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Matchings and phylogenetic trees 
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ABSTRACT This paper presents a natural coordinate 
system for phylogenetic trees using a correspondence with the 
set of perfect matchings in the cornplete graph. l h i s  corre-
spondence produces a distance between phylogenetic trees, 
and a way of enumerating all trees in a minimal step order. It 
is useful in randomized algorithms because it enables moves 
on the space of trees that make random optimization strate-
gies "mix" quickly. It ;ilso promises a generalization to 
intermediary trees when data are not decisive as to their 
choice of tree, and a new way of constructing Bayesian priors 
on tree space. 

Motivation 

Much of the current research effort in phylogcnctic mcthod-
ology is being done in the exploration of 'lke S;I)L~CC,the spacc 
of all phylogenetic trees with a given number of leaves n.C 

Both the parsimony and maximum likelihood criteria lead to 
intractable combinatorial optimization problems on  this 
sp:~cc.' Validation of the trcc obtained by such algorithms is 
hampered by the discrctcncss and complexity of this underly-
ing spacc. Efforts to visualize the spacc have used graphs with 
vertices that arc the possible trecs and edges connecting trecs 
that differ by a rnoveg of some sort. Most optimization algo-
rithms use randomized moves that try to find local optima, 
using multiple starting points. Others follow the simulated 
annealing approach to randornizcd optimization; these also 
use random movcs. A notion of neighhouhood in this space 
would be most useful for infcrcntial purposes. 

Here, we introduce a bijection known to combinatorialists 
that allows construction of a coordinate system for phylogc-
nctic trccs. This systcm also admits a continuous interpolation, 
thus suggcsti~iga way of making continuous confidence state-
ments such as those provided by consensus of bootstraps or 
other rcsampling or  perturbation methods. Finally, it allows 
the wealth of tools developed to study matchings (3) to be used 
for phylogcnctic trccs. 

This coordinate systcm provides a new set of natural movcs 
on the trees, providing at the same time distances in tree space 
and either a way of doing complete enumeration by going 
through all the trccs in a step-by-step way or  a means for doing 
a random walk on tree space. 'Thcsc arc useful for doing 
simulated annealing for optimization. It is still an open prob-
Icm to say how fast such a method would converge within a 
certain percentage of the optima; however, some progress is 
currently being made by the authors on the convergence to the 
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FIG.1. Thcsc two trccs ;ire considcrcd idcntic;il 

uniform distribution for simple random walk (unpublished 
work) .I1 

A phylogcnctic tree is a binary rooted tree with n labeled 
lcavcs (see Fig. I).' 

Combinatorialists have known since 1870 that there arc 
more than an exponential number of such trccs (5) j  Another 
recent proof of this result identifies phylogenetic trees with 
perfect matchings on (211 - 2) points (7). 

What Is a Perfect Matching? A perfect matching on 2m 
points is a pairing of the points into n~ groups of two-the 
order within a group or between groups does not matter. Here 
is a perfect matching on 10 points: (1, 4)(2, 10)(3, 6)(5, 9)(7, 
8) .  It is easy to see there are (2m - 1)(2m - 3) . . . 3  perfect 
matchings on 2m points (so f o r m  = 3 there arc 15). There is 
a natural bijection, which assigns a matching of 2m points to 
a trcc with rn + 1 labeled Icavcs. Here is how the bijcction is 
created (scc Fig. 2). 

The first step is the labeling of ancestors. 

Look at all of the sibling pairs already labclcd [here it is ( I ,  
5) and (3, 4)]. 
Choose the pair with the smallest child [which is (1,s)  in this 
example]. 
Label that pair's parent with the next available label (7 is put 
on the node ancestral to 1 and 5). 
Repeat until all ancestral nodes except the root arc labclcd 
(see Fig. 3). 

One now goes from this labclcd tree to the matching, by 
pai~ingoff the sibl~ngs:(1, 5)(3, 4)(h, 7)(2, X ) ( 9 ,  10). 

'!'To whom reprint requests shoultf be ;itfdrcsscd. c-mail: sus;in((~lst;it. 
stanl'ord.ctfu. 

'Thcrc is a gootf introtfuctory presentation of trccs and Trcc Space at 
the web site l~ttp://taxonomy.zoo1ogy.gIi1.i1c.~k/-nc/ndscapc/trccs. 
html (M. A. Charleston, University of Glasgow, Gl;isgow, Scotl;ind). 

[Pintling the best t lcc  for  the parsimony criterion is the NP-cornplctc 
problem of finding ;i rectilinear multidimcnsion;II Steincr trcc (1). 

s'rhc movcs usctf currently by trcc building algorithms include Ncarcst 
Neighbor 1ntcrch;ingc (NNI) (2) or  subtrcc pruning re-grafting (SPR) 
and tree biscction/rcconncctio~~(TLIK). 

!'The case of  simple and mctropolizctf random walk o n  the spacc of 
permutations was studied (4). 

'Two semi-labeled trccs arc  equal when the labeling only changcs 
within sibling pairs (symmetric around any p;ircntal node). 
IThc authors of ref. 5 and later ref. 6 proved that thcrc arc  

semi-labeled trees with n 1c;ivcs. 
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FIG. 2. An initi;il phylogcnctic trcc with the lcavcs rclabclcd as 
nurnhcrs. Hcrc thcrc arc 0 rn + 1 1c;ivcs. 

In the other direction, we build a tree from a matching on 
2 ~ 1points. First we recall that the tree will have rn + 1 leaves 
so that among all the sibling pairs in the matching there will be 
at least one that is made up only of leaves. If therc are several, 
we choose the pair with the smallcst child; this pair will be the 
first sibling pair (or cladc) written down in the trce. 

Hcrc is an example: (1,3)(2, h)(5, 8)(4, 9)(7, 10). There arc 
m = 5 pairs, so there will be h lcavcs labclcd from 1 to 6, the 
first available ancestral labcl is 7. The labeled sibling pairs we 
start with arc (1, 3) and (2, 6),uf which (1,  3) 1x1s the smaller 
child, so it is assigned the parent 7; then the ncxt labclcd pair 
is (2, 6), and we assign it the next ancestor, thus building the 
tree sequentially. In the end we obtain the tree of Fig. 1 .  This 
is not the only bijection that can be constructed bctwccn 
perfect matchings and phylogcnctic Several rules arc 
possible for labeling the ancestors; for instance, we chose one 
that is easy to follow on the tree. 

Comparison to the Existing Notation. Biologists standard- 
ized their representation of trees by using a one-line paren- 
thesized expression called the Ncw Han~pshire or N c ~ ~ i c k  
format.l The matching notation can be enriched the samc way 
the Ncwick format enriches the parenthesis notation, so that 
the Newick trce with branch lengths is noted ((1 : 1, 4 : 1) : 3, 
((2 : 1 ,3 : l ) ,  5 : 2) : 1) and the corresponding matching notation 
would be (2 : 1 , 3  : 1)(1 : 1 , 4  : 1)(5 : 2, 7 : l)(h : 3, X : I). Thcrc 
is still room outside the matching's parentheses to add weights 
for cach sibling pair. 

Frc;. 3. The tree of Fig. 2 with internal nodes labclcd. 

kThc ;iuthor of rcl. X h;ivc a general bijection bctwccn k-partitions and 
trccs oldcgrcc (12 - l ) ,  anti cornbin;itorialists havc also dcvclopcd the 
corrcspondcncc from p;ircnthcscs (which is equivalent to unlabclcd 
tree topologies) and many different cl;isscs of oljccts, all countctf by 
C'at;ilan Numbers (7). 

'Fclscnstcin (9) traces the history of the choice of this lorrn;it. 
Il1'I%is can be seen by the parcnthcsis coding of the two trccs of Fig. 1: 

((4,(5,(2, q)),((7, 11,311 :i~ld (((1,7),3), (((0, 2),5),4)).
"Here is the algorithm for forming the matching from the parcnthcsis 
rcprcscnl;~lion: 

1. Order the labels within Ihc parcnthcsis. 
2. 	Go through the characters until ;i right bracket follows a Icft 

bracket and a comma. 
3. Put this in the set of av;iilablc pairs. Rcpcat 2,3 until the end olthc 

linc. 
4. 	Go through the list of avail;tblc pairs and find the one with thc 

sm;illcst child. Rcnlacc this nair bv ncxt available uarcnt labcl anti 
add it to the list hf sibling pairs. 'llcpcat 2,3,4 mtil the end. 

Pr-oc. Natl. Acad. Sci. USA 95 (1998) 14h01 

Unfortunately the Newick notation is not a bijection; there 
arc several such representations for the same tree." But therc 
is a simple algorithm for going from the Ncwick notation to the 
matching notation." 

Using Matchings to Build Distances in Tree Space. Many 
distances proposed for measuring dissimilarities between trecs 
arc based on different ways of representing them. The corre- 
spondence with matchings allows comparisons based on meth- 
ods used for nermutations. For instance. one can count the 
number of transpositions nccdcd to make one matching into 
another. To  make (1, 4)(2, h)(3, 5) into (2, 3)(4, h)(l,  5), one 
needs to transpose 4 and 5, thus obtaining (2, h)(3,4)(1, 5), and 
then transpose 3 and 6. Thus two n~ovesarc necessary to 
transform the first matcl~ing intv the second. For instance, the 
distancc between the trees in Figs. 1 and 2 is four in this metric. 

Counting the number of such moves bctwccn the two 
matchings gives a distance between trees that is easy to 
compute and is naturally invariant to irrelevant changcs in 
labcli~ig.~' 

The correspondence between matchings and trecs opens up 
several new possibilities that are easy to visualizc and compute 
in matching space. Here is a brief menu. 

Gray Codes for Phylogenies. Combinatorialists often seek 
ways of walking through the space of all objects in a step-by-
step way. This is also useful for evaluating phylogcnetic 
algorithms by running through all cases. The example treated 
shows how it is clone with 4-lcavcd trees but the samc mcthotl 
generalizes to any number of leavcs.1' 

Fig. 4 shows all 15 trees on 4 leaves; two trccs are connected 
if they are at distance one. 

The problem at hand is to find a path through this graph that 
goes through cach vertex once and once only; we will thus havc 
enumerated all the trecs from the first to  the last with a 
minimal number of changes.'l 

Another enumeration scheme used on tree space (13) uses 
a branch and bound method for enumerating phylogenetic 
trees that make moves that are not always simple transposi- 
tions; therefore, it is not a Gray code in a reasonable sense. 

Fourier Analysis in Tree Space. Matchings admit a natural 
action of the permutation group which gives a spectral analysis 
for collections of trees. The group theory also allows analysis 
of the natural random walk on trccs corresponding to random 
transpositions in matching space (see also-ref. 4). 

'rhc inverse ;!lgorithm is simpler: replace the 1;irgcst parent labcl by 
its children s~bling pair. 

"Some other distances consitfcrcd ;ire similar to those ~ ~ s e d  to cornp;irc 
pcrmut;itions as dcscribctf in rcl. 10. 

rJThis was first done by Frank Gray ( I  I )  in ;in ;irialog coding of digitzil 
data that ensured that an error in transmission would havc a rninirnal 
cffcct o n  the output. Scc ref. 12 for cxarnplcs of scvcral such coding 
schcmcs in st;itistical applications. 

qThis is equivalent to a Harniltonian path on the graph of Fig. 4. Hcrc 
is ;I list of rnatchings in such an order for trees o n  4 Icavcs: 

a (2.3) (4, 5) ( I ,  6) f (2, 3) ( I ,  5)  (4.6) k (1,3) (2, 5 )  (4.6) 
11 (2, 4)  (3, 5) (1,6) g (1,4) (2, 3) (5, 6) 1 (1,3) (2 ,4 )  (5, 0 )  
c (3, 4)  (2, 5) ( 1 ,  6)  h ( 1 ,  4) (2, 5) (3, 0 )  nt ( I ,  2) (3, 4) (5, 6) 
d (3, 4) (1,5) (2, 0 )  i ( I ,  4)  (3, 5) (2, 6) n (1, 2) (3, 5) (4, 0 )  
(, (2, 4)  ( I ,  5) ( 3 ,  0 )  1 (I ,  3) (4, 5) (2, 6 )  11 (I, 2) (4, 5 )  (3, 6) 

Note that from one linc to ;inother onlv two pairs tfiflcr. The Icttcrs 
correspond to the 1;ibcls of the matchi~gs in 'Fig. 4 
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Frc;. 4. 'I'hc g ~ a p h  of all matchings on 6 points 

Relaxing the Matchings to the Polytope. It is also the case that 
neither direct L I S ~of trees nor the parenthesis notation enables a 
representatiou in a contin~lous space. This has bccn a main 
problem in systematics for questions such as the following: 

1. 	 How near to being tree-like are the data? 
2. Call the data be seen as indicating a mixture of several trccs 

in somc sense? 
3. 	How can one decompose the data into the best tree, the 

second best, etc., in a unique way so that, for instance, if 
thcrc is a big difference between the first and second trec, 
this difference call indicate a prcfcrcncc for the first trcc. 

4. How can one crcatc nonparamctric Bayesian priors 011Tree 
Space? 

If we take the convex hull of all the matchings 011 N points 
in the multidimensional space of dimension N(N - 1)/2, wc 
obtaiu a polytope." Any convcx combination of trccs gives a 
unique point in the polytopc; thus the O L I ~ ~ L I ~from m~lltiple 
runs of a trec building program can be summarized by a point 
in the polytope. Some points in the polytope call be rcprc- 
sented in several ways as a convcx combination of the vertices 
(possible trees). This is a way of summarizing a ruu f r ~ m  all 
optimizing procedure that ends in several optimal trees; in- 
stcad of writing each trcc in parenthesis notation, wc can 
associate the point in the polytope, listing the closcst trccs and 
thus the coefficients in the matching polytopc. 

Randomized Algorithms for Optimization. Several random 
heuristic methods arc ~lscd for finding the optimal trec in somc 
scnsc; these methods are based on random moves and an 
annealing schedule." different mcthoci maintains a set of 
potential trccs, choosing two at random and creating two new 
trccs t h r o ~ ~ g h  a tree-reproduction scheme.' Algebraists have 
-.-

'A  polytope is ;i bounded polyhedron. Details about the matching 
polytopc may be found in (3). If onc takes a convcx combination of 

two matchings then one is in the matching polytopc. 


'Simulated anncaling for finding phylogcnctic trccs h;is bccn suggcstcd 

bv refs. 14 and 15. 


'dcnctic algorithms for phylogcnctic analysis was first suggcstcd by the 

authors ofrcf. 16 and implemented recently by thc authors of ref. 17. 
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introduced a method for making a product of two matchings 
in what is known as the Hrauer algebra (18, 19). This enables 
a simple implementation of a genetic algorithm; it remains an 
open problem to prove how fast, and under what conditions, 
this will converge to an optimum. 

A Space Where Bayesian Nonparametrics Are Possible? 
Several recent efforts of incorporating prior information about 
trccs have been proposed (20-22). Unfortunately, all of these 
efforts have rclicd heavily on parametric models. The coor- 
dinate system suggested hcrc cnablcs other priors, for instance, 
priors could be set 011 the polytope as a whole with high 
probabilities for the vertices because biologists do believe in 
the prior post~llatc of an evolutionary trcc. 

All three implementations rely on Monte Carlo Markov 
Chains 011 Tree Space to compute the posterior probabilities; 
using the transposition moves 011 matchings will certainly 
simplify some of the computational t~chnicalitics.~' 

"Coding of trccs by matrices instczid of pointcrs simplifies use of higher 
lcvcl languages such as MAIIAD (23) instcad of C, thus enabling 
students to use ~ncthods without considering thc programs as black 
boxes. 'l'his can bc done simply by associ;iting to the tree a two-
columncd matrix containing the matching pairs. 

Wc arc gratchll to Richard St;inlcy, Phil Ilanlon, and Louis Billcra 
for useful fccdback on thcsc ideas. P.W.D. ;icknowlcdgcs support from 
National Scicncc Foundation Grant DMS-9504379, and S.P.H. ac- 
knowledges support from ;i New York State Hatch Grant. 
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