that j ¢ I and y(x, 1, S, /,g) 3 (z,Z/). Since z ~ 7/, these two n-
tuples differ exactly at one entry and, in the present case, it has to be
the jth. Thus, we know j. Now, we pick / among the (", ') possible
choices (recall that j ¢ 7). Knowing /, we can find S just by scanning z
(because z differs from x4 only at j). By the same token we find all the
entries of x outside / U {;}. Further, using the notation of Section 2
concerning group-paths, x; and g must satisfy

(z,2;) € 9(S,%},9) -

By Lemma 2.1, there are at most |G|ds < |G|D possible pairs (x;,g)
having this property. Finally, we obtain

S OSTI6) — FP < (”; 1) GI™ DR,

x€Z\X1.8,j,9
J¢l

which is (5.7).
Proof of 5.8. Here, K =W =0, K' = {j}, W' = {g} and we set
7%, 1,8,0,0,{/},{9}) = v(x,1,S,/,9)
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(which has a different meaning than in the proof of (5.7)). These
paths have length at most (|7| + 1)D = (m + 1)D by (5.11). We obtain

Yo > Ve -sEF<mpYy Y @) -
XE€Z 1.8, jgx]eX (z, z’)xl Sl el

j¢1:lﬁ[(xé):w = JELInI(x ) 0
(rlSJt/)( ’)

Fix an edge (z,Z') between points that differ at one entry only, say the
kth. Observe that either k = j ¢ I or j # k € I and consider each of
these cases separately.

If k = j, we pick 7 among the the (" ') possible choices with j & 1.
Scanning z, we can now find S and all the entries of x outside / U {;}.
Since we know that INI(x)) =0, we can also find /(x}) and
w=Ss (x/) (here we are using property (5.6)). As in the proof of (5.7),
the number of possible choice for (x;, g) is bounded by |G|D because
x; and g must satisfy

(Zj7z}) € V(Waxjag) :

Thus, the case k = j will contribute at most a factor of (" 1)|G|"*'D
to our sum.

Ifkel= {11, ..., im), We have to pick the remaining entries of /
among the ( ) p0551ble choices. We also have to pick j among the
remaining n — m entries. Let o be such that £ = i,. By scanning z, we
now easily find g, the entries 53 € § with f# > «, the entries x;, with
p < o, and the entries of x outside 7/ U {;}. Further, the pair (s,,x;)
must satisfy (in the notation of Section 2)

(ZkaZ;c) € Y(S,SM,X/() .

By Lemma 2.1, there are at most |G|D such pairs. Thus, the case k € 1
will contribute at most a factor of (n—m)("- l)lG]m+1
Putting the two cases together yields

i\ 2

DD DA RN ACA]
€L [.S,jgxled
j¢l:1ﬂl(xé):w

< +m><(”;1 1) +(n—m) (,’Zi))lG\’”“Dsz

which yields (5.8).
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Proof of 5.9. Here, I,K are disjoint ordered m-tuples, S, W are gen-
erating m-tuples and K' = W' =1(. We write y(x,I,S,K,W) for
y(x,1,S8,K, W,0,0). These paths have length at most 2mD by (5.11).
Starting as for (5.7) and (5.8), we have

o> ) =S < 2mD Yo e-rEr.
T ISKW 7))  xISKW
INK=0 2zl INK=05y(x.1,S,j,9)>(z.2)

We fix points z and Z/ = z that differ at exactly one entry, say the jth.
Then, by construction, either j €/ or j € K. We treat these two
cases separately. As they are very similar, we only give the details
when j € [. Assuming j € I, we pick the remaining entries of /, and
the entries of K: there are (")) x (*.”) possible choices. Now that
we know I = {iy,...,in}, j =iy and K, we can find W, all the entries
of x outside / UK, the entries x;; with f <o and the sz € S with
p > o. Further, the pair (s,,x;) must satisfy (in the notation of
Section 2)

(Zjﬂz_/j) € y(WJSOH-xj) .

By Lemma 2.1, there are at most |G|D such pairs. Thus the case where
j € I contributes at most a factor

() (e

The same is true for the case where j € K. Hence

S S ) - se)F < am (1) (7 o R

x€Z I.S,K.W
INK=0

which is (5.9).

Proof of 5.10. Here, K =K' =W = W' = (. We write y(x,I,S) for
p(x,1,8,0,0,0,0). These paths have length at most mD by (5.11). We
have

SN ) —f@P<mdd S YT f@-fE)f .
=7)

xeZ IS x,1,S
InI(x)=0 zrz! INI(x)=0;(x,1.8)>(z,2)

We fix z and 7 that differ at exactly one entry, say the jth. Then,
necessarily, j € I. We pick the remaining entries of 7 = (iy,...,in)
among the ( _11) possible choices. Define o by j = i,. Now, scanning z

n—
m
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yields the entries of x outside /, the entries x;; with f < o, the s € §
with f > a. We can also find 7(x) and S(x) just by looking at z because
of property (5.6) and the fact that 7 N/(x) = (. Further the pair
(s4,x;) must satisfy (in the notation of Section 2)

(Zj>Z_;‘) € V(S(x)’ Sivxj)'

By Lemma 2.1, there are at most |G|D such pairs. Observe that it is
important that S(x) is known and fixed in order to apply Lemma 2.1:
property (5.6) is used here. Finally, we get

S 3 ) - s <m( 7 )6t e

xeZx IS
m[(x):w

which is (5.10). This ends the proof of Lemma 5.4.
We now return to (5.4), i.e.,

Eolf.f) = (R + 2Ry + R3)

21’l| G|n+1
and estimate Ry, Ry, R; in terms of R using Lemma 5.4.

Estimating R3: We start with R3; which is the easiest to deal with.
Write

Ri= 3 1f(x) - 70

() ()

1
=— Z
(m) EZ/J\%; |f(x§) -

2
(m) M? xyEJ\T

2

<

The last step uses the Cauchy-Schwarz inequality. Now observe that
forx,y € &\ 4 with x ~ y, x} and y!, are either equal or differ only at
one posmon] g1 Letg=y; be the jth coordinate of y. Then, y = x/
and y} = Thus using the first inequality (5.7) of Lemma 5.4, we
get
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1 .
R DI ORI iy
(m) xeZ\Z j9 LS
e
—1
S 1 % <I’l )‘G‘m+lD2Rz
(M m
. m+1 2
Lo mIGlT Dy (5.12)
nM

Estimating R,: We now look at R,. We have

Re<ae S SN - . (13)
(M S 53 55

J e
xgE.I

We are going to break the sum in (5.13) into two pieces. Call E; the
set of (x, /,g,1) such thatx € Z\ 2, x) € Z and I NI(x]) = 0. Call £,
the set of (x,/,g,/) such that xeﬂf\% xh e and INI(x]) #0
where /(x/) is defined at (5.5). Write

S S — @R =30 ST ) - )P
e\ jg 1S E S
S - (514
5 S

X er
For Z;, observe that x € 2\ 2 and x/ € Z imply j € I(x]). Tt
follows that j ¢ I. Thus, we can use the second inequality (5. 8) of
Lemma 5.4 which yields

ZZV FEDP <1 +m)2<n;11>|G|m+1D2Rz . (5.15)

We now pass to ;. For each (x, j, g,1,S) with |/ ﬁl(xfg')] =v>1,
write

; 2
65) =) < Gy 2 (V65 =S P
(lul(r}))ﬂKV]

1) - <x;>|2)

where K runs over all ordered m-tuples such that (1 UI(x/))NK =0
and W = (wy,...,w,) € G" runs over all generating m-tuples (there
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are M of them). Here, we use the hypothesis that n > 2m(G) + m(G).

This gives
YD) =@
s S

< (T 3 v e

m

JEKINK=0
YY) —f(x{,)\2>
E SK,
I(x"/)ﬂl(:@
—#(ZJrZ’) (5.16)
- (n—m;ﬁ—‘rl)M : :

For ¥/, we have

< ("M Y 2_\fey) —fe)F

(x,/,9.K)€E,

Hence the analysis used for Z; applies and yields
1 _
> < (1+m) (” ) (” m)M|G|’”+1D2 Re . (5.17)
m m

We are left with the task of bounding

= > 2 )l

(x.j,g.1)€Ey SKW
/Q{KIﬂKW

<m-m)lGl Y 1fg) - fERP

x,I,S.K,W
JEKINK=0

The factor (n — m)|G| counts the number of (j,g), j € K. It follows
from the third inequality (5.9) of Lemma 5.4 that

-1 —
2 < dm(n — m) <”; B 1) (” mm) G2 DR . (5.18)

Using (5.17) and (5.18) in (5.16), we get

) 2 !
ZZV VCAl _W(ZJFZ)

m
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2\ (n—1\ (n—m 2m+1 2
2 42mt5m) (7, ) (") IG D7

m

- (n—m—ﬁJrl)M

m

Using this and (5.15) in (5.14), (5.13), we conclude that

() _IGPD;
(n—m—m+1) M2 R~ . (5.19)

m

Ry < (3+6m+11m?)

Estimating R;: We now bound

Ri= 310 —r0)P .

XyeX

X~y

To each x and y in & correspond by (5.5) two m-tuples / = I(x) and
I(y) such that the associated m-tuples S(x) and S(y) generate G.
Moreover, if x ~ y, then they differ only at one place, say j, and
y= xé where g = y; € G. If j € I(x), change the value at j using the
generating set corresponding to / and the group-paths y(S(x),x;, ;).
Similarly, if j & I(y), change the value at j using the generating set
corresponding to I(y) and the group-paths y(S(y),x;,y;). Call this
path y(x,y). Its length is at most D. Let ®; be the set of the (x,y) for
which this construction works and ®, be the set of (x,y) such that
j€I(x)NI(y). For ®;, using Cauchy-Schwarz, we have

Yo @ -relF<p > > @ -rE@)P°
(<o, (<20, ()

<Y Y @ -fEF

2 €X (x,y)G@)]

2zl y(x)3(z,2)

We have to count how many times each (z,Z') appears. By con-
struction, (z,z') determines ;j and all the coordinates of x and y except
the jth. Since (x,y) € ®;, we know that either j € I(x) or j € I(y). In
the first case, S(x) = S~ is independent of x; by (5.6) and (x;,y;) must
belong to

{(u’ U) : V(SZ,ZU”? U) > (ZJ’Z;)} .

Lemma 2.1 shows that there are at most |G|D such (x;,y;). Similarly,
if j & I(y), there are at most |G|D possible choices for (x;,y;). It
follows that
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> If) = fO)F <2IGID R, (5.20)

(x)€®,

We must now deal with ®, where j € I(x) N I(y). Fix (x,y) € Ox.
Let K, W be such that K is an ordered m-tuple of distinct integers
between 1 and n satisfying K N I(x) =0, and W = (wy,...,w,) € G
is a generating m-tuple. Similarly, let K, W’ be m-tuples such that
K'N(I(y)UK)=10 and W’ generates. This is possible because
n > 2m+m. We pick uniformly at random among all the possible
(K, W,K', W) and write

3

X) — 2 < — —
)= 10)F < 3o oy

<> > (W = SEIP + 6 — P

KW K'.w
KNI(x)=0 K'n(KUI(y))=0

1) = FOIP) -

This gives
3
&)= fON € —
D S G
x (mM\G] (” ;M)Al + 71| G| As +M(” ;’")m) (5.21)
where

A=Y 1f@) = fEHP
)=0

x,K,
Al

e

A=Y D ) =Sl

x KW K W
KNI (x)=0 K'N(KUI(y))=0

A= Y e =S

(xy)€®2 K" W'
K'ni(y)=0

In (5.21), the factor mM|G|(",™) in front of A; accounts for the
variables j, W', g,K' where y = xé For j and K’, we have taken into
account the facts that j € I(x) and K’ N K = (). These variables do not
appear in A;. Similarly, the factor m|G| in front of A, accounts for the
variables j,g where y = ¥/, taking into account the fact that j € (x).
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Finally the factor M (”:n’”) in front of A3 accounts for the variables W
and K (recall that K N1 (x) = ().

Now, A} can be bounded using the fourth inequality (5.10) in
Lemma 5.4. For A, we can use inequality (5.9) of Lemma 5.4
whereas, for Az, we can use (5.8) since

A= > ) —SeRP

(x,y)€O®,K" W'
K'nI(y)=0

j 2

< 3G —rEP
x7K/'ﬂW/ 7.j7g
KW%):%

+4

n—m\ (n — 9 — 2 _ 2
3( m )(m) <mm mm + (}’l m)(l + Wl) ) |G|2m+1D2Rz
n n n

() G | pome
- M2 (n:nm) (n_z_m) |G| D°R.. .

This and (5.20) yield

Ri < (54 6m + 18m?) 2('")_( ;g;? IGP™'D’R. . (5.22)

M2 () ()
Using (5.12), (5.19) and (5.22), we obtain

Eolf.f) = (Ri + 2R + R3)

2n|G|n+1
_ S 2m)? () (") 61D
- (nfﬁ) (nfﬁfm> n | G|"M2 ~

m m

20(1 +2m)* (") (") ||| G]*" D*n

- (nfﬁ) (nfﬁfm) |g|M2

m m

Er(ff)

because &p = mR“‘ This ends the proof of Proposition 5.2.

Proof of Corollary 5.3 and Theorem 3.2. From Lemma 5.1 and Pro-
position 5.2, the second largest eigenvalue of P is bounded by
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_ (") (M
O R e G e D

m

For the log-Sobolev constant, we get

() (2 (G - 2)

m

20(1 +2m)* (") ("M |G log(|G] — 1)D?n?

A(P) =

These estimates and Theorem 2.3 give
|H) — 7|y <e'™

for

m 2 n\ (n—m 2m+1 2n2
- 20(1(jm2) (Z(W’”)m()z\n}z)(”(c;;'! - 2? [(log(|G| — 1)) (loglog |G]") + 4c]

m

with ¢ > 0. This proves Theorem 3.2.

Remark. In the above proof, we have never used specifically the fact
that m is the minimum size of a generating set in G. This leads to the
following extensions of Corollary 5.3 and Theorem 3.2:

Theorem 5.5 For any group G with m(G) = m, m(G) = m, any m, > m,
and n > 2m, +m, the chain P defined at (3.1) satisfies

(n—ﬁ) (n—ﬁ—m*>M2
m my *

201+ 2m.)° (1) (") IGP" D2

pi(P) < 1-—

and
() (" )61 - 2)
20(1 + 2m*)2(” ) (n;j*)\c;yz'"*“ log(|G| — 1)D*n2

x(P) =

My

t(I—P)

Further, for all ¢ >0, the semigroup H, = e~ associated to the

chain P at (3.1) on generating n-tuples satisfies
|H = 7llpy <e'™
for
20(1 + 2m*)2 <,Z ) (n;nm*) ’G|2m*+1D2n2

() (" )61 - 2)

=
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x[(log(|G| — 1)) (loglog |G[") + 4] .

Here M, = f(my, G) is the number of distinct generating m.-tuples and
D = D(G) is the maximal diameter of G.

This extension is interesting because it may happen that
M = f(m,G) is small or difficult to bound from below whereas
M, = f(m.,G) ~ |G|™ for certain m, > m. For instance, this happens
for cyclic groups of very composite order, see Section 6.C, Example 2.

6 Group combinatorics

This section discusses the four group theoretical parameters needed

to apply Theorem 3.2. There is a growing literature on group

combinatorics. See e.g., the surveys [5, 33]. We will use the following

notation. Given a group G, the lower central series Gy = G D G
- D G- -+ is defined inductively by

Gi = [Gi—l7 G]

where, for any two subgroups H,K, [H,K] is the commutator group
generated by [h k] =h'k~'hk,h € H,k € K. By definition, G is
nilpotent of class ¢ if G. # {id} and G.; = {id}.

6.A4. The size of minimal generating sets

Let G be a finite group and S C G be a set of generators. Say S is
minimal if no smaller subset of S generates G. Recall that we have
defined m = m(G) to be the maximum size of a minimal generating set
and m = m(G) to be the minimum size of a generating set. If S is a
generating set with |S| = m(G), then deleting successive elements of S
results in a strictly decreasing sequence of subgroups. This shows that
m(G) is bounded by the length of the longest chain of subgroups in G.
If |G| = [[ p* is the factorization of the size of G into distinct prime
powers, we see

m(G) <Q(G) = > ap (6.1)

rl16|

In any solvable group, the length of the longest chain of subgroups is
exactly Q(|G|) but, in general, Q(|G|) only gives an upper bound.
Further, the length of the longest chain of subgroups is only an upper
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bound for 7. There is a large literature on chains of subgroups in
permutation groups and finite groups of Lie type. See [33].

Example 6.A.a: Cyclic groups. Take G to be the cyclic group Z/rZ
where r = Hlf pi is a factorization of r into distinct prime powers
(a; #0). Then (6.1) gives m < Zlf a; whereas, of course, m = k. Here,

m=1.

Example 6.A.b: The symmetric group. Take G to be the symmetric
group Sy. Then, for primes p <d, a,=[d/p|+ [d/p*]+ - <d/
[p(1 —1/p)] < 2d/p. Thus,

1
m(Sy) <2d» —~2dloglogd .
p<aP

In fact, using results of Babai [3] and Cameron et al. [8], m(S;) < 2d.
This follows from an exact formula for the length of the longest chain
of subgroup in S;. The longest chain only gives an upper bound on 7.
Indeed, preliminary computations based on the classification of
simple finite groups seems to indicate that mi(S;) =d — 1. The
classical generating set S = {(1,2),(2,3),..., (d — 1,d)} shows m(Sy)
> d — 1. Observe also that m(S;) =2 (e.g., the transposition (1,2)
and the long cycle (1,...,d) generate).

Example 6.A.c: p groups. Let |G| = p* for some prime p. For such
groups, m(G) can be explicitly determined. We need a bit of ele-
mentary group theory connected with the Burnside basis theorem.
Suzuki [35], p. 93, is a splendid reference. Let ®(G) = @ be the
Frattini subgroup, i.e., the intersection of the subgroups of order
p*~!. This is a normal subgroup and the Burnside basis theorem says
the quotient G/® is isomorphic to a vector space over the field Z/pZ.
If |G/®| = p’, Burnside’s theorem says S generates G if and only if
the images of S generate G/® as a linear space. Thus, G can be
generated by b generators. Further, if S is a generating set with
|S| > b, the images of S in G/® generate and so some subset of size b
in § generates G. Thus we have proved

for a p — group G with |G/®| =p?, m(G) =m(G)=b . (6.2)

For instance, let G be the group of upper-triangular » x n matrices
with ones on the diagonal and entries mod p, p prime. Thus
|G| = p"=D/2_ 1t is well known that ®(G) is the subgroup with zeros
just above the diagonal. Thus, |G/®| = p"~! and m(G) = n — 1. This
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is a good deal smaller than the bound (6.1). A simple set of generators
is s; with ones on the diagonal, a one in position (i,i + 1) and zeros
elsewhere, 1 <i <n— 1. For example, when n = 3, G is the Heisen-
berg group with entries mod p. The two generators are

110 10 0
010, [0 11
00 1 00 1

For many further examples, see [19], Section 5.C.

Isaacs [31] gives some bounds for 7(G) for p-groups. Among other
things, he shows that, if p>3 and G is non Abelian,
m(G) < f —p+ 3 with f the dimension of a faithful characteristic
zero representation. Observe that in the case of the Heisenberg group,
f = p is the smallest possible degree of such a representation and
Isaacs’ bound reads 71(G) < 3 whereas the right answer is 2. There are
slight variants where Isaac’s bound is sharp.

Example 6.A.d: Nilpotent groups. If G is nilpotent, G is the direct
product of its Sylow p-groups: G = Hlf S(p;) where the p;’s are the
distinct primes that divide |G|. Clearly, m(G) = >_| m(S(p;)) whereas
m(G) = max,; m(S(p;)).

Example 6.A.e: Metacyclic groups. If p,g are primes such that ¢
divides p — 1, there exists exactly one non-Abelian group of order pg.
It is a semidirect product H(p,q) =Z/qZ x Z/pZ. These have
m(G) = m(G) = 2. See [5].

6.B. The number of generating tuples

Let f(k, G) be the number of ordered k-tuples that generate G. We are
interested in this number for at least two reasons:

First, when n is large enough, namely n > m(G) + m(G), Lemma
3.1 shows that our walk is irreducible on the set of all generating
n-tuples. Thus, f(n, G) = |Z] is the size of the natural state space 2
of the chain P at (3.1).

Second, our main result, Theorem 3.2, involves the quantity

M = M(G) = f(m(G), G) .
In order to apply Theorem 3.2, it is crucial to have good lower

bounds on this M, if possible of the type M > ¢|G|™® where ¢ does
not depend on G. Similarly, Theorem 5.4 requires lower bounds on
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M, = f(m,,G) for some fixed m. > m. A simple yet useful observa-
tion for our purpose is that

the ratio  f(k,G)/|G|* is an increasing function of k .  (6.3)

In this section we show how to use Md&bius inversion on the sub-
groups of G to give a formula for the size of the state space. This is
work of P. Hall (1936) [27]. A clear elementary exposition appears in
Constantine [10]. A recent survey is in [29]. The role of Mdbius
inversion comes from the observation that, with obvious notation,

6= > flkH) .
{id}CHCG
Thus,
fe,G)y=">" |H"u(H,G) (6.4)
{id}CHCG

with u(H, G) the Mébius function of the interval [H, G|. This function
is known for several classes of groups. We describe results for nil-
potent groups. Such a group is the direct product of its Sylow p-
groups. Now, if G = H? G; where |G;| = p" are distinct prime powers,
any subgroup H of G has the form H = H? H; with H; a subgroup of
G,. Further, the partial order (H,)f < (Hi’)/l‘ <= H CH/, 1<i</
coincides with the inclusion ordering on subgroups of G. It is
standard that the M&bius function factors

l
w(H, G) = [ wH, G) -
1

Hence, f(k, G) also factors and
‘

[, G) =]/ *, G -

1

To treat nilpotent groups it is thus enough to determine the
Mobius functions of p-groups with p a prime. For p-groups, u(H, G)
is zero unless H contains the Frattini subgroup ®(G). If H contains
®(G) and has index p’ in G, then

4

n(H,G) = (-1)"p) .

The determination of Mobius functions for other classes of groups is
not simple. P. Hall [27] treats PSL,(Z/pZ) and Gaschiitz [25] treats
solvable groups.
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Example 6.B.a: p-groups. Start with G = (Z/pZ) p prime. Here
®(G) = {id}. The number of subgroups of index p' is equal to the
number N (¢, ¢ — i) of linear subspaces of dimension ¢ — i in (Z/pZ)".
It is well known that the numbers N (¢, v) are given by the p-binomial
coeflicients

0 (vl
N((,v):N(E,K—v):G):(p D D :

v, =D 1)
Thus,

[ .
1k, (Z/pz)') = Z<—1)i<£ ¢ ) (D).

Lemma 6.1 For k >/,
¢ / pg —1
10 @) = (12 1)

Further, for p=2 and k > ¢, f(k,(Z/2Z)") > 1%,

Proof. For i > 3, we have

(4{ ) ppk(e—i)+(§) (p = )pke

— — - <1
¢ k(0—i ! g -
<e‘—i+1> p (=D +(5) p-l
p
Thus, i — (lfi)ppk<‘}”")+(5) is a decreasing function of i > 2. It follows
that
I k P[ 1 (—=V)k _ _tk PE -1
Sk, (Z/pZ)") = p™ — 17 =p|1 _pjp .

When p = 2 and ¢ = k, this bound is poor but there is another way to
bound f'(k, (Z/pZ)"). Restricting ourselves to k = ¢ for simplicity, its
is easy to see that

f(@/pz)") = ' =1 —p)--- ' =P

where each factor represents the number of vectors in (Z/pZ)" that
are linearly independent of the previously chosen vectors. Thus, using
(6.3),

f(k,(Z/pZ)") >p@ka1— ) > plhe=1/(=1)
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This proves the last assertion of the lemma.

Let now G be finite p-group with Frattini subgroup ® = ®(G).
Since a set S of k elements of G generates G if and only if the pro-
jection of S to the Frattini quotient G/® generates G/®, we have:

f(kv G) = |(D|kf(k’ G/(D) :

Since G/® = (Z/pZ)’"(G) is an elementary Abelian p-group, Lemma
6.1 yields the following.

Lemma 6.2 Let G be a finite p-group. Put m = m(G). For k > m, the
number f(k,G) of k-tuples that generate G satisfies

m_
k,G) > |Gf(1-2 )
10,62 6 (1-2 =1t

Further, for p=2 and k > m, f(k,G) > %|G|k.

Example 6.B.b: Nilpotent groups. The results obtained for p-groups
and the factorisation property let us now compute f(k,G) for any
nilpotent group G. Indeed, we simply have to write G as the product
of its Sylow p-groups G =[], S(p) where p runs over all primes
that divide |G|. Here, we recall that m = m(G) = max,m(p) where
m(p) = m(S(p)). For any k > m,

[k, G) =[] fkS(p)) -
PlG|

In particular,

Lemma 6.3 Let G be a nilpotent group with Sylow decomposition
G =[1,6/S(p). Set m = m(G) and m(p) = m(S(p)). For k > m,

| gt Pm@)—l—k

flk,G) >-~|G (1——p .

(k, G) 4IIH P
p#2

If 2/ |G| the factor 1/4 can be removed.

Remark. For the cyclic group G = Z/rZ withr =[], PP m = m(p)
=1 and f(k,G) > §/* if k > 2 whereas

f(1,6) =r]J0-1/p) .

plr
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Here, r — f(1,Z/rZ) = ¢(r) is the classic Euler function. This shows
that there are cases where |G| f(1,G) — 0 as r tends to infinity.
However, we have

1iminff(1’ Z/rZ)loglogr

r—00 r

= eiv

where 7y is the Euler constant (See [28], pg. 267).
Using the results presented above, one sees that there exists an
explicit constant ¢ > 0 such that, for any nilpotent group G,

6"

f(m(G),G) = ¢ 710g10g‘G‘

whereas

F(k.G) > G if k> m(G) .

Example 6.B.c: The alternating and symmetric groups. It is known
[1, 5] that the probability that a randomly selected pair of permuta-
tions in S; generates A4 or Sy is 1 — 1/d + O(1/d?). Thus

44|72 f(2,44) — 1 as d — oo
and
1S4 72 (2,84) — 3/4as d — oo .

This shows that for G = 4, or S; there exists a constant ¢ indepen-
dent of d such that, for all k£ > 2,

f(k,G) = c|Gl".

Example 6.B.d: G = PSL,(Z/pZ), p prime. For this group, m =2

whereas m seems unknown. P. Hall [27] studies f(k,G), k > m = 2.

He obtained manageable formulas which show that f(k, G) is of the

same order as |G|" = Lp(p* — ) When k > 2. Actually, limy_ f(k,
G)/|GI* =1 and 11m|G‘_,OOf(k G)/IGfF=1,k>2.

6.C. The maximum diameter

The maximum diameter is a difficult quantity to bound except in a
few special circumstances. The difficulty comes from the fact that, in
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general, we do not know or understand most generating sets of a
group. We start with a difficult result of Babai and Seress concerning
permutation groups. See [5, 6, 7].

Example 6.C.a: Permutation groups. For the alternating group 4,
Babai and Seress [6] prove that

D(4q) < (1+o(1))eVeloed .

They show in [7] that this result extends to any permutation group of
degree d. In particular,

D(Sy) < (1+o(1))eVlogd

Further, they show that any transitive permutation group G of degree
d satisfies

D(G) < 12D’ D(4,)

for some ¢ > 0. This last result is important because Babai and Seress
[6] conjecture that, for every simple group G,

D(G) = (log|G)°?" . (6.5)

In the case of 4, or S; this amounts to conjecturing that there exists a
independent of d such that

D(44),D(Sy) < d° . (6.6)
Indeed, for all we know at present writing it is possible that a = 2.
Example 6.C.b: Metacyclic groups. For the metacyclic groups

H(p,q) = (Z/9Z) x (Z/pZ) with g, p primes and g|(p — 1) of exam-
ple 6.A.e, Babai et al. [] state that, for fixed g,

D(H(p,q)) < O(p"/«V)

whereas for ¢ > p° with ¢ > 1/2,
D(H(p,q)) < O(q) -

In both cases the estimate is optimal.

Example 6.C.c: p-groups and nilpotent groups. To state our bound on
the maximum diameter requires some classical notation.
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Let G be a nilpotent group of class ¢ with lower central series
G =G> Gy D - DG, D{id}. The lower central series of G/G; is
([35L.11, pg. 13) G/G; D G2/G;---G;/G; = {id}.

Simple commutators in a set {gi, ..., g,} are defined inductively as
follows. The simple commutators of length 1 are the g;’s. Simple
commutators of length ¢ in the g;,’s are commutators of the form
c=|[c,g] with ¢ a simple commutator of length ¢/—1 and
g €1{91,-..,9-}. Thus, a simple commutator ¢ of length ¢ has form

Cc = [[ [xl,xg],...,]xg]

with x; € {g1,...,g,}. There are ' possible simple commutators of
length ¢ (of course some of these may be equal). Written out as a
word in g;, g; ! such a commutator involves 20 4+ 2671 — 2 elements. If
G is generated by {gi,...,¢,} then G;/G; is generated by the simple
commutators of length i mod (Giy) ([26], Theorem 10.2.3). The
following theorem bounds the diameter of a nilpotent group in terms
of the exponent of G/[G, G]. The corollaries that follow give bounds
on the maximum diameter.

Theorem 6.4 Let G be a nilpotent group with class c. Let {g\, .. .,g,} be
a minimal set of generators of G. Then the diameter y of G in these
generators satisfies

exp(G/[G, Gl) 1] < 7 < (2r)" exp(G/[G. G))
where exp(G/|G, G]) is the exponent of G/|G, G|.

Example: The Heisenberg group mod(k) has class 2 and
exp(G/[G, G]) = k. Theorem 6.5 shows that any set of two generators
has diameter essentially &, uniformly in k.

Corollary 6.5 Let G be a p-group with class ¢ and Frattini rank b (i.e,
|G/®| = pP). Then the maximum diameter D(G) satisfies

Hexp(G/[G, G]) — 1] < D(G) < (2b)"' exp(G/[G, G)) .

Proof of Theorem 6.4. The theorem holds trivially for Abelian groups
(class ¢=1). For clarity, we first prove the case ¢=2. Let
e = exp(G/[G, G]). Then for any g € G, ¢° € |G, G]. Hence, any g can
be written

g:g?lgffw
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with 0 < ¢; < e and w € [G, G]. Now, [G, G] is generated by {[g;, g;];
i # j}, so the class 2 case is proved if exp(|G, G]) < e. For this, recall
that in general, if x, y are such that [x, y] € Z(G), then [x*,)"] = [x,y]""
This follows from the formula [xy,z] = y~![x,z]y[y,z]. In particular,
[x¢,y] = [x,y|° for all x,y € G because ¢ =2 implies [G, G] C Z(G).
Now x¢ € [G,G] C Z(G), so [x°,y] = |x,y]° =id.

Inductively, suppose we have shown that, for any group G of class

¢ — 1 generated by {xi,...,x,}, any element is expressible as
e

with ¢; simple commutators in {xj,...,x.} and 0 < a; < exp(G/|G,

Gl).

Let G be a group of class ¢ with lower central series
G=G; DG, D+ DG.DA{id}. Then G. C Z(G) ([26], 10.2.1) and
G/G, have class ¢ — 1. Set exp(G/[G, G]) = e. If G is generated by
{91,...,9,}, then G/G, is generated by g, = g; mod(G.). Thus, with
obvious notation, any g € G/G, can be written

7_—611...—04'
g=:a ¢y

with & simple commutators in {g,...,4,} and

0 < a; < exp((G/Ge)/|G/Ge, G/Ge]) = exp(G/[G,G]) = e .
Here we have used the fact that

(G/G.)/[G/G.,G/G] = (G/G.)/([G,G]/Ge) = G/[G, G .

Now, if g; is chosen in G as g; = g;w;, w; € G, any g € G can be
written as
g=c'---cf'w, weG, .
Furthermore w = z{" - - - z* with z; simple commutators of length ¢
and u; non-negative integers. For any such z = [x,y] with x a simple
commutator of length ¢—1 and ye{g,...,9.}, z¢=[x)] =
[x¢,y] = 1. Hence, we can assume that 0 < u; < e. This shows that the
inductive assumption passes from class ¢ — 1 to class c. It also proves
the claimed upper bound: there are at most » + 7> + - - - 4 7 simple
commutators and any of them involves at most 2°*! generators.
For the lower bound, check the bound in G/[G, G].

Remark. We have chosen to work with simple commutators for
clarity. The proof goes through as stated with what Marshall Hall
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[26], Chapter 11, calls basic commutators. There are fewer of these so
the constant in the upper bound can be slightly improved.

It may happen that the automorphism group of a p-group G acts
transitively on minimal generating sets. In this case, the diameter is
the same for any minimal generating set. This happens for the Hei-
senberg group mod (p). We now give another example.

Example 6.C.d: The Burnside group B(3, r). The group B(3,r) is the
largest group generated by r elements and whose exponent is 3. It is
known that this group is finite, nilpotent of class 3 and has order 3'")
with #(r) = r+ (5) + (}). Here, m =m = r and the maximum diam-
eter D is bounded above by 3. This can easily be shown by using the
collection formula (e.g. [26], pg 178-182) and the fact that the au-
tomorphism group of B(3,r) acts transitively on the sets of all gen-

erating r-tuples.
7 Examples of walks on generating sets

This section applies the tools developed above to some examples. We
treat fixed G with n large, cyclic groups, p-groups of small class, the
Burnside group B(3,r), metacyclic groups and the symmetric group.
Throughout, for G a finite group, we write m for the minimum size of
a generating set and m for the maximum size of a minimal generating
set (Section 6.A). We write M for the number of generating m-tuples
in G and D for the maximum diameter of G (Section 6.C). Finally = is
the uniform distribution on the set of all generating n-tuples.

Example 1: Fixed G, large n. As a first result, our estimates show that
for any fixed finite G and all sufficiently large n, order n”logn steps
suffice for convergence.

Theorem 7.1 There is an explicit function C(N) > 0 such that, for any
finite group G of order at most N, for any n > 2m + m, for any ¢ > 0
and ¢ = C(N)n*(logn + c), the Markov chain P defined at (3.1) satis-
fies

||Pf —7flpy <2e7°

for any starting state x.

Proof. Theorem 2.2 shows that, for every x,

e c 1 1
1P = 7llyy <2e7¢ for £> 1+m+@10glog@
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with f = max{f,, |fmin|} and o the log-Sobolev constant. Proposition
4.2 bounds
n—m

o>y
Prin 2 =14 D+ 1)

Corollary 5.3 shows that

(") (M

—1<1- :
pots= 20(1 + 2m)* (") (") |G D02

These bounds show that there is C;(N) such that, if G has order at
most N,

Ci(N)
p<1— ol
Corollary 5.3 further bounds
n—m\ (n—m—m M2 )

20(1 +2m)*("

m

)(n:nm)’G|2m+l log(\G\ o 1)D2n2 — }’l2

Here we have used the very crude bounds m,m,D < |G|, M > 1. Also

n(x) > ﬁ so loglog-Ls < C3(N) logn. Combining bounds completes

n(x)

the proof.

Remarks. 1. A crude bound on C(N) is (20N)*¥ ™. Theorem 3.2 gives
a more precise result.

2. The best lower bound we know is ¢(G)n log n. Indeed, this many
steps are required to have a good chance of hitting every coordinate
(from the classical coupon collectors result). We conjecture that this
is the right answer. The only case where this has been proved is for
G=1Z/2Z [12].

3. The above result can be refined in special cases to give more
explicit constants. We now turn to these developments.

Example 2: The cyclic group G=Z/rZ. Roughly we show that order
(n*logn)r?(logr)® steps suffice for convergence (for some a).

Theorem 7.2 Let G = Z/rZ with r:]_[llC pi" the prime decomposition
of r.

1. For n > 2k and ¢ > 0, there is a constant A such that,

P! = wllpy <267 for €3> A(nr)*[(logr)(loglogr™) + ] .
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2. For n=k+ 2 and ¢ > 0, working in continuous time, there is a
constant A such that
|HY — 7lpy < €' for t> 4r*(logr)*(loglogr)®
((logr)(loglogr) +¢) .

Proof. For G=Z/rZ, m =1, m = k, and
k
M:rH(l—pi_l) .
1

As shown in Section 6.A,

liminfM /|G| = 0

|G| —o0

but there exists a constant ¢; such that

c1|G]

_— 7.1
~ loglog |G| (7.1)

For part (1), we use Theorem 5.5 with m, = 2. Lemma 6.3 shows
that M, = f(2,G) satisfies M, > cor? for some constant c;. The
maximum diameter is bounded by r/2. Using these estimates in
Theorem 5.5 yields

Cl C2

<l1- and o >
Pr= (nr)2 - (nr)zlogr

with constants Cy,C,. Proposition 4.2 bounds the least eigenvalue
Bumin from below by —1 + 2% Hence, Theorem 2.2 yields the claim in
part (1).

For part (2), use Theorem 3.2, the lower bound (7.1) and the
obvious estimate 2F < r.

Remark. We conjecture that (logr)“nlogn steps are enough for
convergence in both cases (for some a > 0). This conjecture is proved
in [20] when 7 is fixed and r is a prime. This is the only case where the
kind of dramatic speedup reported by Celler et al. has been proved.

Example 3: p-groups. Our results are fairly sharp when applied to p-
groups of bounded class and number of generators. We have devel-
oped things in continuous time.
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Theorem 7.3 Let G be a p-group with Frattini-rank and class both
bounded by N. There is a function A(N) > 0 such that for all n > 3N
and ¢ > 0, the chain (3.1) satisfies

1 = mllpy <e'=¢ for ¢ > A(N)n’p**[(logp)(loglogp) + ]
where p” = exp(G/[G, G]).

Proof. Theorem 6.4 shows that the maximum diameter is of order p®
up to constant multiples depending on N. For p-groups, m =m = b.
Corollary 5.3 shows that there are 4;(N),A>(N) such that

41(N) A>(N)

ﬁ] (P) < 1— n2p2w and O((P) > m .

The bound for o uses |G| < p™) for some constant 43(N) (of order
NOW)y_ Using these ingredients in Theorem 3.2 completes the proof.

The following result gives a bound for general p-groups in terms of
the maximum diameter D. This implies Corollary 3.4 above. The
proof is the same as for Theorem 7.3.

Theorem 7.4 For any p-group of Frattini-rank b and all n > 3b, ¢ > 0,
the chain (3.1) satisfies

|HY — nllpy <e'°¢ for ¢ >320(1 + 2b)""*(nD)’
((log|Gl)(loglog|G[") + 4c) .

Remarks. 1. Specialize to the Heisenberg group mod p (say p is an
odd prime). Then, o =1, b=m =m =2 and D is of order p. The
theorems show that order (pn)2 steps suffice (up to logarithmic fac-
tors). Any element has order p which is odd, so that we can use
Proposition 4.3 to bound the least eigenvalue from below by —1 + %.
This can be used to show

||Pf — 7|y <2e7¢ for £> 104(np)2[(10gp3)(10g10gp3”) + 40}

for any ¢ > 0.

2. Similar results can be obtained for nilpotent groups.

3. In all cases above we conjecture that for n > 3b, order
(log|G|)* nlogn steps suffice for convergence with small universal a.

Example 4: The Burnside group B(3, r). Let G = B(3,r) be the
Burnside group; this is generated by » elements and all elements in G
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have order 3. Every r-generator exponent 3 group is a homomorphic
image of B(3,r). M. Hall [26] contains a clear description showing
that B(3,r) is finite, nilpotent of class 3 and has order 3') with

t(r) =r+ () + ()-

Theorem 7.5 Let G = B(3,r). For n=1>,r >3 and ¢ > 0, the chain
(3.1) satisfies

|Pf = mt||lpy < 2e7¢ for £>Ar®(logr+c)
with an explicit constant A.

Proof. Here, m = m = r and the maximum diameter D is bounded by
3. By Lemma 6.2 the number M of generating r-tuples is bounded
below by M > %|G|’. Applying Proposition 4.3, we find that the least
eigenvalue is bounded by —1 + % Further, for any n > 3r, Corollary
5.3 yields
720 n—2r 720 n—2r
B(P) <1 _(n)(rs,rqz) and «(P) ZW.

If n = 3r these bounds are exponentially bad in ». For n =%, r > 3,
they give

1

< > .
pi(P) <1 = 7200715

1
— W and O((P)

These use (’2;2’>/<”2) > [1 . TZ e 2> 10"! which in turn

r r2—r+1
follows from log(1 — u) > —2u for 0 < u < 5/7). Using these ingre-
dients in Theorem 2.2 completes the proof.

Remark. 1t is straightforward to show that at least 7°/ logr steps are
necessary for convergence.

Example 5: Metacyclic groups. For p, ¢ primes satisfying ¢|(p — 1), let
G = H(p, q) be the unique non-Abelian group of order pq. The group
H(p, q) is the semidirect product of Z/pZ by Z /qZ. Here, all minimal
generating sets have two elements so that m = m = 2. Further, there
exists a numerical constant ¢ such that M > ¢|G|*. For ¢ fixed and p
large, the maximum diameter is of order p!/(~1)_ See Examples 6.A..e,
6.C.b. Corollary 5.2 yields

A
Bi(P) <1 —W~
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Theorem 3.2 shows that a running time of order n’p*¢~V[log p]
[loglog p"] suffices to reach uniformity.
For pf < g, € > 1/2, the diameter D is O(q). Hence

and Theorem 3.2 shows that a time of order (ng)*[logg][loglogg¢”]
suffices. We conjecture that, for G = H(p,q), a running time of or-
der (log|G|)“nlogn suffices for convergence for a universal constant
a.

Example 6: The symmetric group. For the symmetric group S; on d
letters we have the following.

Theorem 7.6 Let G=S;. For n>m+4 and ¢ > 0, the semigroup
H, = e~"U=P) associated to the chain P at (3.1) satisfies

|} — mllpy < S

for
n() 2
‘= % [(log(d!))(loglog(d!)") + ] .

(n—m
In particular, for n > 3d and ¢ > 0,

1H} = mllpy < €'

for t = A(nD)*|(dlogd)(logn) + c]. Here D is the maximum diameter
of Sq and A is a constant independent of n and d.

Proof. 1t is plain that m(S,;) = 2. Further (see Example 6.B.c), almost
3/4 of the pairs in S; x S; generate S;. Thus, M > a(a’!)2 for some
numerical constant a. For n > m + 4, Theorem 3.2 gives the an-
nounced result. One also knows (see Example 6.A.b) that d — 1 <
m < 2d, hence the result for n > 3d.

Remark. In the special case where n = 3d, Corollary 3.5 follows. In
this case, a running time of order d*D?*(log d)2 suffices. Using
D = O(eV"°em) (cf., 6.C.a) gives a running time subexponential in d.
It is conjectured that D = O(d") for some 4. On this conjecture, our
estimates give a polynomial bound on the running time. It is easy to
show that order d? steps are necessary in this case. Roughly, this
analysis also works for classical finite simple groups.
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8 Remarks on non-reversible versions of the walk

The chain proposed by Celler et al. [9] in their algorithm for gener-
ating random elements of a finite group G is not exactly the chain P at
(3.1) studied in the previous sections but a close cousin that we will
call P. To describe P, consider again the set of all generating n-tuples
of group elements. Let S be a generating set with |S| < n. Start the
walk by labeling the first |S| coordinates with the elements of S and
label all the remaining coordinates with the identity. The basic step of
their walk is as follows: Pick a pair of coordinates (u, v) uniformly at
random and multiply the group element at u by the element at v,
either on the right or on the left, each with probability 1/2.

To be more precise, denote by g(v) the vth coordinate. The chains
P and P differ in the following way: Once the ordered pair (u,v) of
coordinates has been chosen uniformly at random the mechanism for
Pis

h . .
replace g(u) by {e1t o g(u)g(v)_l each with equal probabilty

whereas the mechanism for P is

or g(v)g(u)

From a practical point of view the algorithm P has the important
advantage that it does not require computing g(v)_l. From a theo-
retical view-point the main difference between these two chains is that
P is reversible whereas P is not if G # (Z/2Z)*. Both chains have the
uniform distribution as their stationary measure because they are
doubly stochastic (see below).

To describe formally the chain P, we introduce some notation. For
x,y € Z = G", write

replace g(u) by { cither  g(u)g(v) each with equal probabilty .

) x and y differ exactly in one coordinate, say x; # y;,
x>~y if T
and there exists j # i such that y; = x;x; or xx; .

If x ~ y with x; # y;, let
N(x,y) = (the number of j such that x; 'y, = x;)
+ (the number of j such that yx; ' = x;) .

Finally, let N(x) be the number of coordinates equal to the identity.
Then
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0 if x2yandx#y

- N(x, : N

P(x,y) = Zn((n—y%) if xoy (8.2)
@ if x=y.

It is useful to write P as the sum of two pieces, a right piece R and a
left piece L defined as follows. The basic steps for the chains R, L are
the same as before except that, after picking (u,v) uniformly at
random, we replace g(u) by g(u)g(v) for the chain R and by g(v)g(u)
for the chain L. Thus,

P=YR+1L). (8.3)

Finally, consider the chains R*,L* where, after picking (u,v)
uniformly at random, we replace g(u) by g(u)g(v)~" for the chain R*
and by g(v) 'g(u) for the chain L*.

It is easy to verify that R, L are doubly stochastic with adjoint (i.e.,
transpose) R*,L* (“adjoint” refers to the space (*(Z) whereas
“transpose” refers to the matrices). This of course implies that P is
doubly stochastic with adjoint P* =1 (R* + L*).

Further, P = 3 (R + R*). There is obviously a “left” version of P
which is equal to }(L+L*). Lemma 3.1 generalizes (with the same
proof) as follows.

Lemma 8.1 Let G be a finite group and n > m(G) + m(G). Then, the
chains

R,L,R*,L*,P,P

are all irreducible, doubly stochastic, aperiodic Markov chains on the
set X C G" of n-tuples (xy, . ..,x,) which generate G. They all have the
uniform distribution n(x) = ||~ as stationary probability.

We shovyv below that all our other results also extend to the chains
R,L,R*,L*, P. In particular, we have

Theorem 8.2 Let K denote any one of the chains R,L,R*,L*, P. For any
group G, all n>2m(G)+m(G) and all ¢ >0, the semigroup
H, = e "UX) associated to the chain K on generating n-tuples sat-

isfies

1H} = mllpy < €'

for
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)( )|G|2m+1D2n2
MA(|G| - 2)

1+ 2m)

Here M = M(G) is the number of distinct generating m-tuples and
D = D(G) is the maximum diameter of G.

[(log(|G] — 1))(loglog |G[") + 2¢] .

Proof. First, we observe that the definitions (2.2)—(2.4) make perfect
sense for non-reversible chains. This allows us to extend the defini-
tions of f,(P) and o(P) to non-reversible chains (note that f;(P) is
not, in general, an eigenvalue of P). Now, there is a version of
Theorem 2.3 for non-reversible chains. Namely, (see [18], Theo-
rem 3.7).

Theorem 8.3 Let P be a finite Markov chain with stationary measure .
Then, for all ¢ > 0,

1
H —7 <e!'™® fort= log log—
H t HTV 1— ﬁ] ( )
To finish the proof when K = R or R*, we only have to observe that
Er=6Ep =6Ep .

This follows readily from the definition
=3 Z 1£60) = ) PRx, ) ()

because R*(x,y)n(x) = R(y,x)n(y) and P(x,y) = 1 (R(x,y) + R*(x, y))
Of course, all the results obtained for P also holds for the left version
of P and the above analysis works for L and L*. Finally, the desired
result for P =1 (R + L) follows.

Similar results can be obtained in discrete time for the chains
K. :%(1 + K) where K is one of the chains R, L, R*,L* or Pand [ is
the identity matrix. For this, use Theorem 3.7 of [18].
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