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Eigen Analysis for Some Examples
of the Metropolis Algorithm

PERSI DIACONIS AND PHIL HANLON

ABSTRACT. The Metropolis algorithm allows us to sample from a given
probability distribution by running a Markov chain. We derive the eigen-
values for a class of simple chains. These appear to be the first examples
where such explicit computation is possible. They thus allow us to com-
pare exact results with currently available bounds. The eigenvalues turn
out to be related to families of orthogonal and symmetric polynomials; as
one varies the temperature in the Metropolis algorithm one runs through
the natural parameter in the family.

1. Introduction

Let X be a finite set and let w(z) be a probability distribution on X with
m(z) > 0 for all ¢ € X. The Metropolis algorithm is a strategy for sampling
from 7 which is effective when 7 is only known up to a norming constant which
is difficult to compute because [X| is large. The algorithm proceeds by running a
Markov chain with transition M(z,y) and stationary distribution 7. The chain
Is constructed by “thinning down” an easy to run “base chain.” A more care-
ful description is given below. The Metropolis algorithm is very widely used in
statistical mechanics (Ising simulations), statistics, and as an ingredient in sim-
ulated annealing. Little is known about its non-asymptoctic rate of convergence
to stationarity.

This paper, along with Hanlon (1992), gives a class of examples where eigen-
values and sharp computations for rates of convergence can be derived. The
examples involve natural random walks on a group “thinned down” by a natural
distance function. The examples are interesting in two directions. They seem
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to be the first examples where explicit computation can be carried out. They
can thus serve as test problems for bounds on rates of convergence. Further,
they produce classical families of one-parameter orthogonal polynomials such
as Krawtchouk polynomials and symmetric functions such as Jack symmetric
functions.

The Metropolis algorithm is explained more carefully in section 2. Qur most
interesting example appears in section 4. This analyzes a process on the sym-
metric group. Here, the base chain is based on randomly transposing pairs of
cards. The chain is “thinned down” according to its distance to the identity us-
ing d — the minimum number of transpositions metric. The resulting chain has
stationary distribution proportional to §%™:%9) a measure that arises in statis-
tical applications. The eigenvalues are the change of basis coefficients when the
Jack symmetric functions are expanded in the power sum symmetric functions.
Using recent results of Stanley (1989) and Macdonald (1989), these eigenvalues
are explicitly available. We determine the convergence properties and study the
dependence on 6.

Section 3 carries out an easier analysis for nearest neighbor walk on the cube
Z34, thinning down with Hamming distance. Now the one-parameter family of
Krawtchouk polynomials appears in the eigen analysis.

In both cases, the chains are rapidly mixing: the Metropolis thinning only
changes the eigenvalues in a linear way. In contrast, use of “off-the-shelf” bounds
leads to exponentially perturbed eigenvalues and a poor picture of convergence
rates.

The final section carries out this analysis for a twisted Markov chain on the
space of matchings. Again, exact analysis and interesting special functions ap-
pear.

2. The Metropolis algorithm and eigen
analysis of reversible Markov chains

This section contains a careful description of the Metropolis algorithm along
with background on the use of eigenvalues to study total variation convergence
for reversible Markov chains.

Let X be afinite set. Let w(z) be a positive probability on X. Often, practical
considerations allow easy access to the ratios ry; = w(y)/7(z). Let S(z,y) be
the transition matrix of a symmetric irreducible Markov chain on X. This is
the base chain which is assumed to be easy to run. Let M(z,y) be defined by
“thinning down” S(z, y) according to the following

S(z, y)rys if rye < 1
(2.1) M(z,y) = S(z,y) ifzr#yand ry; >1
Sz, z) + 22;51.5(3:, 2)(1 —ryy) ifz=uy.

This definition has a simple implementation. If the chain is at z, pick y with
probability S(z,y). If ¢ # y and ry; > 1, the chain moves to y. If y # z and
ryz < 1, flip a coin with success probability ry,. If the coin toss succeeds, the
chain moves to y. In all other cases the chain stays at z.
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It is straightforward to show that M (x,y) defines an irreducible aperiodic
transition matrix with stationary distribution . For further details, see e.g.
Hammersley and Handscomb (1964).

The Metropolis chain M is reversible: m(z)M(z,y) = n(y)M(y,z). To con-
clude this section we derive bounds on rates of convergence for a general reversible
chain in terms of eigenvalues. Thus for the remainder of this section, let (M, 7)
be a reversible Markov chain on a finite set X. Let D be a diagonal matrix having
v/ 7(z) down the diagonal. Reversibility yields that T'= DM D-! is symmetric.
Thus T can be orthogonally diagonalized T' = I'fT* with T' orthogonal and Ba
diagonal matrix having the eigenvalues of T, and so M, on the diagonal. Thus
M = VBV~! with V = D7IT,V~! = I'"D. This implies that the right eigen-
vectors of M are the columns of V: V,y = I'y,/+/7(z). These are orthonormal
in L?(7). The left eigenvectors are the rows of V! : Vsl = Tyo/7(y). These
are orthonormal in L2(1/7).

Define total variation distance as

MGz, )~ =) = %Zyj |M¥(2,) - x(3)].

The following lemma gives bounds on total variation in terms of eigenvalues.

LEMMA 1. Let (M, ) be a reversible Markov chain on a finite set X. Let By
denote the eigenvalues, B* the second largest eigenvalue in absolute value. Let
fy(+) be an orthonormal basis of right eigenfunctions in L2(m). Let gy(-) be an
orthonormal basis of left eigenfunctions in Lz(%). Then, for any starting state
z, the total variation 4||M(z,-) — n(-)||? is bounded above by any of the following
three gquantities:

(2.2) D A fAz) -1

Yy
23) ) _Pitey(z) -1
(24) 500%*.

Proor. For any fixed z

Klg o) — 7 2 _ |Mk(3;y)—7"(y)| ()2
(zy:IM (z,9) ~ 7(v)) (2; o) V()

<3 |M*(z,y) — 7(y)|?

m(y)-
_ Mz, y)\*
_Xy:< 7(y) ) '
_M%(z,x)_
- w(z)

— 1 2kp2
= wx)zy:ﬂy r2, - 1.

1
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The inequality above is Cauchy-Schwarz. The next to last equality used the
formula 7(z)M(z,y) = 7(y)M(y,z). The bounds now follow by relating Iy to
left or right eigenvectors (multiplying or dividing by /n(z)). The final bound
follows by bounding 8, by g*. O

The Metropolis chains in this paper are all built by thinning down a simple
chain with known spectral properties. It is natural to try to compare the eigen-
values. This can be achieved by comparing the Dirichlet forms. For a reversible
chain (M, ), define

£, ) = 3 (@) ~ FW) n(=)M(z,3).
.,y

This is just the quadratic form defined by I-M. The classical minimax character-
ization of eigenvalues yields

1— B = min min £(4,5)

. dimW; =i+1.
wi few: [|f]12 '

Here B; is the i*P largest eigenvalue 1 = o > B > B2+ > fxj-1 > —1. This
renders the following comparison lemma evident.

LEMMA 2. Let (M, «), (H, 7) be reversible Markov chains on a finite set X.
Suppose the associated Dirichlet forms satisfy

£ < AE and T > am for positive A, a.

Then a _
s <1 ——(1-0;).
fi<1-50-F)

As will emerge, these bounds can be very far off in the Metropolis setting.
For lower bounds, and examples where comparison is useful, see Diaconis and
Saloff-Coste (1992).

3. A simple example: nearest neighbor walk on Z$

Let Z$ be the group of binary d-tuples under coordinatewise addition, thought
of as the vertices of a cube in d-dimensions. Nearest neighbor walk has transition
matrix

(3.1) S(z,y) = { i ifHEy =1

0 otherwise

with H(z,y) the Hamming distance: the number of coordinates where = and y
disagree. This walk has been extensively analyzed because it gives a representa-
tion of the Ehrenfest urn. See Kac (1947), Letac and Takacs (1979), or Diaconis
(1988) and references cited there. In particular, the matrix S is diagonalizable
with eigenvalues (1 — zdl) occurring with multiplicity (;.i), 0 < j <€ d, and eigen-
vectors given by the characters of Z4. Note this walk has periodicity problems
since —1 is an eigenvalue. These will disappear for the Metropolis walk.
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Consider next the family of measures on Z$ defined by

9H (=)

(3.2) Py(z) = W
with 0 < 0 < 1, H(z) = H(x,0). For this example, there is no problem simulat-
ing from Py by a variety of schemes. For example, coordinates of # can be chosen
as independent 1’s or 0’s with probability #/(1 + 8) and 1/(1 + 6) respectively.
This takes order d operations.

The Metropolis algorithm can be used to generate from Py. Starting from
S(z,y) at (3.1), the recipe (2.1) results in a chain with

3 if H(z,y) =1, H(y) < H(z)
[ .
% if Hz,y) =1, H(y) > H(z
(1——(—24 1-16) if H(z,y) =0
0 otherwise.
For example, when d = 2, M appears as
00 01 10 11

00 /1-60 & £ o0

o[ 3ot

0| 5 o0 5 g

nlo 4 4 o

The permutation group S, operates on Z4. It is clear that M (mz,my) =
M(z,y) for 7 € S3. This implies that the orbit chain, which just records H(z)
when the chain is in @, is again a Markov chain. This chain takes values in
(0,1,...,d) with transition matrix

& ifj=i-1
(3.4) m(i,j) = (1-4%)6 ifj=i+1
(1-3)(1-9) if j =i

For example, when d = 2, m appears as

0 1 2
0/1-6 6 0
1| 3 g

2 2
2 0 1 0

In general, m has (1 — §)(1 — 6) down the diagonal, 0 < i < d;  below the

diagonal 1 < ¢ < d; (1 — 3)0 above the diagonal 0 < i < d — 1; and zeros
elsewhere. This m has stationary distribution (i) = ()6(1+ 6)~.
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THEOREM 1. The matriz m defined at (3.4) has eigenvalues
ﬂe=1—‘—‘i(1+0), 0<i<d.

The corresponding right eigenvector is the Krawtchouk polynomial

ro=(¢(9) " e () (e

These have been normalized to be orthonormal in L%(x).

Proor. This is essentially contained in Krawtchouk (1929). The statement
is easy to verify from known properties of Krawtchouk polynomials as given by
MacWilliams and Sloane (1977, p. 150). O

0

For example, when d = 2, the eigenvalues are 1, 1 — ﬁ#), —3, with eigenvec-

tors ) 02
1 2
1), Ale-1), i -e).
1 Vo |y o\ 1

The main point is that thinning down by distance leads to an interesting
deformation of the eigenvalues and eigenvectors. The next result converts this
into a rate of convergence result for the original chain M.

THEOREM 2. Fiz 6 in (0,1). For the Metropolis chain M at (3.3) started at
0, let k= m‘éﬁj(log df+c). Then

”Mk(07 ) - P0()” S f(g: C)
with f(6,¢) independent of d, tending to zero as ¢ — oo, for each fized 8.

PROOF. Because of invariance, the distance ||[M*(0,-) — P5(-)|| = [|m*(0, ) -
7g(-)|| where the orbit chain is defined at (3.4). Using Theorem 1 and the upper
bound (2.2),

(3.5) 4llm*(0,-) — me (-)|I? < JX:; (1 - L(ldLo))Zk v (j)

Break the sum in (3.5) into S; + S with S; summed over 1 < j < d/(1+6) and
S2 summed over d/(1+6) < j <d. For S;,use 1 —z < 7%, (;’) < d /35!, and
the definition of k¥ to conclude

—c

o0
€ __ ec
Slgzj! =e —1.
j=1

For S, replace j by d — £ and use the inequalities above to conclude

d8(1+9) ] i,
Sy < gt2k 7 ©xp{ - (log(df) + c) + £log(d/6)}.
=1 :
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Now 6 < 1 yields _Tl logd + £log d < 0. Making this replacement,

[}
Sy < ; % exp{—£[log§°%" + g]}

The bounds for S; and S sum to give f(8,c) with the stated properties. [

REMARKS. 1. The bound is sharp in the sense that if k = ﬂigm(IOg df —¢)
the variation distance does not tend to zero. This can be shown by using the
first eigenfunction as in Diaconis (1988, Chapter 3).

2. Theorem 2 shows that the Metropolis algorithm is only “off by a log.”
That is, its running time (order dlogd) is comparable to the optimal algorithm
(order d) which uses the structure of the normalizing constant. Of course, the
function H(z) is relatively simple.

3. It is instructive to compare the second eigenvalue, 1 — g%), with what
results from comparison of Dirichlet forms (Lemma 2 of Section 2). Passing
to the chain m and comparing with the unthinned base chain (§ = 1) requires

a=(442)? and 4 = 1 (42)®. This yields
Bi <1—6%1(1- ).
This is off by an exponential factor and virtually useless in practice.

4. Simulating from a distribution on the symmetric group

We begin with some motivation for the example to be studied. Statisticians
sometimes have to work with ranked data as when a group of people are each
asked to rank order 5 wines. To facilitate data analysis, a variety of metrics
between permutations are employed. For example, the Cayley distance is defined
as

d(7, ) = minimum number of transpositions required
to bring 7 to o, for 7,0 € S,.

This is named after Cayley who discovered d(, ¢) = n—C(mo~1), with C(7) the
number of cycles in 7. One use of such metrics is to build probability distributions
on S,,

(4.1) Py(7) = ¢(§)g(m:70)
where 0 < 0 < 1,

cH(h) = D _gUmme) = f[(1 +06(i — 1))

k.

1s a normalizing constant, and 7 is a “location parameter.” This model describes
a population peaked about 7o which falls off geometrically at rate . For § = 1,
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P; becomes the uniform distribution. In statistical applications, 7y and  would
be unknown and estimated from a sample of rankings. Further background can
be found in Critchlow (1985) or Diaconis (1988, Chapter 6).

In any modern statistical work, the ability to sample efficiently from a proba-
bility distribution is cructal. In this section we analyze the Metropolis algorithm
for this problem and compare it with the best available alternative. Without
essential loss, take mp = i¢d throughout.

The Metropolis algorithm will be based on repeated random transpositions.
Thus, consider the Markov chain on S,, with transition matrix

S(o,7) = { 1/(3) if r= ¢‘7(i, j) for some i < j
0 otherwise.

The chain S was analyzed by Diaconis and Shahshahani (1981). As given, it
has periodicity problems which will disappear when it is thinned down. Define
a Metropolis chain as in (2.1) with

r(o, ) = €)M,

When n = 3, the transition matrix becomes

id (12) (13) (23) (123) (132)

id (1-6 3 § 00 00
1 2 9 )
(12| s 3500-96) 0 0 3 3
0 1) | 3 o 31-6 0o §F 3
My = 2 8 8
23) | 3 0 0 21-¢) & ¢
(izg) \ 0 1 1 1 0 0

1 1 1
(132) \ o 1 L 1o o )
The stationary distribution is the left eigenvector proportional to

(1,6,6,0,62,62).

By construction, the matrix M commutes with the action of S, on itself
by conjugation. This implies that if 7 and ¢ are conjugate in S,, M*(id, r) =
M¥(id, o) for all k = 1,2,.... Thus the chain lumped to conjugacy classes is
Markov. When n = 3, this lumped chain has transition matrix m$

13 L2 3

1 [(1-9 0 0

(4.2) L2l 3 2(1-0) 26
3 0 1 0

This has stationary distribution proportional to (1,36,26%). In general, the
conjugacy classes are indexed by partitions of n. The transition matrix for the
lumped chain has

(4.3) aOm) =D Mi(r,0)
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summed over all o in the conjugacy class 4 with 7 any permutation in conjugacy
class A.

Any of the standard measures of speed of convergence to stationarity are the
same for M and mf (see, e.g., Diaconis and Zabell (1982). The stationary
distribution for m is calculated by summing over the conjugacy class. This gives

(4.4) () = o"-f:_: fI(ﬂ(i -1)+ 1)L

Here, if the partition A = (A;,...,A,) with Ay > Xp--- > A, > 0 has a; parts
equal to 4,

(4.5) o= [[i%a!
i=1

Hanlon (1992) has derived the eigenvalues and eigenvectors of the Markov
chain m. This description involves an interesting class of symmetric functions
called the Jack symmetric function. We will use the notation in Stanley (1984)
and Macdonald (1979) for these functions. For each partition A of n and each
real a # 0 there is a homogeneous symmetric function Jj(x;a). Here x =
(z1,...,2;) with k > n. For fixed a, {JA(x; )}, is a basis of the homogeneous
symmetric polynomials of degree n in #1,z3,...,zx as A varies over partitions
of n. A more familiar basis is the power sum symmetric functions defined by
Pi(x) =z} +---+2z%; P, = [['_, Pr,. Denote the change of basis coefficients by
C(A, p):

(4.6) IA(x;0) = D C*(A, p)Pu(x).

pkn
The C%(A, ) are rational functions in «. For example, when n = 3,

Jis = P}~ 3Py 5+ 2P;
J2,1 = P13 -+ (a - 1)P1’2 —aP;
J3 = P13 — 3C!P1,2 + 2(12P3 .
When a = 1, the Jack polynomials become the Schur functions. When o =
2, the Jack polynomials become the zonal polynomials (spherical functions of

GL;/0y)). Until now, no interpretation of other values was known.
To state the main result, one further piece of notation is needed. Define

(48) ia(e) = TT R2(s)3 (o)
SEA

where the product is over square s in the diagram of A. If s = (, 7) has a squares
strictly below it and b squares strictly to its right,

h*(s)
h.(s)

(a+1Da+b,
ac + (b+1).
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When o« = 1, h* = h, is the usual hook length. For example, when n = 3, the
upper and lower hook lengths are as shown:

3o
142a| « 1+ 20
(4.9) 24a|ll+al « 2+« 1 20
3 2 1 « 1+a
1 a
1
I 6a(l+a)(2+a) a’(1+a)(2+a) 6a3(14+2a)(1+<)

With this notation, our main result can be stated.

THEOREM 1. For 0 < @ < 1, the Markov chain m® defined at (4.3) with
stationary distribution 78 at (4.4) has an eigenvalue By for each partition A =
(A1, A2, ..., Ar) of n. These are

fn(A*) + n(r)

2)
n(A) = zr:(i — )N = E (’\2;)
i=1 J

The corresponding left eigenvector, normed to be orthonormal in L2(1/78) is
c(, )
{411/ (67nt)}1/2
with C% as in (4.6), jx(0) as in (4.8), and I =[]/, (6(i — 1) + 1).
ExXaMPLE. The matrix m§ at (4.2) has eigenvalues and eigenvectors

A 13 2,1 3
B —0 21-6) 1
ch)  (1,-3,2)  (1,8—1,-6)  (1,30,262).

Br=(1-6)+

with

The normalizing constants for these eigenvectors appear in (4.9).

ProoF oF THEOREM 1. Stanley (1989, Theorem 5.4) shows, in the present
notation

(4.10) I(55a)= [ k-G -1)+a(-1)).
(i,7)€EX

On the left, the function J) is evaluated when all of its arguments are equal to
1. Since this is true for all k, one can equate coefficients in

Iy(1a) = 3 0%, w)Pu(1¥) = 37 (A, wkt®

pkn pbn
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with &(p) = r if = (p1,p2,... ,p,) Of course, this only determines C*(A, i)
for certain special y, e.g., p =12, 4 =122 y=n,u=1,n — 1. In particular

(4.11) co (M 1" =1

and
(4.12) C(,17"2,2) = az (/\23) _ 2’: (/\2.)

for all A. The argument i in Hanlon (1992) shows that the C®(), u) are left eigen-

vectors of the matrix mf, To determme the correspondlng eigenvalue, observe

that the first column of mf is (1 — U 0,0,...,0)". The eigenvalue equation
2

becomes

CP(), 172, 2)

2)

C*(\1™M(1-6) + = BCP(A,1M).
Now (4.11), (4.12) gives the eigenvalue.
The orthonormality follows from Stanley (1989) who gives

E C*(\, v)C*(p, v)a* Pz, = jrbr,.

vkn

a
The ingredients above can be combined together to yield the following rea-
sonably sharp bounds for rates of convergence for the original chain M.

THEOREM 2. For 0 < 0 < 1, let P} be the probability on S, associated to

the Markov chain defined from M? starting as id, with stationary distribution
Py defined at (4.1). Let

1 1.1
k=anlogn+cn, witha= ﬁ-{—ﬁ i 6) and c¢>0.
Then, there is a function f(8,c) independent of n, with f(8,c) — 0 for ¢ — oo
such that
1P — Poll < £(9,¢).

ProoF. From (2.5),

4||PF — Py|% < G"n'H(l +0(i — 1)) Z
Arn
A;(n)

Here 3 and jy are as in Theorem 1 and C(A,n) = 1 from (4.11) was used. Now,
one proceeds along the lines of Diaconis and Shahshahani (1981) or Diaconis
(1988, pp. 36-43) who essentially did the case § = 1. The eigenvalue 3, is
monotone if the majorization ordering is used on A : A > ) implies 85 > By .
This holds for all § € (0,1). It allows the terms in the upper bound to be



110 P. DIACONIS AND P. HANLON

grouped just as in the § = 1 case. As there, the sum is dominated by the term
for A = (n — 1,1). For this term,

20 2
R )

and

7 n! H(l +0(i—1))/jn-1,1
i=1

B 0"n!l(14+0)(1+260)---(1+ (n ~1)6)
T —-1)N1+6)(2+6)---(n—3+0)(n—1+6)(n— 2+ 26)

=f(O)n™* 301 + 0<;1;))

for an explicit continuous function f(#). It follows from this, with k as given,
that

07! TT0 (14 00 —
Ja

Wgzk < foyne+3-0- entern-20m(1 1 oLy
n
= f(8)e 8 C (1 + O(%))-

We omit the rest of the argument, except for consideration of the term corre-
sponding to 1”. For this term f,» = —@ and

0°nl(140)(1+20)---(1+ (n—1)9)

ot JIA+ 06 - 0)/in = — 5t 6) (n—1+0)

i=1

This last quantity is bound above by a positive continuous function g(6), for all
n. It follows that the term for 1" tends to zero. O

REMARKS. 1) The function a(f) = 55 + 35(5 — 6) increases as 6 decreases
from 1 to 0 so it takes longer to converge for small 8. This seems curious since
the walk starts at the identity which is also the most likely state.

2) We have not attempted to prove a matching lower bound but are morally
certain that the variation distance does not tend to zero for h = anlogn — cn
when n is large and c is positive. The arguments in Diaconis and Shahshahani
(1981) show this for k = nlogn — cn for all §. This goes part of the way to
explaining the curiosity in remark 1: for the walk to reach stationarity, the distri-
bution of the number of fixed points has to be correct. In particular there has to
be a reasonable chance of hitting every card. This already requires %n logn+cn
moves be made.

5. One-factors and signed Markov chains

In this section, we will consider two other cases in which the Metropolis Algo-
rithm produces twisted Markov chains with interesting steady states. The second
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of these will be obtained from the first by appropriately introducing signs in the
transition matrix. In view of this, it will not technically be a Markov chain.
Nevertheless, the Metropolis Algorithm still applies and gives us an interesting
twisting of our “signed” Markov chain.

This section twists a chain studied by Diaconis (1986) who gave the following
interpretation: consider f pairs of mathematicians who come to a party. They
arrive in pairs as {(1,2),(3,4),...,(2f — 1,2f)}. Being mathematicians, they
stand there talking to the person they arrived with. A host decides to mix things
up by picking a pair, say (i1, i), at random, then a second pair, say (j1, j2), at
random, and switching, say, to (41, j1), (42, j2) or (i1, j2), (¢2,71). This defines a
process on {2y the partitions of 2f into f 2-element blocks where order within
or between doesn’t matter.

The symmetric group Sz; acts transitively on ;. The isotropy subgroup can
be identified with B; = Z'zfaS 7, the hyperoctahedral group. The pair Sy, By
is a Gelfand pair with spherical functions given by the coefficients C2(A, u) of
section 4. This allowed a complete analysis when # = 1. The present section
refines this analysis to allow for twisting.

5.1 Switching random pairs in one-factors.

A one-factor on 2f points is a graph with 2f points in which every point has
degree 1. Let Q7 denote the set of 1-factors on (2f) points. It is easy to see that
Q| = (2f)!/2/ f!. We usually draw a one-factor § € £; by putting the points
1,2,...,f in a top row and the points (f + 1),...,2f in a bottom row. For
example, the one-factor Ag which has an edge fromitoi+ ffori=1,2,...,f
is drawn as:

Ay =

F+1 f+2 2f

Given 6,63 € Qy. Let 6, U 8, be the graph obtained by taking the union of
their edges. It is easy to check that §; U §; is a disjoint union of cycles of even
lengths. Let A(61,62) be the partition of f whose parts are half the cycle length
of 8, Ué,.

Define a Markov chain M with states Q; in the following way. Given a 1-factor
6, the probability R;(1)s . of moving to another 1-factor r is given by
Tl—l if 6=1
ﬂ2f2——15 if 7 can be obtained from § by

Ri()s,r = . . . :
switching a pair of non-adjacent points

0 otherwise.
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For example, with f = 2 we have

1/3 1/3 1/3
Ry(1) = (1/3 1/3 1/3).
1/3 1/3 1/3

Let 6 be in Q. The type of § is the partition A(8, Ap). Type for one-factors
is analogous to cycle type for permutations. Let ¢(§) denote the number of parts
of A(6, Ap).

Define a probability distribution I' on Q !' by

I'(6) = o/ ~®/G

where « is a real number greater than 1 and where G is the appropriate nor-
malizing constant G = 1_[{;01 (14 {(2)). We now have an M = M(1) and a
probability distribution I' so we are in a position to apply the Metropolis algo-
rithm to obtain a twisted Markov chain M («) whose stable distribution is T.
Let Rs(c) denote the transition matrix of M(«). For example,

1 o o o
Ry(a) = — |1 3a—2 1 .
3a
1 1 3o —2

The next proposition we state without proof because we will prove something
more general later in this section. The proposition says that the Markov chain
Ry(a) can be reduced (or lumped) to a Markov chain on the types.

PROPOSITION. For each partition A of f let vy be defined by

vy = 274 S o6y,

§
A(8,8,)=2
and let V denote the span of the vy. Then
Ry(a)vy C V.

Let R(jf ’d’)(a) denote the restriction of Rs(a) to V written with respect to
the basis {va}. Recall from Section 2 that Jj(x; ) denotes the Jack symmetric
function indexed by A and that c§ , is the coefficient of p,(z) when Ji(x;a)
expanded in terms of power sums. The main result of this section can now be
stated.

THEOREM 1. For each A, the vector Z‘H_fci‘;v,, is a left eigenvector of
Rf,f’¢)(a) with corresponding eigenvalue (fa + 2{2an()) — n()\)})/a(z.{).

ProoF. To begin, we will take a closer look at the entries of the matrix
Rfff"»)(a). Fix a partition A = (A1,...,As), let my be the permutation in S
given by

W:(l,?,...,/\l)(/\1+1,...,/\1+/\2)---(/\1+"-+Ag_1—1,...,f)
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(so mx has cycle type A) and let 6, be the 1-factor with an edge from i to F+=(i)
fori=1,2,..., f. So 6, looks like

CANTUNT AN

It is easy to check that &, has type A (so &, is amongst the one-factors ap-
pearing in the sum vy).
We can make use of the one-factors 65 to compute the entries of R.(ff ’¢)(a).

The following lemma is derived easily from the definition of R_(ff ’¢)(a).

LEMMA 1. Let X and p be partitions of f. The A, p entry of R;f’qs)(a) =
a(¥) R;f’qs)(a) is given by:

(a) If€(p) > £(X) then (§51,¢)(a))A“ is a24B)~4X) times the number of § of
type A which can be obtained from 6, by switching a pair of points.

(b) If (u) < £2) then (RY?(a))x, is 214X times the number of 6 of
type A which can be obtained from §, by switching a pair of points (you
count 6 more than once if it can be obtained more than once).

Return now to the proof of Theorem 1. We will fix a partition p = (p1, ... , s¢)
and compute the A, p entries of (R&f ) (a))au for all A. According to the lemma
we need to count how many &’ of each type X arise by switching a pair of points
(z,y) in 6,.

CasE 1. z and y come from different cycles of 6, U Ay, say « comes from the
cycle of length p; and y comes from the cycle of length p; (where i # j).

In ((z,y) - 64) U A the points that were in these cycles of lengths g; and
pj now form a cycle of length 2(u; + ;). So the partition “corresponding” to
partition A is

A= plps + py — pi, ]
(this notation means that y; and u; are removed and replaced by p; + y;).

For fixed p; and p; we had (2u;)(2p;) choices of the pair (z,y). In this case,
£(u) = £(X) + 1 so the A, y entry of (R’(ff’d’)(a));w contains a factor of 2a.

CASE 2. z and y come from the same cycle C of 6, U Ag. Let p; be the
part of p corresponding to C so C consists of 2u; points, y; from each row. It is
straightforward to check the following fact:

(5.3) A) Suppose z and y are in the same row and are separated (cyclically)

by gaps of b and p;. Then ((z,y)8,) U Aq corresponds to the partition

A= plb, i — b — p].

B) Suppose z and y are in different rows. Then ((z,y)8,) U Ao corre-
sponds to the partition u.
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Note that in case (A), (Ili_(ff’d’)(a)),\,, = 3; whereas in case (B), (R(f ¢)(a)))\“
a.

Applying the above facts we see that the u** column of (Rf,f"»)(a))xﬂ is given
by the above transformation:

B column of ﬁy’qs)(a)

N 2(2#1#1 VVutuitns e pi i) (Fo + 2(2a — 1)(2 (ul) o

1<j

“t_l
+ (2a) <Z Wi Z vu[b,#i—b‘—#i]) :
H b=1

It is worth commenting on how we computed the coefficient of v, on the
right-hand side. For starters there are Y, u? pairs (z,y) that yield the same p.
Of these, >, pi(pi — 1) satisfy (z,y)6, # 6, and f satisfy (x,y)6, = 6. The
former pairs each contribute 1 to the v,, v, entry. The latter contribute a more
complicated factor, namely, the é,,8, entry of Ry(a). We need to compute the
entry. First observe that the é,,6, entry in R;(1) is f (pairs (z,y) which fix §,
must be endpoints of an edge of 6,). The off-diagonal entries of Rf (o) are either
0,1, or . It follows that the 6,8, entry of Rs(a) is fa + H(a — 1) where H
is the number of off-diagonal entries equal to 1 in the 6:‘}‘ row. This is exactly
the number of pairs (z,y) with ¢((z, y)6 ) > ¢(6,). As seen above, this number
is 237, (4). So, the é,,8, entry in Ry(a) is

23 (%) + o+ 20a- 15> () =2fa+a- 25> (5 hr-

Let An be the ring of symmetric functions in z,...,z, and let A be the
subspace spanned by polynomials that are homogeneous of degree f. Define
¥ : V — A{ to be the linear map satisfying

PY(va) = pa(x).

Now let p be the linear transformation on A given by

p=voR(a)oyh.
The computation we’ve just done tells us how to compute the p*! column of
Rf (), i.e., how to compute the linear map given by Rf (a)!. The matrix for p
is the dual Rf (@)* with respect to the inner product (pa(x), pu(x)) = 257 6x,. A
straightforward computation shows that

p(pa(x)) ={(fa) + 2(2a — 1)n(X)}pa(x)

+2(20) D AudoPapaay e rntr](X)
(5.5) uE
Ax—1

+2(5 Z)\k Z PADw—j,—1(X))-

(5.4)
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The result now follows by comparing (5.5) with either formula (3.6) in Hanlon
(1988) or the first formula in the proof of Theorem 3.1 in Stanley (1989). O

We refrain from carrying out further computations for this example. Prelim-
inary analysis shows order a nlogn + cn steps are needed with a depending on
.

5.2 Signed one-factors.

We are going to modify the situation in the previous section so that each
one-factor comes with an “orientation.” Changing the orientation alters the
one-factor by a sign. This change in orientation will sometimes occur when we
switch points and the result will be that the transition matrix S;(1) for the
untwisted Markov chain will have some negative entries. So S;(1) will not really
represent a Markov chain but we can still apply the Metropolis algorithm to it
as given in (2.1).

To begin, we will generalize the notion of one-factors. Let B; be the auto-
morphism group of Ag. By is the hyperoctahedral group of order f!2/ and can
be thought of as the set of signed f x f permutation matrices in the following
way. An element ¢ € By must permute the f edges of Ay which gives us the
underlying f x f permutation matrix . If ¢ maps the i*® edge of Ag to the jt
(so there is a 1 in the %, j entry of 7). Then oy; = 1, if 0 maps the point in the
top row of column j and o;; = —1 if the point in the top row of column i goes
to the point in the bottom row of column j.

The group By has four linear characters &g, 61, 62,83. To describe them, let
o € By (think of o as an f x f signed permutation matrix). Then

bo(0) =1

81(0) = sign(7)

82(c) = det(o)

83(0) = 81(0)62(0).
There is an alternative description of the character é3. If we think of Bj as a
subgroup of Sy; then 83 is the restriction of the sign character of S, + to By,

We will now follow a construction given in Stembridge (1992). For each 3, let
e; denote the idempotent given by §;,

1
€ = —— 8;(o)o.
|By| oezf,:!

Let X; denote the left deal ¢;CS2; and let V; denote the two-sided ideal ¢;CS> T
Note that X, and V; are isomorphic to the spaces of left By-cosets and double
By-cosets in Saj.

There is a combinatorial method for identifying a basis of the X; and V;. Let
7 be a permutation in Sy; written in 1-line form,

T=ayaz---azs.

Assign to T a one-factor §(7) by putting an edge between i and j in §(r) iff
la; — aj| = f.

The following result is well known for i = 0, 3 and can be found in Stembridge
(1992) for ¢ =1, 2.
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THEOREM 5.
(A) Fori=0,1,2,3 we have e;7 = te;m iff 6(7) = 8(r).
(B) Fori=0,3 we have e;Te; = te;me; iff A(6(T), Ag) = A(6(7), Ag).
(C) Fori=1,2 we have
(i) esTe; # 0 iff A(6(T), Ao) has all odd parts.
(i1) Suppose e;Te; and e;jme; are nonzero. Then e;te; = e;me; iff

A(6(7), Ao) = A(6(), Ap).

For the moment we will construct only cases i = 0, 3. Theorem 5 tells us that
the spaces Q; and V from Section 4.1 can be identified with the cosets X, and
double cosets Vg of By.

The stable distribution I is a simple function that is constant on double cosets.
It remains to understand the Markov chain R;(1) in this context.

LEMMA 2. Let Q be identified with Xo as above. Then R;(1) is the matriz
for right multiplication by ]-517-[ Z (2, 7).
1<i<j<2f
We will now follow the same construction as in Section 5.1 but with Xg re-
placed by X3. The stable distribution I' will be the same and the untwisted

Markov chain will again be multiplication by (%/ )_1 5°(i, 7). To make this pre-
cise, we need to specify bases for X3 and V3 (because the natural bases are
determined only up to sign).

DEFINITION.

(A) For each one-factor, 8, let 7(8) be the lezicographically minimal element
a of Sop with §(a) = 6.

(B) For each partition A of f, let w()) be the lexicographically minimal ele-
ment § of Sop with

A(6(B), Ag) = A.

Let B be the basis for X3 given by
B = {esr(6): 6 € Q;}
and let C be the vector space for V3 given by
C = {2/Mezm(N)es : A — f}.

We henceforth let vg‘a) denote 2/(Ves. Let Q;(1) be the matrix for right multi-

plication by (22")_1 >-(%,7) with respect to the basis B. Let Q () be the matrix
obtained by applying the Metropolis algorithm to Q;(1) and T'. Since Q;(1)
corresponds to right multiplication by a conjugacy class in Sy, it commutes
with right multiplication by e3. It follows that Q(«) restricts to the space V3.

s . c . . .
Let Qy”l )(a) be this restriction with respect to the basic C. We can now state
the analogue of Theorem 4.
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THEOREM 2. For each A, the wvector Zc&zlz)vgs) s a left eigenvector of
HEf
Q5¢’f)(a) with corresponding eigenvalue (—fa + 2{$n(}’) — n(/\)})/a(@{))

To prove Theorem 2 one follows much the same procedure as in the proof of
Theorem 1 (but care must be taken with signs).

One reason for the discussion of this signed case is to bring up the question
of what happens for the characters §; and §,. A simple computation shows

.. . T . -1 .. .
that the restriction of right multiplication by (22f ) (G, 7) to Vi (or V2) is the
identity map. So this is the wrong (untwisted) Markov chain to begin with.
Another possibility is to let the untwisted Markov chain be right multiplication

by (2 (23{ ) - >o(4, 4, k)) . A recent result of Stembridge tells us that the restriction

of this Markov chain to V; has Schur’s Q-functions as eigenvectors. So applying
the Metropolis algorithm to this restriction will produce a Markov chain with
eigenvectors that are perhaps interesting deformations of the Q-functions.
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