
BIOMIXING BY CHEMOTAXIS AND EFFICIENCY OF BIOLOGICAL
REACTIONS: THE CRITICAL REACTION CASE

ALEXANDER KISELEV AND LENYA RYZHIK

To Professor Peter Constantin

Abstract. Many phenomena in biology involve both reactions and chemotaxis. These pro-
cesses can clearly influence each other, and chemotaxis can play an important role in sustaining
and speeding up the reaction. In continuation of our work [14], we consider a model with a
single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The
model is motivated, in particular, by the studies of coral broadcast spawning, where experi-
mental observations of the efficiency of fertilization rates significantly exceed the data obtained
from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical
secreted by egg gametes) into account. We consider the case of the weakly coupled quadratic
reaction term, which is the most natural from the biological point of view and was left open in
[14]. The result is that similarly to [14], the chemotaxis plays a crucial role in ensuring efficiency
of reaction. However, mathematically, the picture is quite different in the quadratic reaction
case and is more subtle. The reaction is now complete even in the absence of chemotaxis, but
the timescales are very different. Without chemotaxis, the reaction is very slow, especially
for the weak reaction coupling. With chemotaxis, the timescale and efficiency of reaction are
independent of the coupling parameter.

1. Introduction

Our goal in this paper is to study the effect chemotactic attraction may have on reproduction
processes in biology. A particular motivation for this study comes from the phenomenon of
broadcast spawning. Broadcast spawning is a fertilization strategy used by various benthic
invertebrates (sea urchins, anemones, corals) whereby males and females release sperm and egg
gametes into the surrounding flow. The gametes are positively buoyant, and rise to the surface
of the ocean. The sperm and egg are initially separated by the ambient water, and effective
mixing is necessary for successful fertilization. The fertilized gametes form larva, which is
negatively buoyant and tries to attach to the bottom of the ocean floor to start a new colony.
For the coral spawning problem, field measurements of the fertilization rates are rarely below
5%, and are often as high as 90% [7, 15, 22, 30]. On the other hand, numerical simulations based
on the turbulent eddy diffusivity [6] predict fertilization rates of less than 1% due to the strong
dilution of gametes. The turbulent eddy diffusivity approach involves two scalars that react and
diffuse with the effective diffusivity taking the presence of the flow into account. instantaneous
details of the advective transport not captured by eddy diffusivity approach. It is well known,
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however, that the geometric structure of the fluid flow lost in the turbulent diffusivity approach
can be important for improving the reaction rate (in the physical and engineering literature see
[20, 24, 29]; in the mathematical literature see [16, 3, 12, 9, 13] for further references). Recent
work of Crimaldi, Hartford, Cadwell and Weiss [4, 5] employed a more sophisticated model,
taking into account the instantaneous details of the advective transport not captured by the
eddy diffusivity approach. These papers showed that vortex stirring can generally enhance the
reaction rate, perhaps accounting for some of the discrepancy between the numerical simulations
and experiment.

However, there is also experimental evidence that chemotaxis plays a role in coral fertilization:
eggs release a chemical that attracts sperm [1, 2, 17, 18]. Mathematically, chemotaxis has been
extensively studied in the context of modeling mold and bacterial colonies. Since the original
work of Patlak [21] and Keller-Segel [10, 11] where the first PDE model of chemotaxis was
introduced, there has been an enormous amount of effort devoted to the possible blow up and
regularity of solutions, as well as the asymptotic behavior and other properties (see [23] for
further references). However, we are not aware of any rigorous or even computational work on
the effects of chemotaxis for improved efficiency of biological reactions.

In this paper, we continue the study of a simple single partial differential equation modeling
the fertilization process that we initiated in [14]. The equation is given by

∂tρ+ u · ∇ρ = ∆ρ+ χ∇ · (ρ∇[(∆)−1ρ])− ερq, ρ(x, 0) = ρ0(x), x ∈ Rd. (1.1)

Here, in the simplest approximation, we consider just one density, ρ(x, t) ≥ 0, corresponding
to the assumption that the densities of sperm and egg gametes are identical. The vector field u
in (1.1) models the ambient ocean flow, is divergence free, regular and prescribed, independent
of ρ. The second term on the right is the standard chemotactic term, in the same form as it
appears in the (simplified) Keller-Segel equation (see [23]). This term describes the tendency
of ρ(x, t) to move along the gradient of the chemical whose distribution is equal to −∆−1ρ.
This is an approximation to the full Keller-Segel system based on the assumption of chemical
diffusion being much faster than diffusion of gamete densities. The term (−ερq) models the
reaction (fertilization). The parameter ε regulates the strength of the fertilization process. The
value of ε is small due to the fact that an egg gets fertilized only if a sperm attaches to a certain
limited area on its surface (estimated to be about 1% of the total egg surface in, for example,
sea urchins eggs [26]). We do not account for the product of the reaction – fertilized eggs –
which drop out of the process. We are interested in the behavior of

m0(t) =

∫
Rd

ρ(x, t)dx,

which is the total fraction of the unfertilized eggs by time t. It is easy to see that m0(t) is
monotone decreasing. High efficiency fertilization corresponds to m0(t) becoming small with
time, as almost all egg gametes are fertilized.

The case q > 2 in (1.1) has been considered in [14]. In this case, we proved that if chemotaxis
is not present, there exists a constant µ0(ε, q, d, ρ0) such that m0(t) ≥ µ0 for all t. Moreover, if
we fix everything except let ε→ 0, µ0 converges to m0(0). Hence, in the absence of chemotaxis
weak reaction coupling leads to a very weak reaction completion rate. On the other hand, we
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showed that if d = 2 and chemotaxis is present, then m0(t) → ν(χ, q, ρ0, u) as t → ∞. Here,
ν tends to zero if we increase χ keeping everything else fixed. Moreover, ν and the time scale
of the convergence do not depend on ε, showing drastic difference in behavior compared to the
pure reaction-diffusion-advection case.

The case d = q = 2 in (1.1) is the most natural one - it corresponds to the reaction propor-
tional to the product of egg and sperm densities. It turns out that the situation in this case is
more subtle. Without chemotaxis, it is not necessarily true that m0(t) is bounded below from
zero for all times by a fixed positive constant. Instead, m0(t) → 0 as t → 0, but very slowly.
To formulate our results, let us define F (z) = z/ log((ez)−1).

Theorem 1.1. [Upper bound in the absence of chemotaxis] Suppose that ρ(x, t) satisfies

∂tρ+ u · ∇ρ = ∆ρ− ερ2, ρ(x, 0) = ρ0(x) > 0, (1.2)

where u(x, t) ∈ C∞(R2×[0,∞)) is divergence free, and its stream function H is globally bounded.
Let the initial data ρ0 be such that ∫

R2

ρ0(x)eα|x| dx <∞,

for 0 < α ≤ α0. Then ‖ρ(·, t)‖L1 → 0 as t → ∞. Moreover, there exists t0 ≥ 0 that depends
only on α0 so that for all times t ≥ t0 we have

F (‖ρ(·, t)‖L1) ≤ F (‖ρ(·, t0)‖L1)

1 + εC(ρ0)F (‖ρ(·, t0)‖L1) log(t/t0)
. (1.3)

Remarks. 1. The origin of the condition on stream function will be clear from the proof. An
additional constant drift can be accommodated without any problem. Hence, the theorem
holds, for example, for every smooth periodic flow u.
2. In particular, the bound (1.3) implies that ‖ρ(·, t)‖L1 . C log log t/ log t for large t.
3. The condition on the decay of ρ0 can be relaxed at the expense of making the bound in (1.3)
slightly weaker. For example, it will be clear from the proof that for ρ0 ∈ S (Schwartz class),
we have that for t ≥ 1 and every σ > 0,

‖ρ(·, t)‖L1 ≤ C(σ, ρ0)

(1 + ε log t)1−σ . (1.4)

The bound (1.3) is pretty close to being sharp, as the next theorem shows.

Theorem 1.2. [A lower bound in the absence of chemotaxis] Suppose that ρ(x, t) satisfies (1.2)
where u(x, t) ∈ C∞(R2 × [0,∞)) is divergence free. Suppose that the initial data ρ0 > 0 ∈ S.
Then there exists 0 < t0 <∞ depending on ρ0 and ε such that for t ≥ t0 we have

‖ρ(·, t)‖L1 ≥ ‖ρ(·, t0)‖L1

1 + Cε‖ρ(·, t0)‖L1 log(t/t0) exp(ε‖ρ(·, t0)‖L1)
. (1.5)

Moreover, there exists c0 > 0 so that if ε‖ρ0‖L1 ≤ c0, then

‖ρ(·, t)‖L1 ≥ ‖ρ0‖L1(1− εC‖ρ0‖L1)

1 + Cε‖ρ0‖L1 log(t/t0)
(1.6)

for t ≥ t0 ≡ C‖ρ0‖2L1/‖ρ0‖2L2 , where C is a universal constant.
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Hence the estimate of ∼ (1 + ε log t)−1 decay rate of L1 norm of ρ for large t is almost sharp.
In the case when chemotaxis is present, we prove essentially the same result as in [14].

Theorem 1.3. [Estimates with chemotaxis] Let d = 2, and suppose that u ∈ C∞(Rd × [0,∞))
is divergence free. Assume that q = 2 and ρ(x, t) solves (1.1) with ρ0 ≥ 0 ∈ S. Then

a. If u = 0, then for every τ > 0, we have

‖ρ(·, τ)‖L1 ≤ 2

χ

(
1 +

√
1 +

χm2

4τ

)
. (1.7)

b. If u 6= 0, then limt→∞ ‖ρ(·, t)‖L1 ≤ C(u,m2)χ
−2/3. Moreover, for 0 ≤ τ ≤ χ1/3 we have

‖ρ(·, τ)‖L1 ≤ C(u,m2)(χτ)−1/2. (1.8)

As in [14], the key feature of Theorem 1.3 is that all bounds are independent of ε. Hence,
chemotaxis provides a significant improvement over (1.6) for reasonable time scales. The key
ingredient in the proof of of this theorem in [14] was global regularity of solutions to (1.1) with
d = 2, q > 2. It is well known that solutions of Keller-Segel equation can form singularities in
finite time, but in our situation the reaction term has regularizing effect. However the proof in
[14] relied on global in time control of L∞ norm to prove global regularity, and this argument
needed the condition q > 2 for reaction to offset the chemotactic nonlinearity. Here, we will
prove global regularity for the case d = q = 2 using a different approach. Notice that the
regularity properties of solutions to Keller-Segel type equations with reaction terms have been
studied earlier in [25, 28, 27], but in a different setting.

2. The reaction-diffusion-advection case

In this section, we prove Theorems 1.1 and 1.2. Let us begin with Theorem 1.1. In all
arguments below C will denote universal constants that may change from line to line in the
proof. Consider the advection-diffusion equation in R2

∂tφ+ u · ∇φ = ∆φ, φ(x, 0) = φ0(x). (2.1)

Suppose u is smooth and u = ∇⊥H, so that H is a stream function corresponding to u. Let us
denote p(x, y, t) the fundamental solution of (2.1):

φ(x, t) =

∫
R2

p(x, y, t)φ0(y) dy.

Recall the following well known bound on the fundamental solution of (2.1).

Theorem 2.1 (Norris [19]). Let φ(x, t) satisfy (2.1), and assume that the stream function H(x)
is bounded. Then

p(x, y, t) ≤ Ct−1 exp(−|x− y|2/Ct), (2.2)

where C depends only on ‖H‖L∞ .

The reference [19] contains more general results, but we stated the minimum that we need
here. We have
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Corollary 2.2. Suppose φ0(x) > 0 is such that∫
R2

eα|x|φ0(x) dx <∞,

for some 0 < α ≤ α0. Then under conditions of Theorem 2.1 we have∫
R2

eα|x|φ(x, t) dx ≤ CeCα
2t

∫
R2

eα|x|φ0(x) dx. (2.3)

Proof. A direct computation shows that∫
R2

eαx1φ(x, t) dx ≤ CeCα
2t

∫
R2

φ0(y)eαy1 dy.

Combining this and similar computations with −x1 and ±x2 in the exponent leads to (2.3). �

Now suppose that ρ(x, t) solves

∂tρ+ u · ∇ρ = ∆ρ− ερ2, (2.4)

and ∫
ρ0(x)eα|x| dx <∞,

for every α ≤ α0.

Proposition 2.3. There exists t0(α0) such that if t ≥ t0, then

‖ρ(·, t)‖2L2 ≥ C(ρ0)
‖ρ(·, t)‖2L1

t log(‖ρ(·, t)‖−1
L1 )

. (2.5)

Proof. Consider φ(x, t) solving (2.1) with initial data ρ0(x) > 0. Then by comparison principle,
ρ(x, t) ≤ φ(x, t), and therefore by Corollary 2.2 we have∫

R2

eα|x|ρ(x, t) dx ≤ CeCα
2t

∫
R2

ρ0(y)eα|y| dy (2.6)

for every α ≤ α0, t ≥ 0. We would like to find R(t) such that∫
BR(t)

ρ(x, t) dx ≥ 1

2

∫
R2

ρ(x, t) dx, (2.7)

where BR(t) is a ball of radius R(t). Observe that by (2.6),∫
Bc

R(t)

ρ(x, t) dx ≤ CeCα
2t−αR(t)

∫
R2

ρ0(y)eα|y| dy.

Thus choosing R(t) so that

R(t) ≥ Cαt+ α−1 log(‖ρ(·, t)‖−1
L1 ) + C(ρ0, α)

will ensure (2.7). Choosing

α = t−1/2
√

log(‖ρ(·, t)‖−1)
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optimizes the estimate provided that t ≥ t0(α0) so that α ≤ α0. Then, for

R(t) = C(ρ0)
√
t log ‖ρ(·, t)‖−1

L1 ,

we have ∫
BR(t)

ρ2 dx ≥

(∫
BR(t)

ρ dx

)2
1

|BR(t)|
≥
C(ρ0)‖ρ(·, t)‖2L1

t log(‖ρ(·, t)‖−1
L1 )

.

�

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. From Proposition 2.3, we know that for all t ≥ t0,

∂t‖ρ(·, t)‖L1 = ε‖ρ(·, t)‖2L2 ≤ −εC(ρ0)t
−1‖ρ(·, t)‖2L1/ log(‖ρ(·, t)‖−1

L1 ). (2.8)

Let us denote F (z) = z/(log(ez)−1). Then (2.8) implies

F (‖ρ(·, t)‖L1) ≤ F (‖ρ(·, t0)‖L1)

1 + εC(ρ0)F (‖ρ(·, t0)‖L1) log t/t0
. (2.9)

�

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. Suppose ρ(x, t) satisfies (2.4) with ρ0 > 0 ∈ S, and φ(x, t) solves (2.1)
with the same initial data. Then

∂t‖φ(·, t)‖2L2 = −‖∇φ‖2L2 ≤ −
‖φ‖4L2

‖φ‖2L1

= −
‖φ‖4L2

‖ρ0‖2L1

by Nash inequality in dimension two and conservation of the integral of ρ. It follows that

‖φ(·, t)‖2L2 ≤ min
(
‖ρ0‖2L2 , C‖ρ0‖2L1t−1

)
.

By duality (and incompressibility of u), we also have

‖φ(·, t)‖L∞ ≤ min
(
‖ρ0‖L∞ , C‖ρ0‖L2t−1/2

)
.

Combining these estimates via time split at t/2 yields

‖φ(·, t)‖L∞ ≤ min
(
‖ρ0‖L∞ , C‖ρ0‖L1t−1

)
.

By comparison principle, the same bound applies to ρ(x, t). Then we can estimate

‖ρ(·, t)‖2L2 ≤ ‖ρ(·, t)‖L∞‖ρ(·, t)‖L1 ≤ C‖ρ(·, t/2)‖L1‖ρ(·, t)‖L1t−1. (2.10)

A strictly weaker bound
‖ρ(·, t)‖2L2 ≤ C‖ρ0‖L1‖ρ(·, t)‖L1t−1

is also true. It implies that

∂t‖ρ(·, t)‖L1 = −ε‖ρ(·, t)‖2L2 ≥ −εC‖ρ0‖L1‖ρ(·, t)‖L1t−1,

and therefore
‖ρ(·, t/2)‖L1 ≤ 2‖ρ(·, t)‖L1eε‖ρ0‖L1 .
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Substituting this into (2.10), we get

‖ρ(·, t)‖2L2 ≤ Ceε‖ρ0‖L1‖ρ(·, t)‖2L1t−1.

Hence, we have

∂t‖ρ(·, t)‖L1 ≥ −εmin
(
‖ρ0‖2L2 , Ceε‖ρ0‖L1‖ρ(·, t)‖2L1t−1

)
.

Define t0 by

‖ρ0‖2L2 = Ceε‖ρ0‖L1‖ρ(·, t0)‖2L1t−1
0 .

Then, for t ≥ t0, we have

∂t‖ρ(·, t)‖L1 ≥ −εCeε‖ρ0‖L1‖ρ(·, t)‖2L1t−1,

leading to

‖ρ(·, t)‖L1 ≥ ‖ρ(·, t0)‖L1

1 + Cε‖ρ(·, t0)‖L1 log(t/t0) exp(ε‖ρ(·, t0)‖L1)
.

If ε‖ρ0‖L1 ≤ c0, with a sufficiently small c0, then

t0 ≤ C‖ρ0‖2L1/‖ρ0‖2L2 ,

and

‖ρ(·, t0)‖L1 ≥ ‖ρ0‖L1(1− εC‖ρ0‖L1).

Hence, (1.6) follows. �

3. The chemotactic case

The proof of Theorem 1.3 is identical to the case q > 2 considered in [14], provided that we
have global regularity of solutions. It will be convenient for us to work in a setting similar to
[14]. Recall that we are considering the equation

∂tρ+ u · ∇ρ = ∆ρ+ χ∇ · (ρ∇[(∆)−1ρ])− ερ2, ρ(x, 0) = ρ0(x), x ∈ R2. (3.1)

Define

‖f‖Mn =

∫
R2

(|ρ(x)|+ |∇ρ(x)|)(1 + |x|n) dx,

and the Banach space Ks,n is defined by the norm ‖f‖Ks,n = ‖f‖Mn + ‖f‖Hs .

Theorem 3.1. Assume that n > 0 and s > d/2 + 1 are integers and ρ0 ≥ 0 ∈ Ks,n. Suppose
that u ∈ C∞(Rd × [0,∞)) is divergence free. Then there exists a unique solution ρ(x, t) of the
equation (3.1) in C(Ks,n, [0,∞)) ∩ C∞(Rd × (0,∞)).

The local existence is proved in the same manner as in [14]. Also, it was shown in [14] that
to prove global existence, it suffices to prove an a-priori global bound on Sobolev norms of the
solution.
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Proof. The first observation is that, integrating in space and time, we obtain a bound

ε

∫ T

0

∫
R2

ρ(x, t)2 dx ≤ ‖ρ0‖L1 ,

for any smooth decaying solution of (3.1) on [0, T ] × R2. This will be our main control which
turns out to be sufficient for global regularity. Multiply equation (3.1) by (−∆)sρ and integrate.
Let us denote by Ḣs the homogenous Sobolev norm. We get

1

2
∂t‖ρ‖2Ḣs ≤ χ

∣∣∣∣∫
R2

(∇ρ) · (∇(−∆)−1ρ)(−∆)sρ dx

∣∣∣∣+χ ∣∣∣∣∫
R2

ρ2(−∆)sρ dx

∣∣∣∣+C(u)‖ρ‖2Hs−‖ρ‖2Ḣs+1 .

Consider the expression ∫
R2

ρ2(−∆)sρ dx.

Integrating by parts, we can represent this integral as a sum of terms of the form∫
R2

DlρDs−lρDsρ dx,

where l = 0, . . . , s and D denotes any partial derivative. By Hölder inequality, we have∣∣∣∣∫
R2

DlρDs−lρDsρ dx

∣∣∣∣ ≤ ‖ρ‖Ḣs‖Dlρ‖Lpl‖Ds−lρ‖Lql ,

with any pl and ql satisfying p−1
l + q−1

l = 1/2. Observe that for d = 2, every integer 0 ≤ m ≤ s,
and 2 ≤ p <∞, we have the Gagliardo-Nirenberg inequality

‖Dmρ‖Lp ≤ C‖ρ‖1−aL2 ‖ρ‖aḢs+1 , a =
m− 2

p
+ 1

s+ 1
.

Then

‖Dlρ‖Lpl‖Ds−lρ‖Lql ≤ C‖ρ‖L2‖ρ‖Ḣs+1 ,

and therefore ∣∣∣∣∫
R2

ρ2(−∆)sρ dx

∣∣∣∣ ≤ C‖ρ‖L2‖ρ‖Ḣs‖ρ‖Ḣs+1 .

Next, consider ∫
R2

(∇ρ) · (∇(−∆)−1ρ)(−∆)sρ dx.

Integrating by parts, we get terms that can be estimated similarly to the previous case, using
the fact that the double Riesz transform ∂ij(−∆)−1 is bounded on Lp, 1 < p < ∞. The only
exceptional terms that appear which have different structure are∫

R2

(∂i1 . . . ∂is∇ρ) · (∇(−∆)−1ρ)∂i1 . . . ∂isρ dx

but these can be reduced to ∫
R2

(∂i1 . . . ∂isρ)2ρ dx



BIOMIXING BY CHEMOTAXIS 9

by another integration by parts, and estimated as before. Altogether, we get

1

2
∂t‖ρ‖2Ḣs ≤ Cξ‖ρ‖L2‖ρ‖Ḣs‖ρ‖Ḣs+1 + C(u)‖ρ‖2Hs − ‖ρ‖2Ḣs+1 ≤

(Cξ2‖ρ‖2L2 + C(u))‖ρ‖2
Ḣs + C(u)‖ρ‖2L2 −

1

2
‖ρ‖2

Ḣs+1 .

Notice that

‖ρ‖Ḣs ≤ ‖ρ‖
s+d/2

s+1+d/2

Ḣs+1 ‖ρ‖
1

s+1+d/2

L1 ,

and so due to non-increase of L1 norm,

1

2
∂t‖ρ‖2Ḣs ≤ (Cξ2‖ρ‖2L2 + C(u))‖ρ‖2

Ḣs + C(u)‖ρ‖2L2 − c‖ρ‖
2+ 2

s+1+d/2

Ḣs .

From this differential inequality and integrability of ‖ρ‖2L2 in time, a global bound for ‖ρ‖Ḣs

follows. �
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