
COUNTING CURVES ON RATIONAL SURFACES

RAVI VAKIL

Abstract. In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane
curves of degree d and geometric genus g in the plane (through the appropriate number of fixed
general points). We rephrase their arguments in the language of maps, and extend them to
other rational surfaces, and other specified intersections with a divisor. As applications, (i) we
count irreducible curves on Hirzebruch surfaces in a fixed divisor class and of fixed geometric
genus, (ii) we compute the higher genus Gromov-Witten invariants of (or equivalently, counting
curves of any genus and divisor class on) del Pezzo surfaces of degree at least 3. In the case of
the cubic surface in (ii), we first use a result of Graber to enumeratively interpret higher-genus
Gromov-Witten invariants of certain K-nef surfaces, and then apply this to a degeneration of
a cubic surface.
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1. Introduction

In [CH3], Caporaso and Harris used degeneration methods and subvarieties of the Hilbert
scheme to give recursions for the number of degree d geometric genus g plane curves through
3d + g − 1 general points (the Severi degrees of the plane). We recast their methods in the
language of stable maps, and generalize to different surfaces and multiple point conditions on
a divisor.

The first application is counting curves on any Hirzebruch surface (i.e. rational ruled surface)
of any genus and in any divisor class, i.e. computing Severi degrees for these surfaces.

The second application is computing genus g Gromov-Witten invariants of (all but two)
del Pezzo surfaces. These invariants are of recent interest because of the Virasoro conjecture
([EHX], a generalization of Witten’s conjecture, see [Ge2] and [LiuT] for more information)
giving relations among them, yet surprisingly almost no higher genus invariants of any variety
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are known. (By [GP], all invariants of Pn are known. By the methods of [Ge1], resp. [BP],
there is some hope of computing genus 1, resp. genus 2, invariants of some other varieties.)
These invariants are known to be enumerative on Fano surfaces (Section 4), so once again the
problem is one of counting curves, in this case, plane curves with fixed multiple points.

In order to count curves on a cubic surface, we need a result possibly of independent interest,
enumeratively interpreting invariants on certain non-Fano surfaces, where K is still numerically
effective. The key technical step here is due to Graber.

More speculatively, there should be a good algebraic definition of relative Gromov-Witten
invariants, loosely counting curves with prescribed intersection with a fixed divisor, meeting
various homology classes (in the same way as regular Gromov-Witten invariants loosely count
curves meeting various homology classes). See [Ru] for a discussion in the symplectic category
(and [LiRu], especially p. 11, for more detail; also [IPa]). The numbers given here and in
[CH3] (as well as the genus 0 numbers of [V1] and [Ga]) should be examples, although relative
invariants in general shouldn’t be enumerative).

As far as possible, we rely on analogous results of [CH3]. An example of the recursion in
action is given in Section 8.4.

There has been a great deal of earlier work on such problems, and a brief catalogue of some
of the highlights is given in Section 10.

1.1. Maps vs. Hilbert scheme. There seems to be an advantage in phrasing the argument
in terms of maps. Many of the proofs of [CH3] essentially involve maps, and the one exception
is the multiplicity calculation for “Type II components”, which in any case can also be proved
using maps (see Section 6.4). The arguments seem shorter as a result, although the content
is largely the same. The disadvantage is that one needs more machinery (the compactification
of the space of stable maps, Deligne-Mumford stacks), and one must worry about other com-
ponents of the moduli space, parametrizing maps not of interest. The arguments here could
certainly be phrased in terms of Hilbert schemes, and in the end it is probably a matter of
personal taste.

1.2. Acknowledgements. The author is especially grateful to J. Harris, A. J. de Jong, D.
Abramovich, and T. Graber for numerous conversations. J. Harris in particular suggested the
original motivating problem of Section 8, and his inspiration and support have been invaluable.
The author also thanks R. Pandharipande, E. Getzler, S. Kleiman, and L. Caporaso for helpful
discussions, and D. Watabe and L. Göttsche for advice and computational assistance. Part of
this work was done at the Mittag-Leffler Institute, and the author is grateful to the organizers
of the special year in Quantum Cohomology for this opportunity. This research was supported
by a Sloan Dissertation Fellowship.

1.3. Publication history. This article is a completely rewritten version of two preprints
(including some extensions, most notably Section 9.3), math.AG/9709003 (“Counting curves
of any genus on rational ruled surfaces”) and math.AG/9709004 (“Genus g Gromov-Witten
invariants of Del Pezzo surfaces: Counting plane curves with fixed multiple points”). They
were also Mittag-Leffler preprints (Reports No. 28 and 27 of 1996/7 respectively). Neither is
submitted for publication.

2. Definitions and preliminary results

2.1. Conventions.
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2.2. Combinatorial conventions. We follow the combinatorial conventions of [CH3]. For
any sequence α = (α1, α2, . . . ) of nonnegative integers with all but finitely many αi zero, set

|α| = α1 + α2 + α3 + . . . ,

Iα = α1 + 2α2 + 3α3 + . . . ,

Iα = 1α12α23α3 . . . ,

and

α! = α1!α2!α3! . . . .

The zero sequence will be denoted 0.

We denote by ek the sequence that is zero except for a 1 in the kth term (so that any sequence
α = (α1, α2, . . . ) is expressible as α =

∑
αkek). By the inequality α ≥ α′ we mean αk ≥ α′k for

all k; for such a pair of sequences we set(
α

α′

)
=

α!

α′!(α− α′)!
=

(
α1

α′1

)(
α2

α′2

)(
α3

α′3

)
. . . .

2.3. Geometric conventions. We work over the complex numbers. By scheme, we mean
scheme of finite type over C. By variety, we mean a separated integral scheme. By stack we
mean Deligne-Mumford stack. All morphisms of schemes are assumed to be defined over C,
and fibre products are over C unless otherwise specified. If f : C → X is a morphism of stacks
and Y is a closed substack of X, then define f−1(Y ) as C ×X Y ; f−1Y is a closed substack of
C.

For n ≥ 0, let Fn be the Hirzebruch surface, or rational ruled surface, PP1(O⊕O(n)). Recall
that the Picard group of Fn is isomorphic to Z2, with generators corresponding to the fiber of
the projective bundle F and a section E of self-intersection −n; E is unique if n > 0. Let S
be the class E + nF . (This class is usually denoted C, but we use nonstandard notation to
prevent confusion with the source of a map (C, π).) The canonical divisor KFn equivalent to
−(S + E + 2F ).

A family of n-pointed nodal curves over a base scheme or stack S (or an n-pointed nodal
curve over S) is a proper flat morphism π : C → S whose geometric fibers are reduced and
pure dimension 1, with at worst ordinary double points as singularities, along with n sections pi :
S → C whose images are disjoint and lie in the smooth locus of π. (There is no connectedness
condition.) If X is a scheme, then a family of maps of pointed nodal curves to X over S (or
a map of a pointed nodal curve to X over S) is a morphism ρ : C → X × S over S, where
π : C → S is a family of pointed nodal curves over S. A pointed nodal curve (with no base
specified) is a pointed nodal curve over SpecC, and a map of a pointed nodal curve to X is a
map over SpecC.

2.4. Stable maps and Gromov-Witten invariants. A stable map to a smooth projective
variety X is a map π from a connected pointed nodal curve to X such that π has finite
automorphism group. The arithmetic genus of a stable map is defined to be the arithmetic
genus of the nodal curve C. If [C] ∈ H2(C) is the fundamental class of C, then we say
π∗[C] ∈ H2(X) is the class of the stable map.

A family of stable maps is a family of maps of pointed nodal curves to X whose fibers over
maximal points are stable maps. Let Mg,n(X, ζ) be the stack whose category of sections of
a scheme S is the category of families of n-pointed stable maps to X over S of class ζ and
arithmetic genus g, with n marked points. For definitions and basic results, see [FP]. It is a
fine moduli stack of Deligne-Mumford type. There is a “universal map” over Mg,n(X, ζ) that
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is a family of maps of nodal curves. There is an open substackMg,n(X, ζ) that is a fine moduli
stack of maps of smooth curves. There are “evaluation” morphisms

ev1, . . . , evn :Mg,n(X, ζ)→ X;

evi takes the point (C, p1, . . . , pn, µ) ∈Mg,n(X, ζ) to the point µ(pi) in X.

(Genus g) Gromov-Witten invariants were defined by Kontsevich and Manin ([KM] Section
2). We recall their definition, closely following the discussion in [FP] Section 7 of the genus 0
case. There is a virtual fundamental class ([LiT], [BF], [B])

[Mg,n(X, ζ)]vir ∈ A
R
ζ c1(TX)+(dim X−3)(1−g)+nX.

For given arbitrary classes γ1, . . . , γn ∈ H∗X,

Ig,D(γ1 · · · γn) =

∫
Mg,n(X,D)

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn) ∪ [Mg,n(X, ζ)]vir(1)

is called a genus g Gromov-Witten invariant. They are deformation-invariant. If the classes γi

are homogeneous, this will be nonzero only if the sum of their codimensions is the “expected
dimension” ofMg,n(X, ζ).

By variations of the arguments in [FP] (p. 79):

(I) If D = 0, Ig,D(γ1 · · · γn) is non-zero only if

i) g = 0 and n = 3, in which case it is
∫

X
γ1 ∪ γ2 ∪ γ3, or

ii) g = 1, n = 1, and γ1 is a divisor class, in which case it is (γ1·cdim X−1(TX))/24. (The author
is grateful to T. Graber for pointing out this fact, which follows from a straightforward
obstruction calculation. This second case is the only part of the argument that is not
essentially identical to the genus 0 presentation in [FP].)

(II) If γ1 = 1 ∈ A0X, Ig,D(γ1 · · · γn) is nonzero unless D = 0, g = 0, n = 3, in which case it
is
∫

X
γ2 ∪ γ3.

(III) If γ1 ∈ A1X and D 6= 0, then by the divisorial axiom ([KM] 2.2.4 or [FP] p. 79),
Ig,D(γ1 · · · γn) =

(∫
D

γ1

)
· Ig,D(γ2 · · · γn).

In light of these three observations, in order to compute the genus g Gromov-Witten invari-
ants for a surface, we need only compute Ig,D(γn) where γ is the class of a point. It is immediate
that if D is the class of an exceptional curve, Ig,D(∅) = δg,0.

2.5. Quasi-stable maps. Define quasi-stable maps in the same way as stable maps, except
the source curve is not required to be connected. For X, ζ, g, n as before, there is a fine
moduli stack Mg,n(X, ζ)′ (of finite type) parametrizing genus g, n-pointed quasi-stable maps
to X, with image in class ζ; Mg,n(X, ζ) is a union of connected components of Mg,n(X, ζ)′.
All constructions for stable maps carry through for quasi-stable maps.

More precisely, let M(X)′ be the stack whose category of sections of a scheme S is the
category of families of quasi-stable maps to X over S. More conveniently, it is the choice of
a finite étale cover T → S and a family of stable maps to X over T . This stack naturally
splits into Mg,n(X, ζ)′, which are unions of connected components of M(X)′. For example,
M3(pt, 0)′ has two components, both of dimension 6. One is isomorphic toM3(pt, 0), and the
other is isomorphic to (M2(pt, 0)×M2(pt, 0))/(Z/2Z).

2.6. The surface in question. Throughout this paper, assume:

P1. X is a smooth rational surface and E ∼= P1 is a divisor on X.
P2. The surface X \ E is minimal, i.e. contains no (-1)-curves.
P3. The divisor class KX + E is negative on every curve on X.
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P4. If D is an effective divisor such that −(KX + E) ·D = 1, then D is smooth.

Note that there is a natural identification A1
QX ∼= H2(X,Q) as for such a surface h1,0(X) =

h2,0(X) = 0. Properties P3 and P4 would hold if −(KX +E) were very ample, which is true in
all cases of interest here. Useful examples of such (X,E) include when X = P2 and E is a line
(Section 7) or a conic (Section 9), or when X is a Hirzebruch surface and E is the “section at
infinity” (Section 8). Property P2 could be removed and other properties could be weakened
by modifying the results very slightly, but there seems to be no benefit to doing so.

2.7. The stacks V D,g(Ω, β) and V D,g(Ω, β)con.

Suppose S is a finite index set, Ω = {(qs,ms)}s∈S is a set of ordered pairs with qs ∈ E and
ms a positive integer, and β is a sequence of non-negative integers with all but finitely many
βi zero. Let D be a divisor class on X and g be an integer.

Let V D,g(Ω, β) be the (stack-theoretic) closure in Mg,|S|(X,D)′ (where the marked points
are labelled ps, s ∈ S) of quasi-stable maps π : (C, {ps}) → X such that each component of
C maps birationally to its image in X and π−1(E) consists of distinct smooth points (of C):
{ps}s∈S and {ri,j}1≤j≤βi, with

π∗(E) =
∑

s

msps +
∑
i,j

iri,j,

and π(ps) = qs. Clearly V D,g(Ω, β) is empty if
∑

ms + Iβ 6= D · E.

Define V D,g(Ω, β)con similarly, except C is required to be connected (so the closure can be
taken inMg,|S|(X,D)). Then V D,g(Ω, β)con is a union of connected components of V D,g(Ω, β).

Let α(Ω) be the sequence
∑

mses. Example: If X = P2, E is a line, D is d times the class
of a line, and {qs} are general points of E, then V D,g(Ω, β) is a map-theoretic analogue of the
Severi variety V d,g(α(Ω), β)(Ω) of [CH3].

For convenience, let

Υ = ΥD,g(β) := −(KX + E) ·D + |β|+ g − 1.

We will see that V D,g(Ω, β) is a stack of pure dimension Υ (Theorem 3.1).

2.8. Enumerative relevance and transversality.

Suppose
C −→ X ×B

π ↘ ↙
B

is a family of maps of nodal curves, with B irreducible. Let the intersection dimension of the
family (denoted idimB) be the largest number n of points on X such that for a general set S of
n points of X there is a map in the family whose image contains S. Note that idim B ≤ dimB.
If equality holds, we say the family is enumeratively relevant; otherwise it is enumeratively
irrelevant.

Let η : C → X be the induced map. Then if q is a general point of X, η−1q is pure dimension
dimB − 1, and by Sard’s theorem η−1q is reduced. Define the Weil divisor Hq := π∗η

−1q. As
X is rational, the Weil divisor class is independent of q (so long as q is chosen so that η−1q is
pure dimension dimB − 1); denote this class H.

This divisor can be intersected with any irreducible substack B′ of B: repeat the same
construction, using the universal family over B. Hence we have a “moving lemma”, and H is
naturally an element of A1B (in the operational Chow ring of B, see [V2] Section 3.10 for more
complete arguments). Note that if B is enumeratively irrelevant, then Hdim B[B] = 0.
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We say the family has property (†) if for the map (C, π) corresponding to a general point
of B, π∗C has no multiple components. If the family has property (†), each component of Hq

appears with multiplicity 1, and the map corresponding to a general point of each component
of Hq has property (†) (not difficult, see [V2] Section 3.10). Hence by induction, if the family
satisfies (†), the degree of Hdim B[B] is the number of maps whose image passes through dimB
general points of X.

2.9. Enumerative invariants. Define

ND,g(Ω, β) =

{
0 if V D,g(Ω, β) = ∅,
deg Hdim V D,g(Ω,β)[V D,g(Ω, β)] otherwise.

If V D,g(Ω, β) has property (†), then ND,g(Ω, β) counts maps in V D,g(Ω, β) whose image passes
through Υ general points of X. Define ND,g(Ω, β)con similarly.

For a given set {ms}s∈S, ND,g(Ω, β) is constant for generally chosen {qs}s∈S; let this number
be ND,g(α, β), where α = α(Ω) =

∑
ems . Define ND,g(α, β)con similarly.

The recursions of this paper for ND,g(Ω, β) and ND,g(Ω, β)con (Theorems 6.12 and 6.13 re-
spectively) correspond to specializing one of the divisors Hq by specializing q to be a point of
E.

3. Dimension counts

In this section, we prove a key dimension count (Theorem 3.1) and a bound on intersection
dimension (Proposition 3.4).

3.1. Theorem. — Let V be a component of V D,g(Ω, β), and suppose (C, {ps}, π) is the map
corresponding to a general point of V .

(a) dimV ≤ Υ = ΥD,g(β) = −(KX + E) ·D + |β|+ g − 1.
(b) If dimV = Υ, then C is smooth, and the map π is unramified.
(c) Conversely, if C is smooth and π is unramified, then dimV = Υ.
(d) If dimV = Υ and qs 6= qs′ for each (s, s′) such that ps and ps′ lie on different components

of C, then V has property (†).
Note that the hypotheses of (d) are satisfied if V is a component of V D,g(Ω, β)con or the
{qs} are distinct (and dim V = Υ). Hence ND,g(Ω, β)con is enumerative, and by (b) counts
irreducible (not just connected) curves.

We use the following lemma, which appears (in a different guise) in Section 2.2 of [CH3]:
(a) is contained in Corollary 2.4 and part (b) is Lemma 2.6. Part (a) was proven earlier by E.
Arbarello and M. Cornalba in [AC], Section 6.

3.2. Lemma (Arbarello-Cornalba, Caporaso-Harris). — Let V be an irreducible substack of
Mg(Y, β)′ where Y is smooth, such that if (C, π) corresponds to a general point of V then C is
smooth and π maps C birationally onto its image. Let N = coker(TC → π∗TY ), and let Ntors

be the torsion subsheaf of N . Then:

(a) If (C, π) corresponds to a general point of V then dim V ≤ h0(C,N/Ntors).
(b) Assume further that Y is a surface. Fix a smooth curve G in Y and points {qi,j} ⊂ G,

and assume that

π∗G =
∑
i,j

ipi,j +
∑
i,j

iri,j

6



with π(pi,j) = qi,j if (C, π) corresponds to a general point of V . Then

dimV ≤ h0(C,N/Ntors(−
∑
i,j

ipi,j −
∑
i,j

(i− 1)ri,j)) = h0(C,N/Ntors(−π∗G +
∑
i,j

ri,j)).

3.3. Lemma. — Let V be a component of V D,g(Ω, β) whose general point corresponds to a
map π : C → X where C is a smooth curve (not necessarily irreducible). Then dimV ≤ Υ. If
π is not unramified then the inequality is strict.

Proof. Note that by the definition of V D,g(Ω, β), π is a birational map from C to its image in
X, so we may invoke Lemma 3.2. The map TC → π∗TX is injective (as it is generically injective,
and there are no nontrivial torsion subsheaves of invertible sheaves). Define the normal sheaf
N (of π) and Ntors as in Lemma 3.2. The map π is unramified if and only if Ntors = 0. By
property P3, the divisor −π∗(KX + E) +

∑
ri,j is positive on each component of C, so by

Kodaira vanishing or Serre duality

H1(C,OC(KC − π∗(KX + E) +
∑

ri,j)) = 0.

As N/Ntors is a subsheaf of the invertible sheaf OC(−π∗KX + KC),

h0(C,N/Ntors(−π∗E +
∑

ri,j)) ≤ h0(C,OC(−π∗KX + KC − π∗E +
∑

ri,j))(2)

= χ(C,OC(−π∗KX + KC − π∗E +
∑

ri,j))

= −(KX + E) ·D + |β|+ g − 1

= Υ.

If C ′ is a component of C with −π∗(KX +E) ·C ′ = 1, then π : C ′ → X is an immersion (hence
unramified) by property P4. Thus if Ntors 6= 0, then it is non-zero when restricted to some
component C ′′ for which −π∗(KX +E) ·C ′′ ≥ 2. Let p be a point on C ′′ in the support of Ntors.
Then −π∗(KX + E) +

∑
ri,j − p is positive on each component of C, so by the same argument

as above, N/Ntors is a subsheaf of OC(−π∗KX + KC − p), so

h0(C,N/Ntors(−π∗E +
∑

ri,j)) ≤ h0(C,OC(−π∗KX + KC − π∗E +
∑

ri,j − p))

= Υ− 1.

Therefore, equality holds at (2) only if Ntors = 0, i.e. π is an immersion. By Lemma 3.2(a), the
result follows.

Proof of Theorem 3.1. Suppose dim V ≥ Υ. Let the normalizations of the components of C
be C(1), C(2), . . . , C(s), so pa(

∐
k C(k)) ≤ pa(C) with equality if and only if C is smooth.

Let β =
∑s

k=0 β(k) be the partition of β induced by C = ∪s
k=1C(k), let g(k) be the arithmetic

genus of C(k), and let

Υ(k) = (KX + E) · π∗[C(k)] + |β(k)|+ g(k)− 1.

By the definition of V D,g(Ω, β), π maps C(k) birationally onto its image.

By Lemma 3.3, C moves in a family of dimension at most
s∑

k=1

Υ(k) =
s∑

k=1

(−(KX + E) · π∗[C(k)] + |β(k)|+ g(k)− 1)

= −(KX + E) ·D + |β|+ pa

(∐
C(k)

)
− 1

≤ −(KX + E) ·D + |β|+ pa(C)− 1(3)

= Υ.
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This proves part (a).

If dimV = Υ, then equality must hold in (3), so C is smooth, and by Lemma 3.3, π is
unramified, proving (b).

For part (c), let N be the normal sheaf to the map π (which is invertible as π is unramified).
As π∗E contains no components of C,

N(−KC) = OC(−π∗(KX + E))⊗OC(π∗E).

is positive on every component of C by property P3 , so N is nonspecial. By Riemann-Roch,

h0(N) = −KX ·D + deg KC − g + 1 = −KX ·D + g − 1.

Requiring the curve to remain ms-fold tangent to E at the point ps of C (where π(ps) is required
to be the fixed point qs) imposes at most ms independent conditions. Requiring the curve to
remain i-fold tangent to E at the point ri,j of C imposes at most (i−1) independent conditions.
Thus

dim V ≥ −KX ·D + g − 1−
∑

ms − Iβ + |β|
= −(KX + E) ·D + |β|+ g − 1

as
∑

ms + Iβ = D ·E, completing the proof of (c).

For (d), we need only prove that two components of C have distinct images in X. It suffices to
show that if (C(i), π(i)) is the general map in a component of V D,g(i)(Ω(i), β(i))con of dimension
Υ(i) := ΥD,g(i)(Ω(i), β(i)) (i = 1, 2), and {q(1)s}s∈S(1) ∩ {q(2)s}s∈S(2) = ∅, then π(1)(C(1)) 6=
π(2)(C(2)) as sets. If Υ(i) > 0 for i = 1 or 2 (i.e. one of the images “moves”) then the result is
clear. Otherwise, for i = 1, 2, −(KX+E)·D ≥ 1 (by property P3), |β(i)| ≥ 0, and g(i)−1 ≥ −1.
As Υ(i) = 0 is the sum of these three terms, equality must hold in each case, so D is smooth
(property P4) and rational (g(i) = 0). Also, D meets E (or else D2 = −2− (KX +E) ·D = −1,
violating property P2), so (as |β(i)| = 0) Ω(i) is non-empty. Hence π(1)(C(1)) meets E at
different points than π(2)(C(2)), proving (d).

Fix an index set S. Let V be an irreducible substack of Mg,|S|(X,D)′, and let π : C → X
be the map corresponding to a general point of a component of V . Assume that π∗E =∑

msps +
∑

iri,j where π(ps) is required to be a fixed point qs of E as C varies. (In particular,
no component of C is mapped to E.) Define β by βi = #{ri,j}j and Ω = {(qs,ms)}s∈S.

3.4. Proposition. — The intersection dimension of V is at most ΥD,g(Ω, β). If equality
holds then V is a component of V D,g(Ω, β).

The main obstacle to proving this result is that the map π may not map components of C
birationally onto their image: the map π may collapse components or map them multiply onto
their image.

Proof. If necessary, pass to a dominant generically finite cover of V that will allow us to distin-
guish components of C. (Otherwise, monodromy on V may induce a nontrivial permutation of
the components of C.)

For convenience, first assume that C has no contracted rational or elliptic components. We
may replace C by its normalization; this will only make the bound worse. (The map from the
normalization of C is also a quasi-stable map.) We may further assume that C is irreducible,
as −(KX + E) ·D + |β|+ g − 1 is additive.

Suppose C maps with degree m to the irreducible curve D0 ⊂ X. Then the map π : C →
D0 factors through the normalization D̃ of D0. Let r be the total ramification index of the
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morphism C → D̃. By Theorem 3.1(a),

idim V ≤ dimV

≤ −(KX + E) ·D0 + |β|+ g(D̃)− 1

= − 1

m
(KX + E) · π∗[C] + |β|+ 1

m
(g(C)− 1− r/2)

≤ −(KX + E) · π∗[C] + |β|+ g(C)− 1

where we use the Riemann-Hurwitz formula for the map C → D̃ and the fact (property P3)
that −(KX +E) ·D0 > 0. Equality holds only if m = 1, so by Theorem 3.1, equality holds only
if V is a component of V D,g(Ω, β) for some g, Ω, β.

If C has contracted rational or elliptic components, replace C with those components of its
normalization that are not contracted elliptic or rational components (which reduces the genus
of C) and follow the same argument.

4. Enumerative interpretation of higher-genus Gromov-Witten invariants of

K-nef surfaces

In this section, we interpret higher-genus Gromov-Witten invariants of some K-nef surfaces.
By Section 2.4, we need only concern ourselves with point conditions. For convenience, we
make a definition.

4.1. Almost Fano surfaces. Suppose X is a smooth surface, and KX is positive on all curves
of X except for a rational G ⊂ X with G2 = −2 (so KX ·G = 0). Then we say (X,G) is almost
Fano.

One example is if X is the blow-up of a Fano surface at a point lying on exactly one (-1)-curve
E, and G is the proper transform of E, e.g. X = P2 blown up at 6 distinct points on a smooth
conic C, G the proper transform of E (see Section 9.3).

By essentially the same argument as that of Proposition 3.4, one shows:

4.2. Proposition. — Let X be a smooth rational surface with nonzero effective divisor D.
Suppose M is an irreducible component of Mg(X,D) with general map (C, π). If

(a) X is Fano, or
(b) (X,G) is almost Fano, and no component of C is mapped with positive degree to G, then

idim M ≤ −KX ·D + g − 1.(4)

If equality holds, then π is unramified, C is smooth, and π maps C birationally onto its image.

4.3. Fano surfaces. It is known that the higher-genus Gromov-Witten invariants of a
Fano surface X are enumerative. The author is unaware of a reference in the literature, so for
completeness the argument is sketched here.

By the preceding Proposition, the only components of Mg(X,D) whose images can meet

n := c1(TX) ·D + (dimX − 3)(1− g) = −KX ·D + g − 1

general points of X is the closure M of the locus of unramified maps from smooth curves.

Let M′
:= M×Mg(X,D) Mg,n(X,D) be the “nth universal curve over M,” a component of

Mg,n(X,D) of dimension 2n. Then by Lemma 4.2, (1) reduces to an integral over this com-

ponent M′
, where [M′

]vir = [M′
]. By Sard’s theorem, if q1, . . . , qn are general points of X,

9



∩iev
−1qi is a reduced scheme of dimension 0, and the intersection lies in the open set corre-

sponding to unramified maps. Hence if γ is the class of a point, the genus g Gromov-Witten
invariant Ig,D(γn) counts unramified genus g maps to X.

4.4. In [K1], p. 22–23, Kleiman gives an enumerative interpretation for a particular genus
0 Gromov-Witten invariant of F2, due to Abramovich and Bertram. See Section 8.3 for their
formula (AB0) and a generalization. This interpretation suggests the following result.

4.5. Theorem. — Suppose (X,G) is almost Fano, D is an effective divisor on X (not a
multiple of G), and γ is the class of a point. Let n := −KX ·D+g−1. Then the Gromov-Witten
invariant Ig,D(γn) is the number of stable maps π : C → X with π∗[C] = D, where

(i) the union C ′′ of components of C not mapping to E is connected, and

(ii) any other component C0 of C maps isomorphically to E, and C0 intersects C \ C0 at one
point, which is contained in C ′′.

Proof. Suppose N is a component of Mg(X,D) with idimN ≥ n (the only components that
could contribute to the Gromov-Witten integral (1)). Restrict to an open subset of N so
that the universal curve C can be written C = C ′ ∪ C ′′, where C ′ corresponds to the union
of components (of the general curve) mapping with positive degree to G, and C′′ corresponds
to the union of the remaining components. Suppose the curve C ′ corresponding to a general
(closed) point in C ′ has t connected components, maps to G with total degree k, and meets C ′′,
the curve corresponding to a general point in C′′, at s points. Then pa(C

′) ≥ 1 − t and (as C
is connected) s ≥ t, so

g = pa(C
′) + pa(C

′′)− 1 + s ≥ pa(C
′′) + s− t ≥ pa(C

′′).

LetM be the component ofMpa(C′′)(X,D − kG)′ induced by (C ′′, π|C′′). Then by Proposition
4.2(b),

idimN = idimM
≤ −KX · (D − kG) + pa(C

′′)− 1

≤ −KX ·D + g − 1

= n.

As equality holds, if M is any component of Mg(X,D) with idim M ≥ n, then idimM = n,
and the general map is as described in the statement of the theorem except that in (ii), all we
know is that C0 is rational and must map to G with degree at least 1.

But by a result of Graber ([G] Sections 3.2 and 3.3, and Proposition 3.5) if any C0 maps
with degree greater than 1, this component does not contribute to the invariant; the integral
(1) is 0.

4.6. Remark. The image of any map inMg(X, kG) (k > 0) must lie in G. The construction
of [Mg(X, kG)]vir depends only on the first-order neighborhood of G, so we can compute Ig,kG(·)
when X = F2 and G = E. When F2 is deformed to F0, the class kE deforms to a non-effective
class, so Ig,kG(·) = 0.

4.7. Remark. Section 2.4, Theorem 4.5, and the Remark above give an enumerative
interpretation of all genus g Gromov-Witten invariants on an almost Fano surface.
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5. Identifying potential components

Fix D, g, Ω, β, and let q be any point of E not in {qs}. Let Hq be the Weil divisor on
V D,g(Ω, β) corresponding to maps whose image contain q. In this section, we will derive a list
of subvarieties (call them potential components) in which each component of Hq of intersection
dimension Υ−1 appears. We will see in the next section that each potential component actually
appears in Hq.

The potential components come in two classes. First, one of the “moving tangencies” ri,j

could map to q. Call such components Type I potential components.

Second, the image could degenerate to contain E as a component. Call such components Type
II potential components. For any sequence γ ≥ 0 and subset S′′ ⊂ S (inducing Ω′′ ⊂ Ω), let
g′′ = g−|γ|+1. Define the Type II component K(Ω′′ ⊂ Ω, β, γ) as the closure inMg,|S|(X,D)′

of points representing maps π : C ′ ∪ C ′′ → X where

K1. the curve C ′ maps isomorphically to E, and contains the points {ps′}s′∈S\S′′ ,
K2. the curve C ′′ is smooth, each component maps birationally onto its image, and there exist

distinct ri,j ∈ C ′′ (1 ≤ j ≤ βi) and ti,j ∈ C ′′ (1 ≤ j ≤ γi) such that

π(ps) = qs and (π|C′′)∗(E) =
∑

s′′∈S′′

ms′′ps′′ +
∑

iri,j +
∑

iti,j,

K3. the intersection of the curves C ′ and C ′′ is {ti,j}i,j, and
K4. the points qs′ (s′ ∈ S \ S ′′) are distinct.

The stack K(Ω′′ ⊂ Ω, β, γ) is empty unless
∑

s′′∈S′′ ms′′ + I(β + γ) = (D−E) ·E. The genus

of C ′′ is g′′, and there is a degree
(

β+γ
β

)
rational map

K(Ω′′ ⊂ Ω, β, γ) 99K V D−E,g′′(Ω′′, β + γ)

corresponding to “forgetting the curve C ′”.

5.1. Theorem. — Let K be an irreducible component of Hq with intersection dimension
Υ− 1. Then

I. K is a component of V D,g(Ω′, β − ek), where Ω′ = Ω ∪ {(q, k)}, or
II. K is a component of K(Ω′′ ⊂ Ω, β, γ) for some γ and Ω′′.

This is the analogue of [CH3] Theorem 1.2. The approach is the same.

Proof. Let (C0, {ps}, π0) be the map corresponding to a general point of K.

Let
Π : (C, {ps}) −→ X ×B

↘ ↙
B

be a smooth irreducible one-parameter family of pointed quasi-stable maps (with total space
C) with point 0 ∈ B and an isomorphism of the fiber over 0 with (C0, {ps}, π0), such that the
image of the induced map B →Mg,|S|(X,D)′ lies in V D,g(Ω, β), but not in K. The total space
of the family C is a surface, so the pullback of the divisor E to this family has pure dimension
1. The components of Π−1E not contained in a fiber Ct (t ∈ B) must intersect the general fiber
and thus be the sections ps or multisections coming from the ri,j. Therefore π−1

0 E consists of
components of C and points that are limits of the ps or ri,j. In particular:

(*) The number of zero-dimensional components of π−1
0 E not mapped to any qs is at most

|β|, and

(**) If there are exactly |β| such components, the multiplicities of π∗0E at these points must
be given by the sequence β.

11



Case I. If C contains no components mapping to E, then

π∗0E =
∑

iai,j +
∑

ibi,j

where {ai,j}i,j are the points mapped to {ps}s∈S ∪ {q}, {bi,j} are the rest, and the second sum
is over all i, 1 ≤ j ≤ β′i for some sequence β′. By (*), |β′| ≤ |β| − 1. Then by Proposition 3.4,

idim K ≤ −(KX + E) ·D + |β′|+ g − 1

≤ −(KX + E) ·D + |β| − 1 + g − 1

= Υ− 1.

Equality must hold, so |β′| = |β| − 1 and K is of the form V D,g(Ω′, β − ek) for some Ω′, k. The
set π−1

0 E consists of |S| + |β| points ({ps}, the preimage of q, and {bi,j}). This is also true
of π−1E for a general map (C, π) in V D,g(Ω, β), so the multiplicities at these points must be
the same as for the general map (i.e. π∗0E has multiplicity ms at ps, etc.) so K must be as
described in I.

Case II. If otherwise a component of C maps to E, assume first that no components of C are
contracted to a point of E. Say C = C ′∪C ′′ where C ′ is the union of irreducible components of
C mapping to E and C ′′ is the union of the remaining components. Define m by π0∗[C

′] = mE,
so π0∗[C

′′] = D −mE. Let s = #(C ′ ∩ C ′′).

Then pa(C
′) ≥ 1−m, so

pa(C
′′) = g − pa(C

′) + 1− s ≤ g + m− s.

Assume (π0|C′′)∗E =
∑

iai,j +
∑

ibi,j where π(ai,j) are fixed points of E as C ′′ varies (as (C, π)
varies in K), and the second sum is over all i and 1 ≤ j ≤ β′′i for some sequence β′′. By (*),
|β′′| ≤ |β|+ s.

There is an open substack U ⊂ K (containing 0) such that the universal map over U may
be written

Π : (C ′ ∪ C ′′, {ps}) −→ X × U
↘ ↙

U

where for all t ∈ U , Πt(C ′t) ⊂ E, and Πt(C ′′t ) has no component mapping to E, and the fiber
over 0 has the given isomorphism with (C0, {ps}, π0). Let K ′ be the family (C ′′,Π|C′′). By
Proposition 3.4 (applied to the family K ′):

idim K = idim K ′

≤ −(KX + E) · (D −mE) + |β′′|+ pa(C
′′)− 1

≤ (−(KX + E) ·D − 2m) + (|β|+ s) + (g + m− s)− 1

= (−(KX + E) ·D + |β|+ g − 1)− 1− (m− 1)

= Υ− 1− (m− 1)

≤ Υ− 1.(5)

In the third line, we used property P1: E is rational, so (KX + E) · E = −2.

Equality must hold, so m = 1 and |β′′| = |β|+ s. By (**), the multiplicity of π∗0E at the |β|
points of C ′′ not in C ′∪{π−1

0 qs} is given by the sequence β. Let γ be the sequence given by the
multiplicities of (π0|C′′)∗E at the s points C ′ ∩ C ′′. Define S ′′ ⊂ S by S ′′ = {s′′ ∈ S|ps′′ ∈ C ′′}
(inducing Ω′′ ⊂ Ω). The remaining zero-dimensional components of π−1

0 E (aside from the |β|
points ri,j) must be {ps′′}s′′∈S′′ , and the multiplicity of π∗0E at ps′′ must be ms′′ .

Suppose the point z ∈ E appears in Ω exactly n times, say qs = r for 1 ≤ s ≤ n. For a
general map (C, π) in V D,g(Ω, β), π−1(z) is a length n subscheme, supported at {ps}1≤s≤n. In
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this limit, the map π0|C′ → E is an immersion, so (π0|C′)−1(r) has length 1. Thus at most one
of the {ps}1≤s≤n can lie on C ′. Thus K is a component of K(Ω′′ ⊂ Ω, β, γ) for some Ω′′ and γ.

Finally, if a component of C is contracted to a point of E, follow the same argument but
discard the contracted components (so the new source curve has arithmetic genus g′ < g, and
β′i, defined to be the number of ri,j on the new source curve, is at most βi). Then at (5), we
have

idim K ≤ ΥD,g′(β′)− 1 < ΥD,g(β)− 1.

Hence such K are enumeratively irrelevant.

There are other (enumeratively irrelevant) components of the divisor Hq not counted in
Theorem 5.1. For example, suppose X = P2 and E is a line L, and q1 and q2 are distinct points
of E. If D = 2L, g = 0, Ω = {(q1, 1), (q2, 1)}, β = 0, then V D,g(Ω, β) is a three-dimensional
family (generically) parametrizing conics through 2 fixed points q1, q2 of L. One component of
Hq (generically) parametrizes a line union L; this is a Type II potential component. The other
(generically) parametrizes degree 2 maps from P1 to L; it has intersection dimension 0.

5.2. Remark. Theorem 5.1 also describes components of Hq on V D,g(Ω, β)con.

6. Multiplicities and recursions

We next compute the multiplicities of Hq along each component K described in Theorem
5.1.

6.1. Type I components.

6.2. Proposition. — The component K = V D,g(Ω′, β − ek) appears with multiplicity k.

The proof is essentially that of the analogous proposition in [CH3] (Theorem 1.3a, Proposition
4.5, Section 4.3). Only one minor change is necessary: consider the natural map

σ : V D,g(Ω, β) 99K |OE

(∑
iβi

)
|

that is a morphism where the divisors Ri = {ri,j}1≤j≤βi are defined (with ri,j as in the definition
of V D,g(Ω, β)), given by

(C, π)→
∑

i

iπ(Ri).

Then [CH3] Lemma 4.6 should be replaced by:

6.3. Lemma. — The differential dσ is surjective at a general point of K.

The proof is essentially the same.

6.4. Type II components.

6.5. Versal deformation spaces of tacnodes. We first recall facts about versal deformation
spaces from tacnodes, following [CH1] and [CH3] Section 4. Let (C, p) be an mth order tacnode,
that is, a curve singularity equivalent to the origin in the plane curve given by the equation
y(y + xm) = 0.

The miniversal deformation space of (C, p) is an étale neighborhood of the origin in A2m−1

with co-ordinates a0, . . . , am−2, and b0, . . . , bm−1, and the “universal curve” π : S → ∆ is given
by

y2 + yxm + a0y + a1xy + · · ·+ am−2x
m−2y + b0 + b1x + · · ·+ bm−1x

m−1 = 0.
13



There are two loci in ∆ of interest to us. Let ∆m ⊂ ∆ be the closure of the locus representing
a curve with m nodes. It is smooth of dimension m − 1, and corresponds to locally reducible
curves. Let ∆m−1 ⊂ ∆ be the closure of the locus representing a curve with m− 1 nodes. It is
irreducible of dimension m, smooth away from ∆m, with m sheets of ∆m−1 crossing transversely
at a general point of ∆m.

Let m1, m2, . . . be any finite sequence of positive integers, and let (Cj, pj) be an (mj)
th

order tacnode. Denote the versal deformation space of (Cj, pj) by ∆j, and let aj,mj−2, . . . ,
aj,0, bj,mj−1, . . . , bj,0 be coordinates on ∆j as above. For each j, let ∆j,mj and ∆j,mj−1 ⊂ ∆j

be as above the closures of loci in ∆j over which the fibers of πj have mj and mj − 1 nodes
respectively. Set

∆ = ∆1 ×∆2 × . . . ,

∆m = ∆1,m1 ×∆2,m2 × . . . ,

∆m−1 = ∆1,m1−1 ×∆2,m2−1 × . . . .

Note that ∆, ∆m and ∆m−1 have dimensions
∑

(2mj − 1),
∑

(mj − 1) and
∑

mj respectively.

Let W ⊂ ∆ be a smooth subvariety of dimension
∑

(mj − 1) + 1, containing the linear
space ∆m. Suppose that the tangent plane to W is not contained in the union of hyperplanes
∪j{bj,0 = 0} ⊂ ∆. Let κ :=

∏
mj/ lcm(mj). Then:

6.6. Lemma. — With the hypotheses above, in an étale neighborhood of the origin in ∆,

W ∩∆m−1 = ∆m ∪ Γ1 ∪ Γ2 ∪ · · · ∪ Γκ

where Γ1, . . . , Γκ ⊂ W are distinct reduced unibranch curves having intersection multiplicity
exactly lcm(mj) with ∆m at the origin.

This lemma arose in conversations with J. Harris, and appears (with proof) as part of [CH3]
Lemma 4.3. Results of a similar flavor appear in [V1] Section 1 and [V3] Section 2.5, although
the proofs are different.

6.7. Calculating the multiplicity.

Suppose K = K(Ω′′ ⊂ Ω, β, γ) is a Type II component of Hq (on V D,g(Ω, β)). Let m1, . . . ,
m|γ| be a set of positive integers with j appearing γj times (j = 1, 2, . . . ), so

∑
mi = Iγ.

6.8. Proposition. — The multiplicity of Hq along K is m1 . . . m|γ| = Iγ.

The proof of this proposition will occupy us until Section 6.11.

Fix general points s1, . . . , sΥ−1 on X, and let Hi be the divisor on V D,g(Ω, β) corresponding to
requiring the image curve to pass through si. By Sard’s Theorem, the intersection of V D,g(Ω, β)
with ∩iHi is a curve V and the intersection of K with ∩iHi is a finite set of points (non-empty
as K has intersection dimension Υ − 1). Choose a point (C, π) of K ∩H1 ∩ · · · ∩HΥ−1. The
multiplicity of Hq along K on V D,g(Ω, β) is the multiplicity of Hq at the point (C, π) on the
curve V .

For such (C, π) in K(Ω′′ ⊂ Ω, β, γ) there are unique choices of points {ri,j} on C (up to
permutations of {ri,j} for fixed i).

Define the map (C̃, π̃) as follows: C
π→ X factors through

C
ν→ C̃

π̃→ X

where ν is a homeomorphism (a seminormalization) and π̃ is locally an immersion. Each node
of C is mapped to a tacnode (of some order) of C̃, and ν : C → C̃ is a partial normalization.
Then C̃ has arithmetic genus g̃ := g +

∑
(mi − 1).
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Let Def(C̃, π̃) be the deformations of (C̃, π̃) preserving the incidences to s1, . . . , sΥ−1

and the tangencies to E (π̃∗E =
∑

msps +
∑

iri,j, π̃(ps) = qs). For convenience, let N :=
NC̃/X(−

∑
msps −

∑
(i− 1)ri,j).

6.9. Lemma. — The space Def(C̃, π̃) is smooth of dimension
∑

(mj − 1) + 1.

Proof. We will show the equivalent result: the vector space of first-order deformations of (C̃, π̃)
preserving the tangency conditions (but not necessarily the incidence conditions s1, . . . , sΥ−1)
has dimension Υ +

∑
(mi − 1), and is unobstructed.

As (C̃, π̃) is an immersion, let NC̃/X = OC̃(−π̃∗KX + KC̃) be the normal bundle to π̃. By

property P3, as π̃∗(KX + E −
∑

ri,j) is negative on every component of C̃, h1(C̃,N) = 0 so

h0(C̃,N) = χ(C̃,NC̃/X(−
∑

msps −
∑

(i− 1)ri,j))

= deg(π̃∗(−KX − E +
∑

ri,j)) + deg KC̃ − g̃ + 1

= −(KX + E) ·D + |β|+ g̃ − 1

= −(KX + E) ·D + |β|+ g +
∑

(mi − 1)− 1

= Υ +
∑

(mi − 1).

Thus there are Υ +
∑

(mi − 1) first-order deformations, and as h1(C̃,N) = 0 they are unob-
structed.

By the proof of the above lemma, H0(C̃,N) is naturally the tangent space to Def(C̃, π̃).
Now −KX restricted to C ′ has degree KX ·E = 2 + E2; KC̃ restricted to C ′ has degree Iγ− 2,
which is (deg KC′) plus the length of the scheme-theoretic intersection of C ′ and C ′′. Therefore

deg N |C′ = 2 + E2 + Iγ − 2−
∑

s′∈S\S′′
ms′

= D · E − (D −E) · E + Iγ −
∑

s′∈S\S′′
ms′

= (
∑
s∈S

ms + Iβ)− (
∑

s′′∈S′′

ms′′ + Iβ + Iγ) + Iγ −
∑

s′∈S\S′′
ms′

= 0

so the restriction of N to C ′ is the trivial line bundle.

Also, if p is a general point on C ′ then h0(C̃,N(−p)) = h0(C̃,N) − 1. (Proof: From above,
h1(C̃,N) = 0. By the same argument, as deg(KX + E)|E = −2, π̃∗(KX + E −

∑
ri,j + p) is

negative on every component of C̃, so h1(C̃,N(−p)) = 0. Thus h0(C̃,N(−p)) − h0(C̃,N) =
χ(C̃,N(−p))− χ(C̃,N) = −1.) Thus there is a section of N that is nonzero on C ′.

Let J be the Jacobian ideal of C̃. In an étale neighborhood of the (C, π), there are natural
maps

V
ρ→ Def(C̃, π̃)

σ→ ∆

where the differential of σ is given by the natural map

H0(C̃,N)→ H0(C̃,N ⊗ (OC̃/J )).(6)

6.10. Lemma. — In a neighborhood of the origin, the morphism

σ : Def(C̃, π̃)→ ∆
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is an immersion, and the tangent space to σ(Def(C̃, π̃)) contains ∆m and is not contained in
the union of hyperplanes ∪j{bj,0 = 0}.
Proof. From (6), the Zariski tangent space to the divisor σ∗(bj,0 = 0) is a subspace Z of

H0(C̃,N) vanishing at a point of C ′ (the jth tacnode). But N |C′ is a trivial bundle, so this
subspace of sections Z must vanish on all of C ′. As there is a section of N that is non-zero
on C ′, Z has dimension at most h0(C̃,N) − 1 = dim Def(C̃, π) − 1. This proves that σ is an
immersion, and that the tangent space to σ(Def(C̃, π̃)) is not contained in {bj,0 = 0}.

Finally, if S is the divisor (on Def(C̃, π̃)) corresponding to requiring the image curve to pass
through a fixed general point of E, then σ(S) ⊂ ∆m, as the image curve must be reducible. As
σ is an immersion, ∑

(mi − 1) = dim Def(C̃, π̃)− 1

= dim S

= dim σ(S)

≤ dim ∆m(7)

=
∑

(mi − 1)

so we must have equality at (7), and the linear space ∆m = σ(S) is contained in σ(Def(C̃, π̃)),
and thus in the tangent space to σ(Def(C̃, π̃)).

Therefore the image σ(Def(C̃, π̃)) satisfies the hypotheses of Lemma 6.6, so the closure of
the inverse image σ−1(∆m−1 \ ∆m) will have

∏
mi/ lcm(mi) reduced branches, each having

intersection multiplicity lcm(mi) with σ−1(∆m) and hence with the hyperplane Hq. Since in a

neighborhood of (C, π) the variety V is a curve birational with ρ(V ) = σ−1(∆m−1 \∆m), we
conclude that the divisor Hq contains K(Ω′′ ⊂ Ω, β, γ) with multiplicity m1 · · ·m|γ| = Iγ.

This completes the proof of Proposition 6.8. As an added benefit, we see that V D,g(Ω, β) has
Iγ/ lcm(γ) branches at a general point of K(Ω′′ ⊂ Ω, β, γ), where lcm(γ) is the least common
multiple of the set #{i|γi 6= 0}.

6.11. Recursions. Theorem 5.1 and Propositions 6.2 and 6.8 give a rational equivalence
between Hq and a linear combination of boundary components. Intersecting this equivalence
with HΥ−1 yields the following recursion (the generalization of [CH3] Theorem 1.1).

6.12. Theorem. — If Υ = dimV D,g(Ω, β) > 0,

ND,g(Ω, β) =
∑

k

kND,g(Ω′, β − ek) +
∑

Iγ

(
β + γ

β

)
ND−E,g′′(Ω′′, β + γ)

where

• in the first sum, Ω′ = Ω ∪ {(q, k)}, and
• the second sum runs over choices S′′ ⊂ S such that the points {qs′}s′∈S\S′′ are distinct,

and γ ≥ 0; also, g′′ := g − |γ|+ 1.

By considering divisors only on V D,g(Ω, β)con, we get a recursion for irreducible curves.
The proof is identical, except that rather than considering all maps, we just consider maps
from connected curves. The Type I components that can appear are analogous. The Type II
components consist of maps from curves C = C(0)∪· · ·∪C(l) where C(0) maps isomorphically
to E, and C(i) intersects C(j) if and only if ij = 0. (In the general case Theorem 6.12, C(i)
intersected C(j) only if ij = 0.)

16



6.13. Theorem. — If Υ = dimV D,g(Ω, β)con > 0, then

ND,g(Ω, β)con =
∑

k

kND,g(Ω′, β − ek)
con

+
∑ 1

σ

(
ΥD,g(β)− 1

ΥD1,g1(β1), . . . ,ΥDl,gl(βl)

) l∏
i=1

(
βi + γi

βi

)
Iβi−γiNDi,gi(Ωi, βi + γi)con

(cf. [CH3] Section 1.4) where

• in the first sum, Ω′ = Ω ∪ {(q, k)}, and
• the second sum runs over choices of Di, gi, Ωi, βi, γi (1 ≤ i ≤ l) where

– Di is a divisor class (with
∑

Di = D − E),
– gi is a non-negative integer,
– βi and γi are sequences of non-negative integers (with

∑
i β

i = β, γi 6= 0),
–
∐

Ωi ⊂ Ω (with Ω \
∐

Ωi consisting of distinct points {qs}), and
– σ is the order of the symmetry group of the set {(Di, gi,Ωi, βi, γi)}1≤i≤l.

6.14. Theorems 6.12 and 6.13 as differential equations, following Getzler. Assemble the
enumerative invariants (in the case where {qs} are general) in a generating function

G =
∑

D,g,α,β

ND,g(α, β)vDwg−1

(
xα

α!

)
yβ

(
zΥ

Υ!

)
(where w and z are variables, x = (x1, x2, . . . ), y = (y1, y2, . . . ), and {vD}D effective,D 6=E generates
a semigroup algebra, the Novikov ring). Then Theorem 6.12 is equivalent to the differential
equation

∂G

∂z
=

(∑
kyk

∂

∂xk

+
vE

w
rest=0 e

P
(t−kxk+kwtk ∂

∂yk
)

)
G.(8)

The corresponding observation for the plane is due to Getzler ([Ge1] Section 5.3), and nothing
essentially new is involved here, although the notation is slightly different from Getzler’s.

Define the generating function

Girr =
∑

D,g,α,β

ND,g(α, β)convDwg−1

(
xα

α!

)
yβ

(
zΥ

Υ!

)
.

Then by a simple combinatorial argument (see e.g. [W] Chapter 3), G = eGirr . Substituting
this into (8) yields a differential equation satisfied by Girr:

∂Girr

∂z
=
∑

kyk
∂

∂xk

Girr +
vE

w
rest=0 e

P
(t−kxk+Girr|yk 7→yk+kwtk

)−Girr(9)

where Girr |yk 7→yk+kwtk is the same as Girr except yk has been replaced by (yk + kw). (Once
again, this should be compared with Getzler’s formula [Ge1], p. 993.)

7. Application: Caporaso-Harris revisited

If X = P2 and E is a line, Theorem 6.12 applied when the {qs} are distinct points is the
recursion of Caporaso and Harris ([CH3] Section 1.4). A minor additional observation: by
induction, ND,g(Ω, β) is independent of the points {qs} (so long as they are distinct). This is
true of the applications in the next two sections as well.

Computationally, it is simpler to apply Theorem 6.12 when the {qs} are distinct. It is always
possible to reduce a more complicated enumerative problem to this case. For example,
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7.1. Lemma. — Suppose si ∈ E, si /∈ {qs} (i = 1, 2, 3), si distinct. Then

ND,g(Ω ∪ {(s1, 1), (s1, 1)}, β) = ND,g(Ω ∪ {(s1, 1), (s2, 1)}, β)−ND,g(Ω ∪ {(s1, 2)}, β),

ND,g(Ω ∪ {(s1, 1), (s1, 1), (s1, 1)}, β) = ND,g(Ω ∪ {(s1, 1), (s2, 1), (s3, 1)}, β)

−3ND,g(Ω ∪ {(s1, 1), (s2, 2)}, β)

+2ND,g(Ω ∪ {(s1, 3)}, β).

This tells us how to reduce the conditions of a double or triple point on E to tangency
conditions. (Warning: the left side counts curves with multiple points with labelled branches at
the n-fold point; to forget the labelling, one must divide by n!.) There are analogous expressions
for all other cases where a point s1 on E appears multiply in {qs}. The result still holds when
ND,g(·, ·) is replaced by ND,g(·, ·)con. The lemma can be proved by induction (on Ω and β)
using Theorem 6.12.

8. Application: Counting curves on Hirzebruch surfaces

Theorems 6.12 and 6.13 count curves of any genus in any divisor class on Fn. The “seed
data” necessary are the cases where ΥD,g(Ω, β) = dimV D,g(Ω, β) = 0. It can be easily checked
(using Theorem 3.1) that the only non-empty V D,g(Ω, β)con where Υ = 0 has D = F , g = 0,
Ω = {(pt, 1)}, β = 0; in this case, ND,g(Ω, β)con = 1. Hence the only non-empty V D,g(Ω, β)
where Υ = 0 has (for some integer k > 0) D = kF , g = 1 − k, |S| = k, ms = 1 for all s ∈ S,
and |β| = 0. In this case, if σ is the order of the symmetry group of the set {qs},

ND,g(Ω, β) = deg[V D,g(Ω, β)] =
1

σ
.

The following proposition shows that if the points {qs} are distinct, ND,g(Ω, β) counts nodal
curves.

8.1. Proposition. — If X = Fn, the {ps} are distinct, and (C, π) is a general curve in a
component of V D,g(Ω, β), then π(C) has at most nodes as singularities.

The proof is easily adapted from that of [CH3] Prop. 2.2 a), and is omitted.

Warning: The proof requires more than properties P1–P4. The following example shows
that the result does not hold for every (X,E) satisfying properties P1–P4. Let X = P2 and E
be a smooth conic (see the next Section). Choose six distinct points a, . . . , f on E such that
the lines ab, cd, and ef meet at a point. Then if L is the class of a line,

V D=3L,g=−2(Ω = {(a, 1), . . . , (f, 1)}, β = 0)

consists of a finite number of maps, one of which is the map sending three disjoint P1’s to the
lines ab, cd, and ef .

8.2. Higher genus Gromov-Witten invariants of Hirzebruch surfaces. Suppose X
is F0 or F1. As X is Fano, the higher genus Gromov-Witten invariants are enumerative (Section
4), so for fixed g, D 6= 0, if γ is the class of a point, then invariant

Ig,D(γ−KX ·D+g−1) =

{
δg,0 if (X,D) = (F1, E)
ND,g(∅, (D ·E)e1)

con otherwise

can be recursively calculated by Theorem 6.13. As Fn is deformation-equivalent to F0 if n is
even, or F1 if n is odd ([N] p. 9–10), this computes the invariants of all Fn.
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F0 F1 F2 F3 F4

2S g = 0: 1 g = 1: 1 g = 2: 1 g = 3: 1
g = 0: 10 g = 1: 17 g = 2: 24

g = 0: 69 g = 1: 177
g = 0: 406

2S + F g = 0: 1 g = 1: 1 g = 2: 1 g = 3: 1
g = 0: 12 g = 1: 20 g = 2: 28

g = 0: 102 (93) g = 1: 246 (234)
g = 0: 781 (594)

2S + 2F g = 1: 1 g = 2: 1 g = 3: 1
g = 0: 12 g = 1: 20 g = 2: 28

g = 0: 105 (96) g = 1: 252 (240)
g = 0: 856 (636)

2S + 3F g = 2: 1 g = 3: 1
g = 1: 20 g = 2: 28

g = 0: 105 (96) g = 1: 252 (240)
g = 0: 860 (640)

2S + 4F g = 3: 1
g = 2: 28

g = 1: 252 (240)
g = 0: 860 (640)

Table 1. Number of genus g curves in class 2S + kF on Fn

8.3. Curves in F2 in terms of curves in F0. Let Ng
Fn

(aS + bF ) be the number
of irreducible genus g curves in class aS + bF through the appropriate number of points.
Abramovich and Bertram have proved

N0
F0

(aS + (a + b)F ) =
a−1∑
i=0

(
b + 2i

i

)
N0

F2
(aS + bF − iE).(AB0)

by degenerating F2 to F0 (so the class aS+(a+b)F on F0 degenerates to aS+bF on F2, [AB1]).
Graber has given another proof ([G] Section 3.5). From Section 4, computing the invariants of
F2 in two ways (by deforming to F0, and by Theorem 4.5), this formula generalizes to higher
genus:

Ng
F0

(aS + (a + b)F ) =
a−1∑
i=0

(
b + 2i

i

)
Ng

F2
(aS + bF − iE).

8.4. Examples. Table 1 gives the number of genus g curves in certain classes on certain
Fn. Where the number of irreducible curves is different, it is given in parentheses. Tables 2 and
3 give more examples; only the total number is given, although the number of irreducible curves
could also be easily computed (using Theorem 6.13). Many of these numbers were computed
by a maple program written by L. Göttsche to implement the algorithm of Theorem 6.12.

As an example of the algorithm in action, we calculate N4S,1(∅, 0) = 225 on F1. (This is also
the number of two-nodal elliptic plane quartics through 11 fixed general points.) There are a
finite number of such elliptic curves through 11 fixed general points on F1. We calculate the
number by specializing the fixed points to lie on E one at a time, and following what happens
to the finite number of curves.
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Class Genus Number Class Genus Number Class Genus Number
3S -2 15 3S + 2F 0 22647 3S + 3F 0 642434

-1 21 1 14204 1 577430
0 12 2 4249 2 291612
1 1 3 615 3 83057

3S + F 0 675 4 41 4 13405
1 225 5 1 5 1200
2 27 6 55
3 1 7 1

Table 2. Number of (possibly reducible) genus g curves in various classes on F1

Genus -2 -1 0 1 2 3 4
Number 280 1200 2397 1440 340 32 1

Table 3. Number of (possibly reducible) genus g curves in class 3S on F2

N4S,1(∅, 0) = 225

N3S+F,1(∅, e1) = 225

N2S+2F,1(∅, 2e1) = 20

N2S+2F,1(∅, e2) = 30 N2S+2F,1({(pt, 1)}, e1) = 20

NS+3F,0(∅, 3e1) = 1N2S+2F,1({(pt1, 1), (pt2, 1)}, 0) = 17N2S+2F,1({(pt, 2)}, 0) = 15

NS+3F,0(∅, e1 + e2) = 4 NS+3F,−1(∅, 3e1) = 7

N2S+2F,0(∅, 2e1) = 96 + 9 = 105

N3S+F,1({(pt, 1)}, 0) = 185

×2

×2
×3

×2

×2

Figure 1. Calculating N4S,1(∅, 0) = 225.
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The divisor E is represented by the horizontal doted line, and fixed points on E are repre-
sented by fat dots. Part of the figure, the calculation that N2S+2F,0(∅, 2e1) = 105, has been
omitted.

After the first specialization, the curve must contain E. (Reason: As 4S · E = 0, any
representative of 4S containing a point of E must contain all of E.) The residual curve is in
class 3S + F . Theorem 6.12 gives

N4S,1(∅, 0) = N3S+F,1(∅, e1).

After specializing a second point q to lie on E, two things could happen to the elliptic curve.
First, the limit curve could remain smooth, and pass through the fixed point q of E. This will
happen N3S+F,1({(q, 1)}, 0) times. Second, the curve could contain E. Then the residual curve
C ′ is in class 2S + 2F , and is a nodal curve intersecting E at two distinct points. Of the two
nodes of the original curve C, one goes to the node of C ′, and the other tends to one of the
intersection of C ′ with E. The choice of the two possible limits of the node gives a multiplicity
of 2 (indicated by the “×2” in the figure). Theorem 6.12 gives

N3S+F,1(∅, e1) = N3S+F,1({(q, 1)}, 0) + 2N2S+2F,1(∅, 2e1).

The rest of the derivation is similar.

9. Application: Higher genus Gromov-Witten invariants of del Pezzo

surfaces

In this section, we compute the higher genus Gromov-Witten invariants of P2 blown up at
s ≤ 6 points. By Section 4, it suffices to count maps through various numbers of points, i.e.
compute Ig,D(γn) where γ is the class of a point. If D is an exceptional curve, the invariant is
δg,0.

9.1. The case s ≤ 5. If D 6= E is not an exceptional curve, then by blowing down the s
exceptional divisors, the invariants count maps with “s multiple points”.

More precisely, let Y be the del Pezzo surface that is P2 blown up at s points q1, . . . , qs (no
3 collinear). Let X = P2, H the class of a line, and E the smooth conic through q1, . . . , qs.
Then if dH −

∑
fiEi 6= Ej ,

Ig,dH−
P

fiEi(γ
n) = NdH,g(Ω, (2d−

∑
fi)e1)

where Ω consists of fi copies of (qi, 1) (1 ≤ i ≤ s) and n = idim V dH,g(Ω, (2d−
∑

fi)e1) is the
appropriate number of point conditions.

Theorem 6.13 calculates these numbers recursively, given “seed data” of the cases when
Υ = 0. It can be easily checked (using Theorem 3.1) that the only non-empty V D,g(Ω, β)con

where Υ = 0 is the case D = H, g = 0, Ω = {(pt1, 1), (pt2, 1)} or {(pt, 2)}, β = 0, in which case
ND,g(Ω, β)con = 1 (there is only one line through 2 distinct fixed points of a conic, and only
one line tangent to a conic at a fixed point). Theorem 6.12 counts maps from reducible curves,
of course. Lemma 7.1 applies here as well, and can be used to simplify calculations.

9.2. Examples. If f is the sequence f1, . . . , fs, let Nd,g
f be the genus g invariant for class

dH −
∑

fiEi. For convenience, we indicate repetitions of fi with exponents, e.g. Nd,g
2,2,2 = Nd,g

23 .

Then Table 4 gives values of Nd,g
f for d ≤ 5.

It is computationally more convenient to count maps of possibly disconnected curves, and the
results in Table 4 were obtained by first counting such maps and then inductively subtracting
the maps from reducible curves. A short Maple program computing these numbers (based on
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N1,0 N2,0 N3,1 N3,0 N3,0
2 N4,3 N4,2 N4,1 N4,0 N4,2

2 N4,1
2 N4,0

2

1 1 1 12 1 1 27 225 620 1 20 96

N4,1
22 N4,0

22 N4,0
23 N4,0

3 N5,6 N5,5 N5,4 N5,3 N5,2 N5,1 N5,0

1 12 1 1 1 48 882 7915 36855 87192 87304

N5,5
2 N5,4

2 N5,3
2 N5,2

2 N5,1
2 N5,0

2

1 41 615 4235 13775 18132

N5,4
22 N5,3

22 N5,2
22 N5,1

22 N5,0
22 N5,3

23 N5,2
23 N5,1

23 N5,0
23

1 34 396 1887 3510 1 27 225 620

N5,2
24 N5,1

24 N5,0
24 N5,1

25 N5,0
25 N5,3

3 N5,2
3 N5,1

3 N5,0
3

1 20 96 1 12 1 28 240 640

N5,2
3,2 N5,1

3,2 N5,0
3,2 N5,1

3,22 N5,0
3,22 N5,0

3,23 N5,0
4

1 20 96 1 12 1 1

Table 4. Numbers of irreducible plane curves with fixed multiple points, or
invariants of Fano surfaces

R6,9
2 R6,8

2 R6,7
2 R6,6

2 R6,5
2 R6,4

2 R6,3
2 R6,2

2 R6,1
2 R6,0

2 R6,8
22 R6,7

22 R6,6
22 R6,5

22

1 68 1914 29091 261945 1448496 4960863 10430567 13170063 9753850 1 61 1507 19581

R6,4
22 R6,3

22 R6,2
22 R6,1

22 R6,0
22 R6,7

23 R6,6
23 R6,5

23 R6,4
23 R6,3

23 R6,2
23 R6,1

23 R6,0
23

146070 645102 1691553 5188493/2 4559365/2 1 54 1149 12437 743170 251295 479472 1016067/2

R6,6

24 R6,5

24 R6,4

24 R6,3

24 R6,2

24 R6,1

24 R6,0

24 R6,5

25 R6,4

25 R6,3

25 R6,2

25 R6,1

25 R6,0

25 R6,7
3 R6,6

3 R6,5
3

1 47 840 7316 33484 82128 107214 1 40 580 3874 12785 21029 1 55 1200

R6,4
3 R6,3

3 R6,2
3 R6,1

3 R6,0
3 R6,6

3,2 R6,5
3,2 R6,4

3,2 R6,3
3,2 R6,2

3,2 R6,1
3,2 R6,0

3,2 R6,5

3,22 R6,4

3,22

13405 83057 291612 577430 642434 1 48 884 7996 38170 195473/2 269719/2 1 41

R6,3
3,22 R6,2

3,22 R6,1
3,22 R6,0

3,22 R6,4
3,23 R6,3

3,23 R6,2
3,23 R6,1

3,23 R6,0
3,23 R6,3

3,24 R6,2
3,24 R6,1

3,24 R6,0
3,24 R6,4

32 R6,3
32 R6,2

32

617 4316 14970 26337 1 34 399 2022 4735 1 27 229 751 1 35 430

R6,1

32 R6,0

32 R6,3

32,2
R6,2

32,2
R6,1

32,2
R6,0

32,2
R6,2

32,22 R6,1

32,22 R6,0

32,22 R6,1

32,23 R6,0

32,23 R6,1

33 R6,0

33 R6,0

33,2

4681/2 12141/2 1 28 254 1883/2 1 21 127 1 13 1 15 1

R6,4
4 R6,3

4 R6,2
4 R6,1

4 R6,0
4 R6,3

4,2 R6,2
4,2 R6,1

4,2 R6,0
4,2 R6,2

4,22 R6,1
4,22 R6,0

4,22 R6,1
4,23 R6,0

4,23 R6,0
4,24

1 36 463 2632 7038 1 29 280 2223/2 1 22 146 1 15 1

R6,1
4,3 R6,0

4,3 R6,0
4,3,2 R6,0

5

1 41/2 1 1

Table 5. Number of degree 6 maps (from possibly reducible curves) to Fano surfaces

one by Göttsche) is available from the author. Table 5 gives all numbers of maps from possibly
disconnected curves for degree 6. We use “R” rather than “N” to remind the reader that the
source may be reducible. (The generating function for such numbers is the exponential of the
Gromov-Witten potential, see Section 6.14.) Note that these values need not be integral, as
some such maps have nontrivial automorphisms.

9.3. The cubic surface, s = 6. By deformation-invariance of Gromov-Witten invariants,
we can compute the invariants on the surface X that is P2 blown up along 6 distinct points q1,
. . . , q6 on a smooth conic C. If G is the proper transform of C, (X,G) is almost Fano, and
we can use Theorem 4.5 to compute the invariants of X by counting curves. This is the same
as counting irreducible curves in P2 with fixed multiple points at q1, . . . , q6 and through an
appropriate number of other fixed general points, which we can do using Theorem 6.13 applied
to (P2, C).
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As an example, we compute the number of rational sextic curves in the plane with six nodes
at fixed points q1, . . . , q6, and passing through five other fixed points p1, . . . , p5, where all the
points are in general position. (This is the Gromov-Witten invariant N6,0

26 of the cubic surface,
see Section 9.2 for notation.) [DI] p. 119 gives this number as 2376, while [GöP] p. 25 gives the
number as 3240. Göttsche and Pandharipande checked their number using different recursive
strategies.

By Theorem 4.5, this invariant is the sum of three contributions.

1. Those (irreducible) rational sextics with six fixed nodes q1, . . . , q6 lying on a conic, passing
through p1, . . . , p5. By Theorem 6.13 (and some computation), this number is 2002.

2. A stable map π : C → P2 where C has two irreducible rational components C0 and C1

joined at one point, π maps C1 isomorphically to E, and π maps C0 to an irreducible
rational quartic through q1, . . . , q6 (which lie on a conic) and p1, . . . , p5. The image of
the node C0∩C1 is one of the two points π(C0)∩E \{q1, . . . , q6}. By Theorem 6.13, there
are 616 such quartics. There are two choices for the image of the node C0 ∩ C1, so the
contribution is 1232.

3. A stable map π : C → P2 where C has three irreducible rational components C0, C1, C2,
where C1 and C2 intersect C0, π maps C1 and C2 isomorphically to E, and π maps C0

isomorphically to the conic through p1, . . . , p5. There are 12 choices of pairs of images
of the nodes C0 ∩ C1 and C0 ∩ C2, and we must divide by 2 as exchanging C1 and C2

preserves the stable map. This this contribution is 6.

Therefore N0
6,26 = 2002 + 1232 + 6 = 3240, in agreement with [GöP].

9.4. An approach for the two remaining del Pezzo surfaces. To count curves on
P2 blown up at s = 7 or 8 general points q1, . . . , qs, one might want to degenerate point
conditions to lie on a fixed smooth cubic E through the s points. Although the surface (P2, E)
does not satisfy P1–P4, many of the arguments carry through without change. Probably the
most significant problem is the calculation of “seed data”, i.e. counting maps when Υ = 0.
One can check that this corresponds to counting maps from degree d rational curves to P2 with
intersection with E specified by (Ω, β) with β = ek (there is one “loose” tangency r, although
its position on E is actually specified up to a finite number of choices by the location of the
points qs, as OE(

∑
msqs + kr) ∼= OE(d)). This can be loosely thought of as “counting rational

curves on a log K3 surface”, and hence potentially related to [YZ].

10. Earlier results

There has been a great deal of earlier work on counting curves on Hirzebruch or Fano surfaces,
and this is only a partial, brief sketch. Undoubtedly some important work has been missed.

10.1. The surfaces P2, F0 and F1 are convex, so the ideas of [KM] allow one to count
(irreducible) rational curves in all divisor classes on these surfaces (see [DI] for further discus-
sion). Di Francesco and Itzykson calculated the genus 0 Gromov-Witten invariants of the plane
blown up at up to six points in [DI], Section 3.3. Kleiman gave recursions for all del Pezzo
surfaces, and for F0 and F1 ([K1] Section 6). Ruan and Tian gave recursive formulas for the
genus 0 Gromov-Witten invariants of Fano surfaces, and indicated their enumerative signifi-
cance ([RuT] Section 10). Göttsche and Pandharipande later derived recursive formulas for the
genus 0 Gromov-Witten invariants of the plane blown up at any number of points ([GöP]).

10.2. The algorithms [CH3] and [R1] count degree d genus g plane curves, and hence also
count Ng

F1
(dS) = Ng

F1
((d− 1)S + F ) (as defined in Section 8.3).
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10.3. Recursions for curves of any genus in X = F1 were given in [R1]. The case of F0 is
similar and was worked out by Ran’s student Y. Choi (manuscript in preparation). As Fn may
be degenerated to a union of Fn−1 and F1 meeting along a fiber, arguments similar to those in
[R1] should count curves on any Fn ([R2]).

10.4. Abramovich and Bertram have proved several (unpublished) formulas counting irre-
ducible rational curves in certain classes on Fn ([AB2]):

N0
Fn

(2S + bF ) = N0
Fn−2

(2S + (b + 2)F )−
n−1∑
l=1

(
2(n + b) + 3

n− l − 1

)(
l2(b + 2) +

(
l

2

))
,(AB1)

N0
Fn

(2S) = 22n(n + 3)− (2n + 3)

(
2n + 1

n

)
,(AB2)

N0
Fn

(2S + bF ) = N0
Fn−1

(2S + (b + 1)F )−
n−1∑
l=1

(
2(n + b) + 2

n− l − 1

)
l2(b + 2).(AB3)

Their method for (AB0) (in Section 8.3) and (AB1) is to deform the surface Fn to Fn−2. For
(AB2) and (AB3), they relate curves on Fn to curves on Fn−1.

The author has obtained the formula

Ng
Fn

(2S + bF ) = Ng
Fn−1

(2S + (b + 1)F )

−
n−g−1∑

f=0

∑(
α1

|α| − g − 1

)(
|α|

α1, . . . , αn

)(
2(n + b) + 2 + g

f

)
I2α

where the second sum is over all integers f and sequences α such that Iα = n + b − f ,
|α| = b + 2 + g, b < α1. This generalizes (AB3) above. The author’s method is to specialize a
single point condition to E, then perform an elementary transformation to turn Fn into Fn−1.

10.5. Caporaso and Harris (in [CH1] and [CH2]) obtained recursive formulas for N0
Fn

(aS+bF )
when n ≤ 3, and the remarkable result that N0

Fn
(2S) is the co-efficient of tn in (1+t)2n+3/(1−t)3.

Coventry has generalized the “rational fibration method” of [CH2] and found a recursive formula
for the number of rational curves in any class in Fn ([Co]). E. Kussell has recovered the Gromov-
Witten invariants of P2 blown up at 2 points by the rational fibration method ([Ku]).

10.6. Kleiman and Piene have examined systems with a fixed number δ of nodes ([KP]).
The postulated number of δ-nodal curves is given (conjecturally) by a polynomial. Vainsencher
determined the entire polynomial for δ ≤ 6 ([Va]). Kleiman and Piene extended his work to
δ ≤ 8, and gave new techniques to determine explicit conditions on the line bundle for the
formulas to be enumerative.

10.7. Graber and Pandharipande’s powerful technique of virtual localization ([GP]) can also
be used to compute the Gromov-Witten invariants of any rational surface. (Deform the rational
surface so that it is a toric variety.) However, the graph-theoretic sums involved are extremely
cumbersome to calculate in practice, even in simple cases with the aid of a computer.
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