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Abstract. De Moivre gave a simple closed form expression for the mean 
absolute deviation of the binomial distribution. Later authors showed 
that  similar closed form expressions hold for many of the other classical 
families. We review the history of these identities and extend them to 
obtain summation formulas for the expectations of all polynomials 
orthogonal to the constants. 
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1. INTRODUCTION 

Let S, denote the number of successes in n 
Bernoulli trials with chance p of success a t  each 
trial. Thus P{S, = k) = ( z ) p k ( l  - p ) n - k  --

b(k; n, p). In 1730, ~ b r a h a m ' ~ e  Moivre gave a 
version of the surprising formula 

where u is the unique integer such that np < v 5 
np + 1. De Moivre's formula provides a simple 
closed form expression for the mean absolute devia- 
tion (MAD) or L, distance of a binomial variate 
from its mean. The identity is surprising, because 
the presence of the absolute value suggests that 
expressions for the tail sum C,,,, b(k; n, p )  
might be involved, but there are no essential sim- 
plifications of such sums (see, e.g., Zeilberger, 
1989). 

Dividing (1.1) by n, and using the result that the 
modal term of a binomial tends to zero with in- 
creasing n, it follows that  

De Moivre noted this form of the law of large 
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numbers and thought i t  could be employed to jus- 
tify passing from sample frequencies to population 
proportions. As he put it (De Moivre, 1756, page 
242): 

COROLLARY.From this it follows, that if after 
taking a great number of experiments, it should be 
perceivedthat the happenin& and failings have been 
nearly in a certain proportion, such as of 2 to 1, it 
may safely be concluded that the probabilities of 
happening or failing at any one time assigned will 
be very near in that proportion, and that the greater 
the number of experiments has been, so much nearer 
the truth will the conjectures be that are derived 
from them. 

Understanding the asymptotics of (1.2) in turn 
led De Moivre to his work on approximations to the 
central term of the binomial. In Section 2, we 
discuss this history and argue that it was De 
Moivre's work on this problem that ultimately led 
to his proof of the normal approximation to the 
binomial. 

De Moivre's formula is a t  once easy enough to 
derive that many people have subsequently redis- 
covered it, but also hard enough to have often been 
considered worth publishing, varying and general- 
izing. In Section 3, we review these later results 
and note several applications: one to bounding bi- 
nomial tail sums, one to the Bernstein polynomial 
version of the Weierstrass approximation theorem 
and one to proving the monotonicity of convergence 
in (1.2). 
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In the second half of this article, we offer 
a generalization along the following lines: De 
Moivre's result works because ~ t ( k  - np) b(k; n, p )  
can be summed in closed form for any a and b. The 
function x - np is the first orthogonal polynomial 
for the binomial distribution. We show that in fact 
all orthogonal polynomials (except the zeroth) ad- 
mit similar closed form summation. The same re- 
sult holds for many of the other standard families 
(normal, gamma, beta and Poisson). There are a 
number of interesting applications of these results 
that  we discuss, and in particular, there is a sur- 
prising connection with Stein's characterization of 
the normal and other classical distributions. 

De Moivre's formula arose out of his attempt 
to answer a question of Sir Alexander Cuming. 
Cuming was a colorful character whose life is dis- 
cussed in a concluding postscript. 

PART 1: DE MOIVRE'S FORMULA AND ITS 

DESCENDANTS 


2. 	CUMING'S PROBLEM AND DE MOIVRE'S L, 
LIMIT THEOREM 

Abraham De Moivre (1667-1754) wrote one of 
the first great books on probability, The Doctrine of 
Chances. First published in 1718, with important 
new editions in 1738 and 1756, i t  contains scores of 
important results, many in essentially their mod- 
ern formulation. Most of the problems considered 
by De Moivre concern questions that arise natu- 
rally in the gambling context. Problem 72 of the 
third edition struck us somewhat differently: 

A and B playing together, and having an  equal 
number of Chances to win one Game, engage to 
a Spectator S that after an even number of 
Games n is over, the Winner shall give him as 
many Pieces as he wins Games over and above 
one half the number of Games played, it is 
demanded how the Expectation of S is to be 
determined. 

In a modern notation, De Moivre is asking for 
the expectation E{ ( S, - n 12 ( 1. In The Doctrine of 
Chances, De Moivre states that  the answer to the 
question is ( n  12) E/2  ", where E is the middle term 
of the binomial expansion of (1 + I)", that is,

(n72) .De Moivre illustrates this result for the 

case n = 6 (when E = 20 and the expectation is 
15/16). 

Problem 73 of The Doctrine of Chances then gives 
equation (1.1) for general values of p (De Moivre 
worked with rational numbers). At the conclusion 
of Problem 73, De Moivre gives the Corollary quoted 
earlier. Immediately following this De Moivre 
moves on to the central limit theorem. 

We were intrigued by De Moivre's formula. 
Where had it come from? Problem 73, where it 
appears, is scarcely a question of natural interest to 
the gamblers De Moivre might have spoken to, 
unlike most of the preceding questions discussed in 
the Doctrine of Chances. And where had it gone? 
Its statement is certainly not one of the standard 
identities one learns today. 

2.1 The Problem of Sir Alexander Cuming 

Neither the problem nor the formula appear in 
the 1718 edition of The Doctrine of Chances. They 
are first mentioned by De Moivre in his Miscel-
lanea Analytica of 1730, a Latin work summarizing 
his mathematical research over the preceding 
decade (De Moivre, 1730). De Moivre states there 
(page 99) that the problem was initially posed to 
him in 1721 by Sir Alexander Cuming, a member 
of the Royal Society. 

In  the Miscellanea Analytica, De Moivre gives 
the solution to Cuming's problem (pages 99-101), 
including a proof of the formula in the symmetric 
case (given below in Section 2.3), but he contents 
himself with simply stating without proof the corre- 
sponding result for the asymmetric case. These two 
cases then appear as Problems 86 and 87 in the 
1738 edition of the Doctrine of Chances, and Prob- 
lems 72 and 73 in the 1756 edition. 

As De Moivre notes in the Doctrine of Chances 
(1756, pages 240-241), the expectation of 1 S, -
np 1 increases with n, but decreases proportion-
ately to n; thus he obtains for p = $ the values in 
Table 1. (De Moivre's values for E I S ,  - np 1 are 
inaccurate in 	some cases (e.g., n = 200) in the 
third or fourth decimal place.) 

A proof of monotonicity is given in Theorem 3 of 
Section 3.2 below. De Moivre does not give a proof 
in either the symmetric or asymmetric cases, and it 
is unclear whether he had one, or even whether he 
intended to assert monotonicity rather than simply 
limiting behavior. 

Had De Moivre proceeded no further than this, 
his formula 	 would have remained merely an  

TABLE1 

Exact values of mean absolute deviation 
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interesting curiosity. But, as we will now show, 
De Moivre's work on Cuming's problem led directly 
to his later breakthrough on the normal approxi- 
mation to the binomial and here, too, the enigmatic 
Sir Alexander Cuming played a brief, but vital, 
role. 

2.2 	". . . the hardest Problem that can be proposed 
on the Subject of Chance" 

After stating the Corollary quoted earlier, De 
Moivre noted that substantial fluctuations of S, / n 
from p ,  even if unlikely, were still possible and 
that it was desirable, therefore, that  "the Odds 
against so great a variation . . . should be as-
signed"; a problem which he described as "the 
hardest Problem that  can be proposed on the Sub- 
ject of Chance" (De Moivre, 1756, page 242). 

But initially, perhaps precisely because he viewed 
the problem as being so difficult, De Moivre seems 
to have had little interest in working on the ques- 
tions raised by Bernoulli's proof of the law of large 
numbers. No discussion of ~ e r n o u l l i ' s  work occu& 
in the first edition of the Doctrine of Chances; and, 
in its preface, De Moivre even states that, despite 
the urging of both Montmort and Nicholas Bernoulli 
that he do so, "I willing resign my share of that 
Task into better Hands" (De Moivre, 1718, 
page xiv). 

What then led De Moivre to reverse himself only 
a few years later and take up a problem that he 
appears a t  first to have considered both difficult 
and unpromising? Surprisingly, it is possible to 
give a definitive answer to this question. 

De Moivre's solution to Cuming's problem re-
quires the numerical evaluation of the middle term 
of the binomial. This is a serious computational 
drawback, for, as De Moivre himself noted, the 
direct calculation of the term for large values of n 
(the example that he gives is n = 10,000) "is not 
possible without labor nearly immense, not to say 
impossible" (De Moivre, 1730, page 102). 

But this did not discourage the irrepressible Sir 
Alexander Cuming, who seems to have had a talent 

, for goading people into attacking problems they 
otherwise might not. (Our concluding postscript 
gives another example.) Let De Moivre tell the 
story himself, in a passage from the Latin text of 
the Miscellanea Analytica, which has not, to our 
knowledge, been commented on before (De Moivre, 
1730, page 102): 

Because of this, the man I praised above [vir 
supra laudatus; i.e., Cumingl asked me 
whether it was not possible to think of some 
method [num possem methodum aliquam ex-
cogitare] by which that  term of the binomial 
could be determined without the trouble of 

multiplication or, what would come to the same 
thing in the end, addition of logarithms. I re-
sponded that if he would permit it, I would 
attempt to see what I could do in his presence, 
even though I had little hope of success. When 
he assented to this, I set to work and within 
the space of one hour I had very nearly arrived 
a t  the solution to the following problem [intra 
spatium unius circiter horae, ei, perduxi ut 
potuerim solutionem sequentis Problematis 
prope elicere]. 

This problem was "to determine the coefficient of 
the middle term of a very large even power, or to 
determine the ratio which the coefficient of the 
middle term has to the sum of all coefficients"; and 
the solution to it that De Moivre found in 1721, the 
asymptotic approximation 

to the central term of the binomial, was the first 
step on a journey that led to his discovery of the 
normal approximation to the binomial 12 years 
later in 1733 (Schneider, 1968, pages 266-275, 
292-300; Stigler, 1986, pages 70-88; Hald, 1990, 
pages 468-495). The 1721 date for the initial dis- 
covery is confirmed by De Moivre's later statement 
regarding the formula, in his privately circulated 
notc f November 12, 1733, the Approximatio a d  
Summam Terminorum Binomii ( a  + blN in Seriem 
Expansi that "it is now a dozen years or more since 
I had found what follows" (De Moivre, 1756, 
page 243). 

Thus De Moivre's work on Cuming's problem led 
him immediately to the L, law of large numbers 
for Bernoulli trials, and eventually to the normal 
approximation to the binomial distribution. He ap- 
pears to have regarded the two as connected, the 
second a refinement of the first. But there is one 
feature about De Moivre's train of thought that is 
puzzling. How did he make the leap from 

De Moivre certainly knew the second statement 
from his work on the normal approximation to the 
binomial, as well as from Bernouli's earlier work 
on the law of large numbers. But more than 120 
years would have to elapse before Chebychev's in- 
equality would allow one to easily reach the second 
conclusion from the first. 

Of course, the currently recognized modes of con- 
vergence were not well delineated in De Moivre's 
time. One can find him sliding between the weak 
and strong laws in several places. His statement of 
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ea: ipia quantitates, minori quarum requaiIda efi qualititas g. 
In  fpeciali applicatione ad numeros, poiiris ut prius n=14033, 

mp=72000, fpz6800 ,  invenit priorem harum quantitatutn = 

4 4  5,pofieriorem vero =4 4  2,cui utpote minori ponit 9 re-

qualem, ideoque y-1=43 g, unde demum concludit fore ut  fi 

fiant experimenta 14000, probabilius futurum fit ad minimum in 
ea ratione quam habet 43 2 ad I, eventum illurn cujils contingen- 

tia in fingulis experimentis eft ad non-contingentiam uc 18 ad 17, 
neque fzpius fe oiienfurum quarn 7363 vices, neque rarius quam 

7037. 

C A P U T  11. 

UM aliquando labente Anno 1721, Vir Clarifimus Alex. cut nit^^C Eq. Au. Regire Societatis Socius, qurfiionem infra fubjedan~ 
mihi propofuiiiet, folutionern problematis ei pofiero die tradideram. 

P R O B L E M A  I. 

Collujores duo A & B quorum dextcritntes ponatitu. aquales, 
-fieBatori cuzdam ita fi oblf.ilngant, u t  poJ elapjirn~ n/dnzeruvz n 
,!udoruvzparem, uter wiBorem jpre&iterit, is  ez tot  numinos far- 
girur~dsJit qttot plures ludor viceutt quntn qui dejgnentur per 

n ; qu#ritur @$imnnda jt ,t.vpe@atio Spe gatoris. 

S O L U T I O .  

Denotet E medium terminum Einomii 	r r - 4  ad porefinten1 91 e-
;IZE 

ve&i, pofitis figillatim a & 6 = I .  rune erit -, Expeftatio quziira. 
2" 

0 2 	 I K-

I oc M I S C E L L A N E A  

Sit E terminus medius, feu potius Coefficiens termini medii po- 
r e f i a t i ~ a ~ a ' ~ ,  Coefficicntes terminorum hinc medioD & F inde 
proxime adfiantium, C & G Coefficientes terminorum binis iiitervnl- 
lis n n~edio difinntium, & fic deinceps pergendo utriixluc a tnedio 
ad utrumque exrremorum. 

Jan1 ex formatione Binomii, palam efi terminum mediu~n  eos 
cntils defignaturum quibus accidere pofit,  u t  neuter Col lu for~~m al-
teri prapollear, terminos huic proxime adfiantes eos caius defigna- 
ti!i-os quibus poflic evenire, uc alter alrerum fit fi~peraturl~s ludis Lii-
nis, feu ut eorum alter numerum fr~ fit fuperaturus iudo uno; ter- 

t~iinos his deinde proximos defignaruros hos cafus quibus accidere 
poilit, ut eorum alter alterurn fit fuperaturus ludis quaternis, feu ut  

rlumerum L n  fuper~turus fit ludis binis, 	& fic deinceps progredien- 

do ad terminos extrernos. 
Erit igitur ExpeAatio fpeCt~toris in ludoruln nutnero pari 

P

= E X O + D - ~ ~ ~ I + C + G X ~ + B + ~ ~ X ~ + A + K ~ ~ 
&?c. five 
propter Equalitatem Coeficientium hinc inde a Medio zqualitez 
diitantium, erit ExpeAatiofpeAatoris =Exo-t2D+4C-+6U+ 8 4  
Gc. 

Sed ex Proprietare Coefficientium, invenietur e r e-
n 3 2  x D = n E  -
7 z 4  x ~ = n - 2  xD 

-n + 6 x  B=n-4xC 


-n + 8 x ~ = I I - - 6 x E-

n - t  roxo=n--8xA 


Mr. @c. 
Jam cum fumma prioris Columnz zqualis fit f u r n m ~poiteriorit, 

eric 
nD+nC-t  7iB-t n A  f iE+nD-+~zC+nB-tnA 

+ - z D + q C t 6 B - t . 8 A  -2D-4C-6B-8A Gc, 

rum deletis hinc inde rerminis requalibus, czrerifquc ad eandenl par- 
rein tranfpoiitis, fiet 

4D 
FIG. 1 .  Pages 99 a n d  1 0 0  of D e  Moivre's Miscellanea Analyt ica d e  Seriebus et  Quadra tu r i s  show the proof reproduced here i n  Section 
2.3. By permission of the Houghton Library,  H a r v a r d  University. 

the corollary: "the happenings and failings have 
been nearly in a certain proportion," has a clear 
element of fluctuation in it. In contrast, even today 
L, convergence has a distant, mathematical flavor 
to it. It is intriguing that De Moivre seemed to give 
i t  such a direct interpretation. 

2.3 De Moivre's Proof 

De Moivre's proof tha t  E[ 1 S ,  - n /2 1 I = 

(1/2)nE/2 " is simple but clever, impressive if only 
because of the notational infirmities of his day. 
Since it only appears in the Latin of the Miscel- 
lanea Analytica (Fig. 1) and is omitted from The 
Doctrine of Chances, we reproduce the argument 
here. 

DE MOIVRE'S PROOF (1.1), CASE pOF FORMULA = 

112. Let E denote the "median term" (terminus 
medius) in the expansion of ( a  + b)", D and F the 
coefficients on either side of this term, C and G the 
next pair on either side, and so on. Thus the terms 
are . . . ,  A, B , C ,  D, E,  F , G ,  H,  K , . . .  . 

The expectation of the spectator after an  even 
number of games is 

E X O + ( D + F ) X ~ + ( C + G ) X ~  

+(~ + ~ ) x 3 + ( A + K ) x 4 + . . .. 

Because the binomial coefficients a t  an  equal dis- 
tance from either side of the middle are equal, the 
expectation of the spectator reduces to 

O E + 2 D + 4 C + 6 B + 8 A + . . .  . 

But owing to the properties of the coefficients, i t  
follows that 

( n  + 2)D = nE 

( n + 4 ) C =  ( n -  2 )D 

( n +  6)B = ( n -  4)C 

( n +  8 ) A  = ( n  - 6 ) B  
. . . 

Setting equal the sum of the two columns then 
yields 
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Deleting equal terms from each side, and transpos-
ing the remainder, we have 

4 0 + 8 C + 1 2 B + l 6 A + . . .  = n E  
or 

Since the probabilities corresponding to each co-
efficient result from dividing by ( a  + b)", here (1 + 
1)" = 2", De Moivre's theorem follows. 

REMARK.For a mathematician of his stature, 
surprisingly little has been written about De 

PROOF. Because p + q = 1, 

a 
C (k - np)b(k; n' P)

k = f f  

P 

= C {kg - ( n  - k)p)b(k ;  n ,  P)
k = ff 

P 
= C kqb(k; n, P) 

k = ff 

P 

- C ( n  - k)pb(k; n, P).
k = ol 

But (k + l)qb(k + 1; n, p) = (n - k)pb(k; n, p); 
thus every term in the first sum (except the lead 
term) is canceled by the preceding term in the 
second sum, and the lemma follows. 

Moivre. Walker's brief article in Scripta Mathemat-
ica (Walker, 1934) gives the primary sources for the We know of no proof for the p z 112 case prior to 

known details of De Moivre's life; other accounts that given in Todhunter's book. Todhunter had an 

include those of Clerke (1894), David (1962, pages enc~clo~edic  of the literature, and it 

161-178), Pearson (1978, pages 141-146) and the would have been consistent with his usual practice 

Dictionary of Scientific Biography. to mention further work on the subject if it existed. 

Schneider's detailed study (Schneider, 1968) pro- He (in effect) proved his formula by induction. 

vides a comprehensive survey of De Moivre's math- Todhunter assumed, however, as did De Moivre, 

ematical research. During the last two decades, that np is integral (although his proof does not 

many books and papers have appeared on the his- really require this); and this restriction can also be 

tory of probability and statistics, and a number of found in Bertrand (1889, pages 82-83). Bertrand 

these provide extensive discussion and commentary noted that if q = - p and 

on this aspect of De Moivre's work; these include 
most notably, the books by Stigler (1986) and Hald 
(1990). Other useful discussions include those of 
Daw and Pearson (1972), Adams (1974), Pearson 
(1978, pages 146-166), Hald (1984, 1988) and 
Daston (1988, pages 250-253). 

3. LATER PROOFS, APPLICATIONS AND 
EXTENSIONS 

3.1 Later Proofs 

De Moivre did not give a proof of his expression 
for the MAD in the case of the asymmetrical bino-
mial (although he must have known one). This gap 
was filled by Isaac Todhunter (1865,pages 182-183) 
who supplied a proof in his discussion of this por-
tion of De Moivre's work. 

Todhunter's proof proceeds by giving a closed 
form expression for a sum of terms in the expecta-
tion, where the sum is taken from the outside in. 
We abstract the key identity in modern notation. 

LEMMA1(Todhunter's Formula). For all integers 
O s a < P % n ,  

F (P ,  9) = : C (;)Pk9n-k, 
k > n p  

then the mean absolute deviation could be ex-
aF aF 

pressed as 2pq -- - ,and that term-by-term
{ a ,  a 9 1  

cancellation then leads to De Moivre's formula. 
The first discussion we know of giving the general 
formula without any restriction is in Poincark's 
book (1896, pages 56-60; 1912, pages 79-83): if v is 
the first integer greater than np, then the mean 
absolute deviation is given by 2vqb(v; n, p). 
Poincark's derivation is based on Bertrand's but is 
a curiously fussy attempt to fill what he apparently 
viewed as logical lacunae in Bertrand's proof. The 
derivation later appears in Uspensky's book as a 
problem (Uspensky, 1937, pages 176-177), possibly 
by the route Poincark (1896) + Czuber (1914, pages 
146- 147) -+ Uspensky (1937). 

De Moivre's identity has been rediscovered many 
times since. Frisch (1924, page 161) gives the 
Todhunter formula and deduces the binomial MAD 
formula as an immediate consequence. This did not 
stem the flow of rediscovery, however. In 1930, 
Gruder (1930) rediscovered Todhunter's formula, 
and in 1957 Johnson, citing Gruder, noted its appli-
cation to the binomial MAD. Johnson's (1957) arti-
cle triggered a series of generalizations. The MAD 
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formula was also published in Frame (1945). None Markov's continued fraction approach, see Uspen-
of these authors connected the identity to the law of sky (1937, pages 52-56). As usual, this bound is 
large numbers so it remained a curious fact. poorest when a is close to np. For example, when- p = 112,and a = [n/21 + 1,the ratio is ofbrder 6REMARK.The formula for the mean absolute de-

while the lower bound is approximately 112 andviation of the binomial distribution can be ex-
pressed in several equivalent forms which are found the upper bound is approximately n/4. The bound 

in the literature. 1f u is the least integer greater is useful in the tails. Similar bounds follow for 
other families which admit a closed form expres-

than np and Y,,, is the central term in the expan-
sion for the mean absolute deviation.

sion of ( p  + q)", then the mean absolute derivation 
equals Application 2. De Moivre's formula allows a sim-

ple evaluation of the error term in the Bernstein
(Poincarb, 1896; Frisch, 
1924; Feller, 1968) polynomial approximation to a continuous func-

tion. Lorentz (1986) or Feller (1971, Chapter 8) 

= 2 npqb(u - 1; n - 1,p) (Uspensky, 1937) 

= 2npqYn-, (Frame, 1945) 

= 2v(f)pvqn-u+1 (Johnson, 1957). 

In his solution to Problem 73, De Moivre states 
that one should use the binomial term b(j; n, p) 
for which j / (n  - j )  = p / ( l  - p); since this is equiv-
alent to taking j = np, the solution tacitly assumes 
that np is integral. In this case b(j; n, p) = 

b(j; n - 1, p) and j = v - 1, hence 

2npqb(j; n, p )  = 2npqb(u - 1;  n - 1,  p) ;  

thus the formula given by De Moivre agrees with 
the second of the standard forms. 

3.2 Applications 

Application 1. As a first application we give a 
binomial version of Mills ratio for binomial tail 
probabilities. 

THEOREM1. For a > np, n 2 1 and p E (0, I), 

PROOF.For the upper bound, use Lemma 1to see 
;that 

The lower bound follows similarly. 

REMARK.The upper bound is given in Feller 
(1968, page 151). Feller gives a much cruder lower 
bound. Slightly stronger results follow from 

give the background to Bernstein's approach. 
Let f be a continuous function on 10, 11. Bern-

stein's proof of the Weierstrass approximation 
theorem approximates f(x) by the Bernstein 
polynomial 

The quality of approximation is often measured in 
terms of the modulus of continuity: 

~ ~ ( 6 )= SUP I f ( y )  - f ( x )  I . 
I x - y l 5 6  

With this notation, we can state the following theo-
rem. 

THEOREM2. Let f be a continuous function on the 
unit interval. Then for any x E [O, 11 

I f(x)  - B(x) I 

with nx < v < nx + 1. 

PROOF.Clearly 

I f (x)  - B(x) I 

For any 6 E (0, I), dividing the interval between 
x and i / n into subintervals of length smaller than 
6 shows 

Using this and De Moivre's formula gives the theo-
rem, taking 6 = 116 .  

REMARK.(1) Lorentz (1986, pages 20, 21) gives
I f(x) - B(x) 1 5 i w f ( l / 6 ) .  Lorentz shows that 
the function f(x) = I x - has 1 f(x) - B(x)l 
2 +of(l /6)so the 1 1 6 rate is best possible. 

(2) To get a uniform asymptotic bound from Theo-
rem 2, suppose n is odd. Then Blyth (1980) shows 
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that the mean absolute deviation (given by formula 
(1.1)) is largest for p = i. The upper bound in 
theorem 2 becomes 

By Stirling's formula the right hand side is asymp-
1 

totic to uf f i(L) (12 + -). 
(3) Bernstein polynomials are useful in Bayesian 

statistics because of their interpretation as mix-
tures of beta distributions (see Dallal and Hall, 
1983; Diaconis and Ylvisaker, 1985). The identities 
for other families presented in Section 4 can be 
employed to give similar bounds for mixtures of 
other familes of conjugate priors. 

Application 3. As a final application, we apply 
the general form of De Moivre's formula (1.1) to 
show that the MAD of S, is increasing in n, but 
that the MAD of S, / n  is decreasing in n. For S,, 
let v, = [np + 11 = [npl + 1, so that np < u, 5 

np + 1. 

THEOREM3. Let S, - B(n, p) and M, = :  
E[ 1 S, - np I I. Ifp is fixed, then for every n 2 1, 

M, IM,+ ,, with equality precisely 
(3.1) when (n + 1)p is integral; 

Mn Mn+1 
(3.2) - L- , with equality precisely 

n n + l  
when np is integral 

PROOF.It is necessary to consider two cases. 

Case 1. v, = v,+ ,. Then by the general form of 
De Moivre's formula 

and 

But ( n  + l ) p  < [(n + l ) p  t 11= v,,, = v,, hence 
n + 1- v, < (n  + l )q ,  so that  M,,, / M ,  > 1.Sim-
ilarly, v, r np + 1,hence nq In + 1- v,, and in-
equality (3.2) follows, with equality if and only if 
np + 1,hence np is integral. 

Case 2. v, < v,,,. In this case, by De Moivre's 
formula, 

Mn+l ( n + l ) p- - -
Mn 

and 

Since v, < v,+ ,, clearly v, = u,+ , - 1= [(n + 1)pI 
r ( n  + l ) p ,  and inequality (3.1) follows, with 
equality if and only if ( n  + l ) p  is integral. Since 
np < v,, inequality (3.2) follows immediately, and 
the inequality is strict. 

Since np integral implies v, = v, + ,, and (n  + 1)p 
integral implies u, < v,+,, the theorem follows. 

REMARK.De Moivre's formula can be applied 
outside the realm of limit theorems. In a charming 
article, Blyth (1980) notes that the closed form 
expansion for the MAD has a number of interesting 
applications. If S, is a binomial random variable 
with parameters n and p, the deviation E I S, / n  
- p 1 represents the risk of the maximum likeli-
hood estimator under absolute value loss. As p 
varies between 0 and :, the risk is roughly mono-
tone but, if n = 4, p = +,the estimate does better 
than for nearby values of p. Lehmann (1983, 
page 58) gives De Moivre's identity with Blyth's 
application. 

3.3 Extensions to Other Families 

De Moivre's identity can be stated approximately 
thus: For a binomial variate, the mean absolute 
deviation equals twice the variance times the den-
sity at  the mode. It is natural to inquire whether 
such a simple relationship exists between the vari-
ance u2 and the mean absolute deviation p, for 
families other than the binomial. This simple ques-
tion appears to have been first asked and answered 
in 1923 by Ladislaus von Bortkiewicz. If f(x) is the 
density function of a continuous distribution with 
expectation p, von Bortkiewicz showed that the 
ratio R = : p, /2 a2f(p) is unity for the gamma ("De 
Forestsche"), normal ("Gaussche"), chi-squared 
("Helmertsche") and exponential ("zufalligen 
Abstande massgebende") distributions ("Fehlerge-
setz"); while it is ( a  + P + l ) / ( a  + P) for the beta 
distribution ("Pearsonsche Fehlergesetz") with pa-
rameters a and p. 

Shortly after von Bortkiewicz's paper appeared, 
Karl Pearson noted that the continuous examples 
considered by von Bortkiewicz could be treated in a 
unified fashion by observing that they were all 
members of the Pearson family of curves (Pearson, 
1924). If f(x) is the density function of a continu-
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ous distribution, then f(x) is a member of this 
family if it satisfies the differential equation 

Then, letting p(x) = bo + b,x + b2 x2, it follows 
that 

then integrating from -m to m yields 

a + b, 
P =  -

1+ 2 b 2 '  

so that 

and 

This gives the following result. 

PROPOSITION1. Iff  is a density from the Pearson 
family (3.3) with mean p and (3.4) is satisfied, then 

REMARK.If and 0,= : p ~ / p ~  = : p, / p i  denote 
the coefficients of skewness and kurtosis, then, as 
Pearson showed, this last expression may be re-
expressed as 

402 - 361 
p1 = C2 u 2f(p)  where C = 

6(02 - 61 - 1) 

The constant C = 1o 20, - 30, - 6 = 0, which is 
the case when the underlying distribution is nor- 
mal or Type 3 (gamma). We give further results for 
Pearson curves in the next section. 

Just as with De Moivre's calculation of the MAD 
for the binomial, the von Bortkiewicz-Pearson for-
mulas were promptly forgotten and later rediscov- 
ered. Ironically, this would happen in Pearson's 
own journal. After the appearance in 1957 of John- 
son's Biometrika paper on the binomial, a series of 
further papers appeared over the next decade which 
in turn rediscovered the results of von Bortkiewicz 
and Pearson: Ramasubban (1958) in the case of the 
Poisson distribution and Kamat (1965, 1966a) in 

the case of the Pearson family; see also the articles 
by Johnson (1958) Bardwell (1960) and Kamat 
(1966b). 

PART 2: CLOSED FORM SUMMATION FOR 

CLASSICAL DISTRIBUTIONS 


4. DE MOIVRE'S IDENTITY AND 
ORTHOGONAL POLYNOMIALS 

De Moivre's identity follows from a closed form 
expression for the sum C:=, (k - np)b(k; n, p). 
The function k -+ k - np is the first orthogonal 
polynomial for the binomial distribution. In this 
part, we show that all of the orthogonal polynomi- 
als, except the zeroth, admit similar closed form 
partial sums and that the same holds true for the 
other classical distributions as well. 

Passage to the limit shows such identities must 
hold for the orthogonal polynomials associated to 
the normal distribution (the Hermite polynomials). 
The arguments are clearest here, so we begin with 
this case in Section 4.1. A variety of applications 
are presented. Most notably, the identities give a 
singular value decomposition for an operator asso- 
ciated to "Stein's method" for proving limit theo- 
rems and finding unbiased estimates of risk. In 
Sections 4.2 and 4.3, we then show how very simi- 
lar arguments permit the derivation of correspond- 
ing results in the case of the gamma and beta 
distributions, where the appropriate orthogonal 
polynomials are the Laguerre and Jacobi polynomi- 
als, respectively. 

The occurrence of these three special families of 
orthogonal polynomials and distributions is not an 
accident. The Hermite, Laguerre and Jacobi poly- 
nomials form the three classical families of orthogo- 
nal polynomials, known to satisfy many important 
and special properties; and the normal, gamma and 
beta families are precisely those members of the 
Pearson family for which orthogonal polynomials of 
all orders exist. This connection is spelled out in 
Section 5. 

Finally, corresponding results are derived for two 
families of discrete distributions: in Section 6.1, we 
discuss the Poisson distribution, and then, in Sec- 
tion 6.2, we finally return to where we began: the 
binomial. 

4.1 The Normal Density and Hermite Polynomials 

A familiar theorem says that the integral 

cannot be written as an elementary function of a. 
Rosenlicht (1976) gives an accessible account in 
modern language. Of course, certain indefinite nor- 
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ma1 integrals can be simply evaluated, for example 
/" ~ e - " ' / ~ d x .The following lemma determines all 
polynomials whose integral can be so evaluated. 

Recall first that the Hermite P 
orthogonala~ol~nomialson IR with 

e-" I2 dx are given 
formula ( n  = 0, 1, 2, - - .  ) 

~ are the 
respect the 

the 

Thus Ho= 1, H, = A X ,  Hz = 2(x2 - I), H3 = 

2\ /2(x3 - 3x), . . . . They satisfy the relation 
m/(4.2) ~ , ( x ) ~ ~ ( x ) e ~ ' ' ~ d x = ~ 2 ' r ! 6 , ~ .  

son why such a formula exists: the polynomial part 
of the integrand involves HZ( x)/2. 

EXAMPLE3 (Stein's Method). Charles Stein has 
~ Y ~ ~ ~ ~ used the following characterization of the normal 

distribution as part of his approach to proving limit 
theorems and in deriving his unbiased estimate of 

risk in statistics. 

LEMMA2 (Stein, 1986). A random variable Z has 
a standard normal distribution if and only if 

for every smooth function f of compact support. 

-m 

Background and standard properties of Hermite 
polynomials can be found in Chihara (1978), an 
exceIlent introduction to the subject of orthogonal 
polynomials. 

The basic identity needed is the following. 

LEMMA1. For n 1 1 and any real a, 

PROOF. The Hermite polynomials can be repre- 
sented by the Rodrigues formula as 

with D n  denoting n-fold differentiation. From this 

COROLLARY can inte-1. A polynomial p(x)  be 
grated against e ~ " ' / ~  in finite terms if and only if 
p(x) is orthogonal to the constants in ~ ~ ( e - " ' / ~ ) .  

EXAMPLE1. The analog of De Moivre's identity 
for the standard normal distribution takes the form 

this follows from Lemma 1,with n = 1and a = 0. 

EXAMPLE2. In deriving a total variation bound 
on the binomial approximation to the hypergeomet- 
ric distribution, Diaconis and Freedman (1980) en- 
countered the identity 

It seemed surprising that such a normal integral 
could be evaluated. The Corollary clarifies the rea- 

If Z is normal, integration by parts shows that 
the identity is satisfied for all f such that either 
side makes sense. Stein's argument for the con-
verse involves the operator U defined by 

(4.3) (Ug)(x)  = s: g(t)e-t2!2 dt 

This satisfies (Ug)'(x) - x(Ug)(x) = g ( x )  for all g 
having mean 0 under the normal density. Now 
suppose P is a probability such that 

for a large class of functions f. Set g (  x) = ZA(x)-
@(A) where A is a fixed Bore1 set, ZA is the indica- 
tor function of A and @(A) is the standard normal 
probability of A. Then, set f = Ug to see P (  A) = 

@(A).A careful study of the properties of U plays 
an  important part in Stein's method for proving 
limit theorems. 

The operator U mapping g to f sends ~ ; ( e - " ~ / ~ )  
into L2(e-"'I2), where the subscript 0 denotes that 
part of L' orthogonal to the constants. Lemma 1 
can be employed to give a singular value decompo- 
sition for the operator U. By (4.2), the functions 
en( x) = H,( x)/( 6  2  "n!)li2 are an  orthonormal 
basis for ~ ~ ( e - " ' / ~ ) ;  Lemma 1then yields Corollary 
2. 

COROLLARY2. The operator U defined by (4.3) is 
a bounded linear operator from ~ ; ( e - " ~ ~ ~ )into 
~ ~ ( e - " " ~ ) .  {e,}r,, and {en};=, are taken asIf 
orthonormal bases of these spaces, then U satisfies 

-1

I 


Ue, = x e , - , .  

REMARK.The bases { e,},, ,and { e,},, give a 
singular value decomposition of U with singular 
values -11A.We hope to use this decomposition 
to study the stability of Stein's characterization of 
the normal distribution. Corollary 2 may be used in 
conjunction with Stein's approach to give bounds 
and approximations for moments. Indeed, Stein 
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(1986, page 13, equation 33) gives the expression This can be solved explicitly as 

with the expectation on the left being the basic 
object of study, E, the normal expectation and 
(Toa - iT,) a simple operator. The operator U, is 
our U above. Taking h as the Hermite polynomi-
als, en gives explicit identities for moments. As will 
be seen shortly, virtually identical interpretations 
hold for the characterizations of the other classical 
distributions. 

4.2 The Gamma Density and Laguerre Polynomials 

For a > 0, the gamma distribution with parame-
ter a has density y,(x) = e-xxa- l / r (a )  on (0, m). 

The orthogonal polynomials for this density are 
called Laguerre polynomials. They have the ex-
plicit representation 

Thus L",' = 1, LY-' = a - x, and L";' = 
1Z(a + +)a - (a + 1)x + ;x2. The identity here is: 

LEMMA1. Let L",' be defined by (4.4). Then, for 
n r 1 and a > 0, 

PROOF.Chihara (1978, page 145) gives the 
Rodrigues type formula 

REMARK.For integeG values of a the integrals 
can be evaluated by elementary techniques, even 
when n = 0. 

EXAMPLE1. The analog of De Moivre's identity is 

Here, as earlier, the mean absolute deviation is 
twice the variance times the density at its mode. 

EXAMPLE2 (Stein's Method). The gamma density 
can be characterized as follows: a random variable 
X has a y, density if and only if 

for every smooth function f of compact support. 
This can be used to prove limit theorems for expo-
nential and chi-squared variables via analogs of 
Stein's method. The formalism involves a study of 
the equation 

(4.5) Ug(x) = x-'ex l x g ( t ) t " ' e t  dt. 

Lemma 1gives Corollary 1. 

COROLLARY1. The operator U defined in (4.5) is a 
bounded linear operator from L?';(y,) into 
92(r,+l). If { La,-'):= and { L",;,, are taken as 
orthogonal bases of these spaces, then 

1 
U(L",') = ;L",'. 

4.3 The Beta Distribution and Jacobi Polynomials 

For a ,  0 < 0, the beta distribution with parame-
ters a, 0 has density 

on 10, 11.The corresponding orthogonal polynomials 
are called Jacobi polynomials. They are given ex-
plicitly as 

m-l,fi-l(x)Pn 

n + P - 1 ( x  l)kxn-k(4.6) = -f( n + ; - I ) (  ) 
k =0 n - k  

Well-known special cases include the Legendre 
polynomials (orthogonal polynomials for the uni-
form distribution on [O, 11) and the Chebyshev poly-
nomials of the first and second kind. The identity 
here becomes: 

LEMMA1. Let p, be defined by (4.6). For n 2 1, 

PROOF.Chihara (1978, page 143) gives a 
Rodrigues type formula, which may be rewritten as 

The result follows after elementary manipulation. 

EXAMPLE1 (Dirichlet Distribution). For m 2 1, 
the standard m-simplex is denoted 

A, = { X E I R ~ : ~ ~2 0, xl + +x, = 1). 

The symmetric Dirichlet distribution on A, has 
density 

Dk(X1,.. . ,  X,) = --- 1=  1 
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This has been extensively used as a prior density 5.1 Pearson Curves 
for Bayesian calculations by I. J. Good. 

For k large, D, converges to a point mass at the 
center of the simplex x* = (11m, l/m, . . .,l/m). 
The rate of convergence of D, to x* can be studied 
as an applicatipn of Lemma 1. If P is a random 
choice from D,, let E, = E, ) I  P - x*11, where 

denotes total variation. Thus E, is a subjectivist 
measure of the expected distance of a typical pick 
from D, to the uniform measure x*. 

PROOF.The proof follows from linearity using the 
mean absolute deviation formula for the beta: If 
XE[O, 11has a @(v;a ,  0) density with mean p = 

a /(a + 0) then 

This in turn follows easily from Lemma 1. 

REMARK.(1) If k = 1, Dk becomes the uniform 
distribution on A ,. Then, 

Thus a point chosen at random on A, is not too 
close to the uniform distribution if m is large. 

For m fixed, as-k -+ m, 

1 

Thus for k large, a typical pick from D, is close 
to the center in total variation. Using Markov's 
inequality gives convergence of D, to x* in 
probability. 

(2) A Stein-like characterization of the beta dis-
tribution appears in Section 5: 

5. THE PEARSON FAMILY OF CURVES 

The results derived for the normal, gamma and 
beta distributions can be generalized to other mem-
bers of the Pearson family. Moreover, in a sense to 
be made precise, Pearson families are the only 
families of continuous, probability densities for 
which the particular argument employed works. In 
this section, we present background, show that the 
orthogonal polynomials associated to a Pearson 
family admit closed form integrals and prove that 
this characterizes the Pearson families. 

In 1895, the English statistician Karl Pearson 
introduced his famous family of frequency curves. 
As noted in Section 3.3, the elements of this family 
arise by considering the possible solutions to the 
differential equation 

(Strictly speaking, Pearson took a, = 1, but it is 
more natural to include the coefficient and permit 
the possibility a, = 0.) The Pearson family has a 
simple structure. There are in essence five basic 
solutions, depending on whether the polynomial 
p(x) in the denominator is constant, linear or 
quadratic and, in the latter case, on whether the 
discriminant of p(x) is positive, negative or zero. 

It is easy to show that the Pearson family is 
closed under location and scale change. Thus the 
study of the family can be reduced to the differen-
tial equations that result after an affine transfor-
mation of the independent variate. 

If deg p(x) = 0, then after change of variable the 
differential equation reduces to f (x) /  f(x) = + X; 
if f(x) is assumed to be defined on the maximal 
interval possible (here -m < x < m), then in order 
for f(x) to be integrable only the negative sign is 
permissible and f(x) is seen to be the standard 
normal density. If degp(x) = 1, then (up to change 
of location and scale) the resulting maximal solu-
tions may similarly be seen to be the family of 
gamma distributions; this corresponds to Pearson's 
type 3. 

If deg p(x) = 2, then the situation is somewhat 
more complex. 

(1) If the discriminant A = : bf - 4 b, b2 of the 
polynomial p(x) = b, + blx + b, x2 is negative, 
then p(x) has no real roots, and after an affine 
change of variable the density f(x) can be brought 
into the form 

f (x )  = ~ ( 1+ x2)-" exp(0arctan x ) ,  

where C is the appropriate normalizing constant. If 
it is assumed that f(x) is defined on the maximal 
possible interval-here (-03, m)-then a > 1/2 and 
-m < 0 < m ensure that f(x) is integrable. Except 
for special values of a and 0, this corresponds to 
Pearson's type 4; in particular, the t-distributions 
are a (rescaled) subfamily of this class. 

(2) If the discriminant A is zero, then p(x) has a 
single real root, and after an affine change of vari-
able the density f(x) can be brought into the form 

f (x )  = Cx-" exp --i 3). 
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Here there are two maximal intervals, (-03, 0) and 
(0, m), but by the further change of variable y = -x, 
every such maximal density can be thought of as 
defined on the positive reals. In this case, a > 1, 
0 2 0 ensure that f(x) is integrable. Except for 
special values of a and 0, this corresponds to Pear-
son's type 5; in pstrticular, the inverse Gaussian 
distributions are a (rescaled) subfamily of this class. 

(3) If the discriminant A is positive, then p(x) 
has two distinct real roots, and after an affine 
change variable the density f(x) can be brought 
into the form 

Here there are three maximal intervals, (-03, - I), 
(-1, I), and (1, m), but after a further change of 
variable these can be taken to be either (0, 1) or 
(0, 03). If the maximal interval is (0,I), then a, 
0 > -1 ensure that f(x) is integrable; these are the 
beta densities and, except for special values of a 
and 0, correspond to Pearson's type 1 (the asym-
metric beta) and type 2 (the symmetric beta). If the 
maximal interval is (0, m), then a > -, a + 0 < -
ensure that f(x) is integrable; in particular, the 
F-distributions are a subfamily of this class. 

5.2 Basic Summation Formula 

This section shows that a natural family of poly-
nomials, admitting closed form summation, can be 
associated to each Pearson density. These polyno-
mials are orthogonal provided sufficiently many 
moments exist (we admit densities like the t). The 
proofs draw heavily on two unjustly neglected pa-
pers by Hildebrandt (1931) and Beale (1941). 

THEOREM1. Let J be an open interval, and let 
f: J+R+ be a positive differentiable function on J .  
If f(x) satisfies the Pearson differential equation 
(5.1) on J ,  and p(x) = :  bo + b,x + b2x2,then: (1) 
For each n r 1, the function 

is a polynomial of degree at most n; (2) for each 
n 2 , I ,  the polynomial P,(x) satisfies the self-
adjoint, second-order Sturm-Liouville differential 
equation 

on J ,  with X, = n[al + (n  + l)b21;and (3) for every 
n r 1 such that X, f 0 and every a ,  0 E J, the 
integral 

is equal to 

PROOF.The observation that the functions 
in (5.2) are polynomials of degree s n  is due to 
Hildebrandt (1931, page 401). Hildebrandt also 
shows (1931, pages 404-5) that for each n 2 1, 
the polynomial P,(x) satisfies the second-order 
differential equation 

dy2 dy
JI(X): + (a, + alx + pf(x))- - C,Y = 0,

dx dx 

where c, = n[al + (n  + 1)b,]; the self-adjoint dif-
ferential equation (5.3) is easily seen to follow from 
this. Finally, the summation formula (5.4) is an 
immediate consequence of (5.3). 

It is an important observation of Beale (1941, 
pages 99-100) that the coefficient of xn  in the 
polynomial P,( x) is 

n-1 n [a,  + ( n +  1+ j ) b 2 ] .
J = O  

Thus P,(x) is of degree n precisely when the Beale 
condition is satisfied: 

(5.5) Neither of the following occurs: 

(i) a, = b, = 0 (in which case P,(x) is constant); 

Let P,(x) =: 1, and q(x) = : a0 + a, X. If one 
assumes that (5.5) holds for any n 2 1, then the 
polynomials { Po, P,, P2, P,, . . . ) are linearly 
independent; and this important case thus arises 
precisely when either (1) p(x) is constant or linear 
or (2) p(x) is quadratic and -(a1 / b,) - 1is not a 
positive integer. The various systems of polynomi-
als that then arise have been classified by Beale 
(1937, 1941). After an appropriate affine transfor-
mation, the only possibilities are as follows: Let 
61 = deg q(x), 6, = deg p(x); and if 6, = 2, let 
A = discriminant p(x). (Note that because a, = 
b, = 0 is assumed not to occur, the case 6, = 0 and 
6, = 0 or 1 are excluded.) Table 2 collects these 
results. 

The Hermite, Laguerre and Jacobi polynomials 
were discussed in the preceding section. For discus-
sion and references concerning the basic properties 
of the Bessel polynomials, see generally Chihara 
(1978, pages 181-183). The last class of poly-
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TABLE2 
Orthogonal polynomials for Pearson curves 

6,  82 A Polynomial 

1 0 Hermite 
1 1  Laguerre 
5 1 2 > 0 Jacobi 
5 1 2 = 0 Bessel (Krall and Frink, 1949) 
5 1 2 < 0 No accepted name (Romanovsky, 1929) 

nomials were first described and discussed by 
Romanovsky (1929); see also Beale (1941). 

5.3 A Converse Theorem 

The key to the above argument is the Rodrigues 
formula (5.2). The next argument shows that the 
only probability densities admitting such a repre-
sentation are Pearson families. Fix a positive 
integer N. Let f(x) be a CN probability density, 
defined and everywhere positive on an  open inter-
val J.A sequence of polynomials { Pn; 0 I n s N )  
such that deg Pns n is said to satisfy a Rodrigues 
formula with respect to f(x) if there exists a poly-
nomial g(x)  > 0 on J, and a sequence of nonzero 
constants C, such that 

The following result, which is based on a theorem 
of Cryer (1970, page 3), shows that having a 
Rodrigues formula for N = 2 implies that f is a 
member of the Pearson family. 

THEOREM1. Let PI and P2 be two polynomials 
such that deg P, 5-1 and deg P, I 2. If (5.6) is 
satisfied for n = 1, 2 then f(x) is a member of the 
Pearson family of probability distributions (5.1). 

m t o o ~ .By assumption there exists a polynomial 
g(x)  and nonzero constants Cj, 1I j I 2, such that 
CjP, f = Dj{ fgj) for j = 1,2. Thus 

hence C, P2= gD2g + D(C, P, g )  + (C, P112. But if 
deg g = m r 3, then the degree of the right hand 
side would be 2 m  - 2 r 4, which is impossible. 

Thus deg g I 2. But C, P, f = D( fg) = D g  + gDf, 
hence 

It follows that 

for appropriate constants a,, a,, b,, b,, and b,; 
and thus, by definition, f(x) is a member of the 
Pearson family. 

REMARK.De Moivre's MAD identity was given 
explicitly in Section 3.3. Stein (1986, Chapter 6) 
gives appropriate versions of his identity for gen-
eral densities and explicitly specializes to Pearson 
curves f(x). Suppressing regularity conditions, a 
random variable X has density f(x) as a t  (5.1) if 
and only if for every smooth h of compact support 

with p(x) as in (5.1). Stein proves this by introduc-
ing an  operator U, just as in the normal case. We 
presume that the orthogonal polynomials give a 
singular value decomposition for this operator to 
the extent that this makes sense (e.g., existence of 
moments). 

5.4 Some Examples 

The normal, gamma and beta families discussed 
earlier emerge as particularly important members 
of the Pearson family by a three stage process. (1) 
They satisfy the Beale condition (5.5) for every 
n r 1, so that their associated polynomials are lin-
early independent; (2) they represent solutions to 
the Pearson differential equation, which are inte-
grable over the maximal permissible interval (i.e., 
up to the singular points of the differential equa-
tion, the zeros of the denominator polynomial p(x)); 
(3) they have moments of all orders, so that by 
basic Sturm-Liouville theory, their polynomials are 
in fact orthogonal (see, e.g., Simmons, 1972, pages 
133-138, for the case of a bounded interval, appli-
cable to the case where the P, are the Jacobi 
polynomials, and f(x) is a beta density). 

EXAMPLES.(1) If f(x) = tN(x), the density of 
Student's t-distribution on N degrees of freedom, 
then f(x) = C(l + x ~ / N ) - ( ~ + ' ) / ~ ,and 

so that -a, / b, = N + 1, and deg Pn(x) < n for n 
in the range ( N  - 1)/2 s n I N. 
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(2) If f(x) = xN, x > 0, then 

Thus f(x) is the solution to two versions of the 
Pearson differential equation, one with p,(x) = x, 
the other with p,(x) = x2. But 

--
( N  + n)! 

n r  1 ,
N!  ' 

consistent with Beale's theorem (1937, page 209) 
that the polynomials are constant when the denom-
inator of (5.1) is linear and the numerator constant; 
while 

-- ( N  + 2n)! xn ,  n 2 1,
( N  + n)! 

so that in this case the family { Pt , p12, P22,. . . ) is 
indeed a basis for the space of polynomials, consis-
tent with the fact that - a, / b2 = -N is never a 
positive integer. 

The function f(x) is not integrable, however, 
when viewed as a function over the entire positive 
axis, and so its domain of definition must be trun-
cated in order for i t  to be normalizable. If we take 
f(x) = xN, for 0 < x < x,,, and f(x) = 0 otherwise, 
then the family { Pt , p12,Pi, . . . ) remains a basis 
for the polynomials but is not orthogonal with re-

are called Charlier polynomials. Chihara (1978, 
pages 170-172) gives background and details. A 
monic form of the polynomials can be given explic-
itly as 

Then Co = 1, C, = x - h, C2 = ~ ( x -1) - 2 h x +  
A ~ .The identity becomes: 

LEMMA1. Let C, be defined by (6.1). For n r 1, 
and 0 Ia I m an integer, 

PROOF.The polynomials satisfy the recurrence 
relation 

Ck+l(x) = ( x  - n - x ) c ~ ( x )- hnCk-,(x). 

The Christoffel-Darboux identity for polynomials 
P, satisfying P, = ( x  - cn)Pn-, - h, P,-,, is 

5 p k ( x ) p k ( ~ )  

k = O  A1 . .  . hk+1 

-- P n + l ( x t . ) P n ( ~ )- p n ( x ) P n + ~ ( ~ )  
(A1 ' .  . h,+1)(x - Y )  

This holds for any n, x and y. We specialize this to 
the Charlier case, take y = 0 and use the duality 
relation 

C,(k) = ( - A ) ' " - ~ c ~ ( ~ ) .  

The left side of the Christoffel-Darboux identity 
becomes 

spect to f(x). -
(3) Consider finally the density f(x) = 2on (0, m). Then k = o  XI a . e  hk+l k = o  hkk! 

Because -al / b2 = 312, the polynomials {PI,  P2; 
P,, . . . ) in this case are linearly independent, and 

, the function f(x) is integrable. Because f(x) has 
,no moments, the polynomials obviously cannot be 
orthogonal with respect to f(x). (They are, how-
ever, a "quasi-definite" system, orthogonal with 
respect to a complex measure; see Krall and Frink, 
1949.) 

6. TWO DISCRETE EXAMPLES 

6.1 The Poisson Distribution and Charlier 
Polynomials 

For h > 0, let q,(j) = e - % ~ / j !denote the Poisson 
density on O,1,2, . . . . The orthogonal polynomials 

The right side is easily seen to be 

where the identities AC,(x) = nC,-,(x) (Chihara 
1978, page 171) were useful. 

Equating the two sides then gives the stated 
result. 

REMARK.There is a Rodrigues-type formula in-
volving finite difference~that is available: 

with ~ f ( x )= f (x  + 1) - f ( x ) .  
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Here x is treated as a variable and one easily sees 
that C,(x) is a polynomial. Direct use of the for-
mula for integer x < n requires care in its interpre-
tation. 

EXAMPLE1. The analog of De Moivre's identity 
here is 

with [XIthe greatest integer less than or equal to X. 
Billingsley (1986, pages 381-382) bases a proof of 

Stirling's formula on this identity. Similar proofs 
can be based on the other identities of this section. 

EXAMPLE2 (Stein's Identity). The Poisson distri-
bution is characterized by the identity 

for every bounded function f on the integers. Solv-
ing for f in terms of g in 

leads to 

x 2 1; f(0) = 0. As usual, c,",, g(x)qh(x)= 0 is 
assumed. Stein (1986, Chapter 9) gives background 
and motivation. 

Comparison with Lemma 1shows that  the Char-
lier polynomials give a singular value decomposi-
tion for U. To state this explicitly, we use 

to form orthonormal polynomials = C, / m. 
Let {cj),^_?be an  orthonormal basis for ~;(q,). 
Define ph(j) = qh(j- 1). Let 

f : { l ,  2 , .  . . ) + IR: x f 2 ( j ) p h ( j )< cl. 
j= 1 

Thus D,( j )  = <(j - 1) form an  orthonormal basis 
for L ~ ( ~ , ) ,0 5 n 5 m. 

COROLLARY1. The operator U defined by (6.2) is 
a bounded linear operator from L;(q,) to L2(ph). If 
these spaces are given bases { G } r = ,  and { D,};=,, 
then U has singular values given by 

6.2 The Binomial Distribution and Krawtchouk 
Polynomials 

As before, let b(k; n, p) = ( i ) p k ( l  - de-
note the binomial density on (0, 1 , .  . . ,n}. The 
Krawtchouck polynomials are orthogonal for b(k; 
n, p). They are given by the explicit formula 

0 Ik 5 n, y = p / ( l  - p). Thus Po = 1, P, = 
y(n - x) - x and P2 is 

The orthogonality relation is 

Basic properties of the Krawtchouck polynomials 
with extensive references are given by Macwilliams 
and Sloane (1977, pages 150-153). 

The basic identity for the binomial density is: 

LEMMA1. For Pf defined by (6.3), with k L 1 
and a an integer, 0 5 a In, 

p n - a  

- 1 - p  k b(a;  n ,  p )  Pf:;(a). 

PROOF.Macwilliams and Sloane (1977, page 152) 
give the identity 

and the duality relation 

Substituting (6.5) into (6.4) and simplifying gives 
the desired result. 

REMARK.The Krawtchouck polynomials have a 
Rodrigues-type representation, which can be used 
to give an  alternative proof for Lemma 1.  The 
Christoffel-Darboux formula and duality can also 
be used as in our treatment of the Poisson distribu-
tion. Finally, as was the case for us originally, the 
correct formula can be guessed a t  from small cases 
and proved directly from (6.3). 
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EXAMPLE1 (Stein's Identity). Binomial random 
variables are characterized by the identity 

for every f :{  -1,0, 1 , .  . . , n) into R,where q = 1-
p. The study of this identity involves solving for f 
given g in the following equation: 

P(" - x) f (x )  - w f ( x  - 1)= g ( x )  

where E , , , ( ~ ( x ) )  = 0. 

This can be solved explicitly as 

The value of f(-  1) and f(n) can be chosen arbi- 
trarily. 

Lemma 1translates into a singular value decom- 
position for U after introducing orthonormal bases 

COROLLARY U by (6.6), let1. For defined 
~ t ( b ( l z ;n, p)) andL2(b(k;n - 1, p)) have {F,"):,, 

as orthonormal bases. Then 

so that U is a 1-1, onto, linear map with singular 
values I /  Jm,I I i I n. 

7. OTHER DENSITIES 

Very similar results can be derived for other 
densities. What is needed is either a Rodrigues-type 
formula or a duality result along with the Christof- 
fel-Darboux identity as outlined in Sections 6.1 and 
6.2 above. For example, the geometric and negative 
binomial distributions give rise to Meixner polyno- 
mials, the hypergeometric distribution to Hahn 
polynomials. There is, in fact, a discrete analog of 
Theorem 1of Section 5.3 characterizing all discrete 
measures having Rodrigues-type formulas; see 
Weber and Erdhlyi (1952). Along these lines, see 
Chihara (1978, Chapter 5, Section 3). Eagleson 
(1968) characterizes discrete orthogonal polynomi- 
als which admit a duality relation. 

The "sixth family" of Morris (1982) is related to 
Pollaczek polynomials. It is not covered by the 
results above (it is not in the Pearson family). It 

'):,-: P,"-{and 

would be interesting to see that formulas are avail- 
able for the cubic exponential families of Letac and 
Mora (1990). 

8. CODA 

This article had its origin in the simple observa- 
tion that buried in Problem 72 of De Moivre's 
Doctrine of Chances was the L, law of large num- 
bers for Bernoulli trials. Somewhat to our surprise, 
however, what was initially regarded as a fairly 
straightforward (and short!) historical note soon 
began to acquire a life of its own: no sooner did we 
think that we had tracked down the earliest redis- 
covery of the result, then another cropped up; a 
routine intellectual credit check on Sir Alexander 
Cuming ended up leading us down the path of an 
18th century con artist (see the concluding 
postscript below); and an attempt to understand 
Todhunter's proof of De Moivre's formula ulti-
mately resulted in the discovery of a much more 
general phenomenon, valid for many of the classi- 
cal distributions. 

Most of us have probably had this experience at  
one time or another. But (for us, at least) it seems 
to happen with uncanny frequency when trying to 
read and understand the past masters of our sub- 
ject, which is one reason why we enjoy it so much. 

We have not exhausted the rich collection of 
ideas connected to De Moivre's identity. David 
Aldous has shown us a probabilistic proof of (1.1) 
and connected it to Tanaka's formula of stochastic 
calculus. A discrete version of this given by (Csorg$ 
and RQvQsz (1985) yields the identity 

where X, are symmetric Bernoulli, S, = X, 
+ . . .  +Xk and 4(n) the number of k, 0 Ik < n 

such that S, = k/2. Taking expectations gives a 
formula for the left side of (1.1) as the sum of 
middle binomial coefficients: 

Richard Askey and George Gasper have pointed to 
"q analogs" of some of the formulas. Stein's opera- 
tor U is a standard tool in working with Hermite 
polynomials. Our Corrollary 2 of Section 4.1 is the 
basic "lowering relation" in that theory; see, for 
example, Cormier and Greenleaf (1990), Lemma 
A.3.4b, page 244. 

Presumably the list goes on. 
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CONCLUDING (PARTIALLY UNSCIENTIFIC) 

POSTSCRIPT: SIR ALEXANDER CUMING 


1. STIRLING AND CUMING 

In the Miscellanea Analytica, De Moivre states 
that Problem 72 in the Doctrine o f  Chances had 
been originally posed to him in 1721 by Alexander 
Cuming, whom he describes as an  illustrious man 
(vir clarissimus) and a member of the Royal Society 
(Cum aliquando labenta Anno 1721, V i r  claris- 
simus Alex. Cuming Eq. Au.  Regiae Societatis 
Socius, quaestionem infra subjectum mihi  proposu- 
isset, solutionem prolematis ei poster0 die tra-
dideram). 

Thus, we have argued, Cuming was responsible 
for instigating a line of investigation on De Moivre's 
part that ultimately led to his discovery of the 
normal approximation to the binomial. But curi- 
ously, Cuming was also directly responsible for 
James Stirling's discovery of the asymptotic series 
for log(n!). 

At some point prior to the publication of the 
Miscellanea Analytica, De Moivre discovered that 
Stirling had also made important discoveries con- 
cerning the asymptotic behavior of the middle term 
of the binomial distribution. Stirling and De Moivre 
were on good terms, and De Moivre, while obvi- 
ously wishing to establish that he had been the 
first to make the discovery, was also clearly anx- 
ious to avoid an  unpleasant priority dispute (at 
least two of which he had been embroiled in earlier 
in his career). And thus, as De Moivre tells us in 
the Miscellanea Analytica (1730, page 170), 

As soon as [Stirling] communicated this solu- 
tion to me, I asked him to prepare a short 
description of it for publication, to which he 
kindly assented, and he generously undertook 
to explain it a t  some length, which he did in 
the letter which I now append. 

De Moivre then gave the full text (in Latin) of 
Stirling's letter, dated 19 June 1729. Stirling wrote: 

About four years ago [i.e., 17251, I informed the 
distinguished Alexander Cuming that  the 
problems of interpolation and summation of 
series, and other such matters of that type, 
which did not fall under the ordinary cate-
gories of analysis, could be solved by the differ- 
ential method of Newton; this illustrious man 
responded that he doubted whether the prob- 
lem solved by you several years earlier, con- 
cerning the behavior of the middle term of any 
power of the binomial, could be solved by dif- 
ferentials. I then, prompted by curiousity and 
feeling confident that  I would do something 

that would please a mathematician of very 
great merit [i.e., De Moivrel, took on the same 
problem; and I confess that difficulties arose 
which prevented me from quickly arriving a t  
an  answer, but I do not regret the labor if I 
shall nonetheless have achieved a solution so 
approved by you that you would see fit to 
insert i t  in your own writings. Now this is how 
I did it.  

Stirling then went on to give, a t  considerable 
length, an illustration of his solution, but did not 
derive it, because "it will be described in a tract 
shortly to appear, concerning the interpolation and 
summation of series, that I am writing". 

This promised book was Stirling's Methodus Dif- 
ferentialis of 1730 (which thus appeared in the 
same year as De Moivre's Miscellanea Analytica), 
one of the first great works on numerical analysis. 
In his preface, Stirling again acknowledged the 
crucial role of Cuming: 

The problem of the discovery of the middle 
term of a very high power of the binomial had 
been solved by De Moivre several years before 
I had accomplished the same thing. It is im-  
probable that I would have thought about it up 
to the present day had it not been suggested by 
that eminent gentleman, the most learned 
Alexander Cuming, who indicated that  he very 
much doubted whether it could be solved by 
Newton's differential method. [Stirling, 1730, 
Preface; emphasis added.] 

Thus Alexander Cuming appears to have played, 
for De Moivre and Stirling, a role similar to that of 
the Chevalier de MerP: for Pascal and Fermat. Who 
was he? 

2. THE QUEST FOR CUMING 

At this remove of time, the question can only be 
partially answered, but the story that  emerges is a 
strange and curious one, a wholly unexpected coda 
to an  otherwise straightforward episode in the his- 
tory of mathematics. 

The British Dictionary o f  National Biography 
tells us that Cuming was a Scottish baronet, born 
about 1690, who briefly served in the Scottish bar 
(from 1714 to 1718) and then left it, under obscure 
but possibly disreputable circumstances. Shortly 
after, Cuming surfaces in London, where he was 
elected a Fellow of the Royal Society of London on 
June 30, 1720, the year before that in which De 
Moivre says Cuming posed his problem. The DNB 
does not indicate the reason for Cuming's election, 
and there is little if any indication of serious scien- 
tific output on his part. (No papers by him appear, 
for example, in the Philosophical Transactions o f  
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the Royal Society of London. This was not unusual, 
however, a t  the time; prior to a 19th century re- 
form, members of the aristocracy could become 
members of the Royal Society simply by paying an 
annual fee.) 

During the next decade, Cuming seems to have 
taken on the role of intellectual go-between (see 
Tweedie, 1922, pages 93 and 201). Cuming's chief 
claim to fame, however, lies in an  entirely different 
direction. In 1729 he undertook an  expedition to 
the Cherokee Mountains in Georgia, several years 
prior to the time the first settlers went there, led by 
James Oglethorp, in 1734. Appointed a chief by the 
Cherokees, Cuming returned with seven of their 
number to England, presenting them to King 
George I1 in an  audience a t  Windsor Castle on June 
18, 1730. Before returning, an  "Agreement of Peace 
and Friendship" was drawn up by Cuming and 
signed by the chiefs, which agreement, as the 19th 
century DNB so charmingly puts it, "was the 
means of keeping the Cherokees our firm allies in 
our subsequent wars with the French and Ameri- 
can colonists". 

This was Sir Alexander's status in 1730, when 
De Moivre refers to him as an  illustrious man and 
a member of the Royal Society; both conditions, 
unfortunately, were purely temporary. For the sur- 
prising denouement to Sir Alexander's career, we 
quote the narrative of the DNB: 

By this time some reports seriously affecting 
Cuming's character had reached England. In a 
letter from South Carolina, bearing date 12 
June 1730, . . . he is directly accused of having 
defrauded the settlers of large sums of money 
and other property by means of fictitious 
promissory notes. He does not seem to have 
made any answer to these charges, which, if 
true, would explain his subsequent ill-success 
and poverty. The government turned a deaf ear 
to all his proposals, which included schemes for 
paying off eighty millions of the national debt 
by settling three million Jewish families in the 
Cherokee mountains to cultivate the land, and 
for relieving our American colonies from taxa- 
tion by establishing numerous banks and a 
local currency. Being now deeply in debt, he 
turned to alchemy, and attempted experiments 
on the transmutation of metals. 

Fantastic as Cuming's alleged schemes might 
seem, they were of a type not new to the govern- 
ments of his day. A decade earlier, thousands had 
lost fortunes in England and France with the burst- 
ing of the South Sea and Mississippi "bubbles." 

For Cuming it was all downhill from here. A few 
years later, in 1737, the law finally caught up with 
him, and he was confined to Fleet prison, remain- 

ing there perhaps continuously until 1766, when he 
was moved to the Charterhouse (a hospital for the 
poor), where he remained until his death on August 
23, 1775. He had been expelled from the Royal 
Society on June 9, 1757 for nonpayment of the 
annual fee, and when his son, also named Alexan- 
der, died some time prior to 1796, the Cuming 
baronetcy became extinct. By 1738, when the sec- 
ond edition of De Moivre's Doctrine of Chances 
appeared, association with the Cuming name had 
clearly become an  embarrassment, and unlike the 
corresponding passage in the Miscellanea Analyt- 
ica, no mention of Cuming appears when De Moivre 
discusses the problem Cuming had posed to him. 

Thus Cuming's life in outline. Nevertheless, there 
remain tantalizing and unanswered questions. The 
account in the Dictionary of National Biography 
appears largely based on an  article by H. Barr 
Tomkins (1878). Tomkins's article several times 
quotes a manuscript written by Cuming while in 
prison (see also Drake, 1872), and this manuscript 
is presumably the ultimate source for the curious 
schemes mentioned by the DNB. But although they 
are there presented as serious proposals, a t  the 
time that Cuming wrote the manuscript his mind 
appears to have been substantially deranged for 
several years, and the evidentiary value of the 
manuscript is questionable. 
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