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Abstract

This paper introduces the recursive sweeping preconditioner for the numerical solution of
the Helmholtz equation in 3D. This is based on the earlier work of the sweeping preconditioner
with the moving perfectly matched layers (PMLs). The key idea is to apply the sweeping
preconditioner recursively to the quasi-2D auxiliary problems introduced in the 3D sweeping
preconditioner. Compared to the non-recursive 3D sweeping preconditioner, the setup cost
of this new approach drops from O(N4/3) to O(N), the application cost per iteration drops
from O(N logN) to O(N), and the iteration count only increases mildly when combined with
the standard GMRES solver. Several numerical examples are tested and the results are com-
pared with the non-recursive sweeping preconditioner to demonstrate the efficiency of the new
approach.
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waves.
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1 Introduction

Let the domain of interest be the unit cube D = (0, 1)3 for simplicity. The time-independent wave
field u(x) satisfies the Helmholtz equation

∆u(x) +
ω2

c2(x)
u(x) = f(x), ∀x ∈ D, (1)

where ω is the angular frequency, c(x) is the velocity field with a bound cmin ≤ c(x) ≤ cmax

where cmin and cmax are assumed to be of Θ(1), and f(x) is the time-independent external force.
The typical boundary conditions for this problem are approximations of the Sommerfeld radiation
condition, which means that the wave is absorbed by the boundary and there is no reflection coming
from it. Other boundary conditions, such as the Dirichlet boundary condition, can also be specified
on part of the boundary depending on the modeling setup.

In this setting, ω/(2π) is the typical wave number of the problem and λ = 2π/ω is the typical
wavelength. For most applications, the Helmholtz equation is discretized with at least a few number
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of points (typically 4 to 20) per wavelength. So the number of points n in each direction is at least
proportional to ω. As a result, the total degree of freedom N = n3 = Ω(ω3) can be very large
for high frequency 3D problems. In addition, the corresponding discrete system is highly indefinite
and the standard iterative solvers and/or preconditioners are no longer efficient for such problems.
These together make the problem challenging for numerical solution. We refer to the review article
[9] by Ernst and Gander for more details on this.

Recently in [7], Engquist and Ying developed a sweeping preconditioner using the moving per-
fectly matched layers (PMLs) and obtained essentially linear solve times for 3D high frequency
Helmholtz equations. A key step of that approach is to approximate the 3D problem with a se-
quence of O(n) PML-padded auxiliary quasi-2D problems, each of which can be solved efficiently
with sparse direct method such as the nested dissection algorithm. As an extension, this paper
applies the sweeping idea recursively to further reduce each auxiliary quasi-2D problem into a se-
quence of PML-padded quasi-1D problems, each of which can be solved easily with the sparse LDU
factorization for banded systems. As a result, the setup cost of the preconditioner improves from
O(N4/3) to O(N) and the application cost reduces from O(N logN) to O(N).

There has been a vast literature on iterative methods and preconditioners for the Helmholtz
equation and we refer to the review articles [8] by Erlangga and [9] by Ernst and Gander for a rather
complete discussion. The discussion here only touches on the methods that share similarity with the
sweeping preconditioners. The analytic ILU factorization (AILU) [10] is the first to use incomplete
LDU factorizations for preconditioning the Helmholtz equation. Compared to the moving PML
sweeping preconditioner, the method uses the absorbing boundary condition (ABC), which is less
effective compared to the PML, and hence the iteration count grows much more rapidly.

Since the sweeping preconditioners [6, 7] were proposed, there have been a number of exciting
developments for the numerical solutions of the high frequency Helmholtz equation, including but
not limited to [15, 14, 18, 16, 17, 19, 2, 3, 20]. In [15], Stolk proposed a domain decomposition
algorithm that utilizes suitable transmission conditions based on the PMLs between the subdomains
to achieve a near-linear cost. In [14], Poulson et al discussed a parallel version of the moving
PML sweeping preconditioner to deal with large scale problems from applications such as seismic
inversion. In [18, 16, 17], Tsuji and co-authors extended the moving PML sweeping preconditioner
method to other time-harmonic wave equations and more general numerical discretization schemes.
In [19], Vion and Geuzaine proposed a double sweep algorithm, studied several implementations of
the absorbing boundary conditions, and compared their numerical performance. Finally in [2, 3],
Chen and Xiang introduced a sweeping-style domain decomposition method where the emphasis was
on the source transferring between the adjacent subdomains. In [20], Zepeda-Núñez and Demanet
developed a novel parallel domain decomposition method that uses transmission conditions to define
explicitly the up- and down-going waves.

The rest of the paper is organized as follows. We first state the problem and the discretiza-
tion used in Section 2. Section 3 reviews the non-recursive moving PML sweeping preconditioner
proposed in [7]. Section 4 discusses in detail the recursive sweeping preconditioner. Numerical
results are presented in Section 5. Finally, the conclusion and some future directions are provided
in Section 6.

2 Problem Formulation

Following [7], we assume that the perfectly matched layer (PML) [1, 4, 12] is utilized at part of the
boundary where the Sommerfeld radiation condition is specified. The sweeping preconditioner in
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[7] requires that at least one of the six faces of the domain D = (0, 1)3 is specified with the PML
boundary condition. As we shall see soon, the recursive sweeping preconditioner instead requires
the PML condition to be specified at least at two non-parallel faces. Without loss of generality, we
assume that it is specified at x2 = 0 and x3 = 0. There is no restriction on the type of boundary
conditions specified on the other four faces. However, to simplify the discussion, we assume that
the Dirichlet condition is used. The PML boundary condition introduces auxiliary functions

σ(x) =


C

η

(
x− η
η

)2

, x ∈ [0, η],

0, x ∈ (η, 1],

and

s(x) =

(
1 + i

σ(x)

ω

)−1

, s1(x) ≡ 1, s2(x) = s(x2), s3(x) = s(x3),

where C is an appropriate positive constant independent of ω, and η is the PML width, which is
typically around one wavelength. The Helmholtz equation with PML is

(
(s1∂1)(s1∂1) + (s2∂2)(s2∂2) + (s3∂3)(s3∂3) +

ω2

c2(x)

)
u(x) = f(x), ∀x ∈ D = (0, 1)3,

u(x) = 0, ∀x ∈ ∂D.
(2)

It is typically assumed that that the support of f(x) is in (0, 1)× (η, 1)× (η, 1), which means that
the force is not located in the PML region. The cube [0, 1]3 is discretized with a Cartesian grid
where the grid size is h = 1

n+1 and n is proportional to ω. The set of all the interior points of the
grid is given by

P = {pi,j,k = (ih, jh, kh) : 1 ≤ i, j, k ≤ n},

and the degree of freedom is N = n3.
Applying the standard 7-point finite difference stencil results in the discretized system

(s1)i,j,k
h

(
(s1)i+1/2,j,k

h
(ui+1,j,k − ui,j,k)−

(s1)i−1/2,j,k

h
(ui,j,k − ui−1,j,k)

)
+

(s2)i,j,k
h

(
(s2)i,j+1/2,k

h
(ui,j+1,k − ui,j,k)−

(s2)i,j−1/2,k

h
(ui,j,k − ui,j−1,k)

)
+

(s3)i,j,k
h

(
(s3)i,j,k+1/2

h
(ui,j,k+1 − ui,j,k)−

(s3)i,j,k−1/2

h
(ui,j,k − ui,j,k−1)

)
+

(
ω2

c2

)
i,j,k

ui,j,k = fi,j,k, ∀1 ≤ i, j, k ≤ n,

(3)

where the subscript (i, j, k) means that the corresponding function is evaluated at the point pi,j,k =
(ih, jh, kh) and the definition of the points here extends to half integers as well. The computational
task is to solve (3) efficiently. We note that, unlike the symmetric version adopted in [6, 7], here the
nonsymmetric version of the equation is used. Figure 1 provides an illustration of the computational
domain and the discretization grid.
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Figure 1: The domain of interest. Left is a 3D view of the domain. Right is an x2-x3 cross section
view, where each cell stands for a 1D column. The gray area stands for the PML region.

3 Review of the Sweeping Preconditioner with Moving PML

This section gives a brief review of the non-recursive moving PML sweeping preconditioner proposed
in [7] for completeness. More details can be found in the original paper [7]. The starting point of
the sweeping preconditioner is a block LDU factorization called the sweeping factorization. To build
this factorization, the algorithm sweeps along the x3 direction starting from the face x3 = 0. The
unknowns with subscript index (i, j, k) are ordered with column-major order, i.e., first dimension
1, then dimension 2, and finally dimension 3. We define the vectors

u = [u1,1,1, . . . , un,1,1, . . . , un,n,1, . . . , un,n,n]T ,

f = [f1,1,1, . . . , fn,1,1, . . . , fn,n,1, . . . , fn,n,n]T .

By introducing
Pm = {p1,1,m, . . . , pn,1,m, . . . , pn,n,m}

as the points on the m-th plane and also

u:,:,m = [u1,1,m, . . . , un,1,m, . . . , un,n,m]T ,

f:,:,m = [f1,1,m, . . . , fn,1,m, . . . , fn,n,m]T ,

one can write the system (3) compactly as Au = f with the following block form
A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . An−1,n

An,n−1 An,n



u:,:,1
u:,:,2

...
u:,:,n

 =


f:,:,1
f:,:,2

...
f:,:,n

 . (4)
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By defining Sk and Tk recursively via

S1 = A1,1, T1 = S−1
1 ,

Sm = Am,m −Am,m−1Tm−1Am−1,m, Tm = S−1
m , m = 2, . . . , n,

the standard block LDU factorization of the block tridiagonal matrix A is

A = L1 . . . Ln−1

S1

. . .

Sn

Un−1 . . . U1,

where Lm and Um are the corresponding unit lower and upper triangular matrices with the only
non-zero off-diagonal blocks

Lm(Pm+1, Pm) = Am+1,mTm, Um(Pm, Pm+1) = TmAm,m+1, m = 1, . . . , n− 1.

It is not difficult to see that computing this factorization takes O(N7/3) steps. Once it is available,
u can be computed in O(N5/3) steps by

u =

u:,:,1...
u:,:,n

 = A−1f = U−1
1 . . . U−1

n−1

T1 . . .

Tn

L−1
n−1 . . . L

−1
1 f

The main disadvantage of the above algorithm is, Sm and Tm are in general dense matrices of
size n2 × n2 so the corresponding dense linear algebra operations are expensive. The sweeping
preconditioner overcomes this difficulty by approximating Tm efficiently for Pm with mh ∈ (η, 1],
i.e., for Pm not in the PML region at the face x3 = 0. The key point is to consider the physical
meaning of Tm. From now on let us assume η = bh which implies that there are b layers in the
PML region at x3 = 0. Restricting the factorization to the upper-left m × m block of A where
m = b+ 1, . . . , n gives

A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . Am−1,m

Am,m−1 Am,m

 = L1 . . . Lm−1


S1

S2

. . .

Sm

Um−1 . . . U1,

where Lt and Ut are redefined by restricting to their upper left m×m blocks. Inverting both sides
leads to

A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . Am−1,m

Am,m−1 Am,m


−1

= U−1
1 . . . U−1

m−1


T1

T2
. . .

Tm

L−1
m−1 . . . L

−1
1 .

The left-hand side is the discrete half-space Green’s function with Dirichlet zero boundary condition
at x3 = (m + 1)h and a straightforward calculation shows that the lower-right block of the right-
hand side is Tm. Therefore, Tm is the discrete half-space Green’s function restricted to the m-th
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layer. Note that, the PML at x3 = 0 is used to simulate an absorbing boundary condition. If
we assume that there is little reflection during the transmission of the wave, we can approximate
Tm by placing the PML right next to the m-th layer since the domain of interest is only the m-th
layer (see Figure 2). This is the key idea of the moving PML sweeping preconditioner, where the
operator Tm is numerically approximated by putting the PML right next to the domain of interest
and solving a much smaller system to save the computational cost.

x2

x3
Pm

zero
D

irich
let

Pm

Tm

x2

x3
Pm

zero
D

irich
let

Pm

bTmc

Figure 2: Left: Tm is the restriction to Pm (the dashed grid) of the half space Green’s function
on the solid grid. Right: By moving the PML right next to the layer Pm, the operator Tm is
approximated by solving the equation on a much smaller grid.

More precisely, we introduce an auxiliary problem on the domain Dm = [0, 1] × [0, 1] × [(m −
b)h, (m+ 1)h] :

(
(s1∂1)(s1∂1) + (s2∂2)(s2∂2) + (sm3 ∂3)(sm3 ∂3) +

ω2

c2(x)

)
v(x) = g(x), ∀x ∈ Dm,

v(x) = 0, ∀x ∈ ∂Dm,

where sm3 (x) = s(x3 − (m− b)h). The domain Dm is discretized with the partial grid

P(m−b+1):m := {Pt : m− b+ 1 ≤ t ≤ m}.

Applying the same central finite difference scheme gives rise to the corresponding discretized system,
denoted as

Hmv = g, m = b+ 1, . . . , n.

To approximate Tm, we numerically define operator bTmc : α ∈ Cn2 → β ∈ Cn2

by the following
procedure:
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1. Introduce a vector g defined on P(m−b+1):m by setting α to the layer Pm and zero everywhere
else.

2. Solve the discretized auxiliary problem Hmv = g on P(m−b+1):m with g from step 1.

3. Set β as the restriction on Pm of the solution v from step 2.

The discretized system is a quasi-2D system as b is typically a small constant, so the system can
be solved efficiently by the nested dissection method [11, 5, 13].

The first b layers, which are in the PML region of the original problem (2), need to be handled
with a slight difference. Define

u:,:,1:b = [uT:,:,1, . . . , u
T
:,:,b]

T ,

f:,:,1:b = [fT:,:,1, . . . , f
T
:,:,b]

T .

Then the system Au = f can be written as
A1:b,1:b A1:b,b+1

Ab+1,1:b Ab+1,b+1
. . .

. . .
. . . An−1,n

An,n−1 An,n



u:,:,1:b
u:,:,b+1

...
u:,:,n

 =


f:,:,1:b
f:,:,b+1

...
f:,:,n

 .

For the first b layers, we simply define bT1:bc as the inverse operator of Hb := A1:b,1:b. However, it
is essential that bT1:bc is stored in a factorized form by applying the nested dissection method to
Hb, since Hbv = g is also a quasi-2D problem.

Based on the above discussion, the setup algorithm of the moving PML sweeping preconditioner
is given in Algorithm 1.

Algorithm 1 Construction of the moving PML sweeping preconditioner of the system (3). Com-
plexity = O(b3n4) = O(b3N4/3).

Construct the nested dissection factorization of Hb, which defines bT1:bc.
for m = b+ 1, . . . , n do

Construct the nested dissection factorization of Hm, which defines bTmc.
end for

Once the factorization is completed, bT1:bc and bTmc can be applied using the nested dissection
factorization. The application process of the sweeping preconditioner is given in Algorithm 2.

4 Recursive Sweeping Preconditioner

Recall that the PML is also applied to the face x2 = 0. Therefore, each quasi-2D auxiliary problem
is itself a discretization of the Helmholtz equation with the PML specified on one side. Following
the treatment in [7] for the 2D Helmholtz equation, it is natural to apply the same sweeping idea
once again along the x2 direction, instead of the nested dissection algorithm used in the previous
section.
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Algorithm 2 Computation of u ≈ A−1f using the factorization from Algorithm 1. Complexity
= O(b2n3 log n) = O(b2N logN).

u:,:,1:b = bT1:bcf:,:,1:b
u:,:,b+1 = bTb+1c(f:,:,b+1 −Ab+1,1:bu:,:,1:b)
for m = b+ 1, . . . , n− 1 do
u:,:,m+1 = bTm+1c(f:,:,m+1 −Am+1,mu:,:,m)

end for
for m = n− 1, . . . , b+ 1 do
u:,:,m = u:,:,m − bTmc(Am,m+1u:,:,m+1)

end for
u:,:,1:b = u:,:,1:b − bT1:bc(A1:b,b+1u:,:,b+1)

4.1 Inner sweeping

Recall that the quasi-2D subproblems of the non-recursive sweeping preconditioners are Hmv =
g,m = b, . . . , n. Since they have essentially the same structure, it is sufficient to consider a single
system Ãv = g where Ã can be anyone of Hm. Here the accent mark is to emphasize that the
problem under consideration is quasi-2D. To formalize the sweeping preconditioner along the x2
direction, we define, up to a translation,

P̃ = {pi,j,k = (ih, jh, kh) : 1 ≤ i, j ≤ n, 1 ≤ k ≤ b},

to be the discretization grid. For each m = 1, . . . , n, let

P̃m = {p1,m,1, . . . , p1,m,b, . . . , pn,m,b},
v:,m,: = [v1,m,1, . . . , v1,m,b, . . . , vn,m,b]

T ,

g:,m,: = [g1,m,1, . . . , g1,m,b, . . . , gn,m,b]
T .

For the first b layers in the x2 direction, we also define

P̃1:b = {P̃1, . . . , P̃b},
v:,1:b,: = [vT:,1,:, . . . , v

T
:,b,:]

T ,

g:,1:b,: = [gT:,1,:, . . . , g
T
:,b,:]

T .

In this section, we reorder the vectors v, g by grouping the 3rd dimension first and applying the
column-major ordering to dimensions 1 and 2:

v = [vT:,1,:, . . . , v
T
:,n,:]

T ,

g = [gT:,1,:, . . . , g
T
:,n,:]

T .

With this ordering, the corresponding system Ãv = g is written as
Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãn−1,n

Ãn,n−1 Ãn,n



v:,1:b,:
v:,b+1,:

...
v:,n,:

 =


g:,1:b,:
g:,b+1,:

...
g:,n,:

 .
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For the block LDU factorization of Ã, we define

S̃1:b = Ã1:b,1:b, T̃1:b = S̃−1
1:b ,

S̃b+1 = Ãb+1,b+1 − Ãb+1,1:bT̃1:bÃ1:b,b+1, T̃b+1 = S̃−1
b+1,

S̃m = Ãm,m − Ãm,m−1T̃m−1Ãm−1,m, T̃m = S̃−1
m , m = b+ 2, . . . , n,

then Ã can be factorized as

Ã = L̃1:bL̃b+1 . . . L̃n−1


S̃1:b

S̃b+1

. . .

S̃n

 Ũn−1 . . . Ũb+1Ũ1:b,

where the non-zero off-diagonal blocks of the unit lower and upper triangular matrices L̃m and Ũm

are given by

L̃1:b(P̃b+1, P̃1:b) = Ãb+1,1:bT̃1:b, Ũ1:b(P̃1:b, P̃b+1) = T̃1:bÃ1:b,b+1,

L̃m(P̃m+1, P̃m) = Ãm+1,mT̃m, Ũm(P̃m, P̃m+1) = T̃mÃm,m+1, m = b+ 1, . . . , n− 1.

Then the solution v can be computed by

v =


v:,1:b,:
v:,b+1,:

...
v:,n,:

 = Ã−1g = Ũ−1
1:b Ũ

−1
b+1 . . . Ũ

−1
n−1


T̃1:b

T̃b+1

. . .

T̃n

 L̃−1
n−1 . . . L̃

−1
b+1L̃

−1
1:bg.

By comparing the factorization of the upper-left (m − b + 1) × (m − b + 1) block of Ã, where
m = b+ 1, . . . , n, we have
Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãm−1,m

Ãm,m−1 Ãm,m

 = L̃1:bL̃b+1 . . . L̃m−1


S̃1:b

S̃b+1

. . .

S̃m

 Ũm−1 . . . Ũb+1Ũ1:b,

where L̃t and Ũt are redefined as their restrictions to their top-left (m− b+ 1)× (m− b+ 1) blocks.
Inverting both sides gives
Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãm−1,m

Ãm,m−1 Ãm,m


−1

= Ũ−1
1:b Ũ

−1
b+1 . . . Ũ

−1
m−1


T̃1:b

T̃b+1

. . .

T̃m

 L̃−1
m−1 . . . L̃

−1
b+1L̃

−1
1:b .

Thus, by repeating the argument in Section 3, the matrix T̃m is the restriction to the layer P̃m

of the discrete half-space Green’s function. It can be approximated by bT̃mc, which is defined by
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solving a quasi-1D problem obtained by placing a moving PML right next to x2 = mh (see Figure
3). Each auxiliary quasi-1D problem in this inner sweeping step can be solved by the sparse block
LDU factorization efficiently, with ordering the system by grouping dimension 3 and 2 first and
dimension 1 last.

x2

x3

P̃m T̃m

x2

x3

P̃m bT̃mc

Figure 3: Left: T̃m is the restriction to P̃m (the dashed grid) of the Green’s function on the quasi-

2D solid grid. Right: By moving the PML right next to P̃m, the operator T̃m is approximated by
solving the problem on a quasi-1D grid.

More specifically, for each m, we introduce the auxiliary problem on the domain D̃m = [0, 1]×
[(m− b)h, (m+ 1)h]× [0, (b+ 1)h]:

(
(s1∂1)(s1∂1) + (sm2 ∂2)(sm2 ∂2) + (s3∂3)(s3∂3) +

ω2

c2(x)

)
w(x) = q(x), ∀x ∈ D̃m,

w(x) = 0, ∀x ∈ ∂D̃m,

where sm2 (x) = s(x2 − (m− b)h). The domain D̃m is discretized with the grid

P̃(m−b+1):m := {P̃t : m− b+ 1 ≤ t ≤ m},

and the same central difference numerical scheme is used here. We denote the corresponding
discretized system as H̃mw = q. Similar to the process described in Section 3, we define the
operator bT̃mc : α ∈ Cnb → β ∈ Cnb by the following procedure:

1. Introduce a vector q defined on the grid P̃(m−b+1):m by setting α to the layer P̃m and zero
everywhere else.

2. Solve the auxiliary quasi-1D problem H̃mw = q on P̃(m−b+1):m with q from step 1.

3. Set β as the restriction on P̃m of the solution w from step 2.

10



For the first b layers, bT̃1:bc is simply defined as the inverse operator of H̃b := Ã1:b,1:b, which

is essentially the same as T̃1:b, but implemented by using the sparse block LDU factorization of
H̃b. Summarizing all this, the setup and application algorithm of the inner moving PML sweeping
preconditioner are given in Algorithms 3 and 4, respectively.

Algorithm 3 Construction of the inner moving PML sweeping preconditioner of the quasi-2D
problem Ãv = g. Complexity = O(b6n2).

Construct the sparse block LDU factorization of H̃b, which defines bT̃1:bc.
for m = b+ 1, . . . , n do

Construct the sparse block LDU factorization of H̃m, which defines bT̃mc.
end for

Algorithm 4 Computation of v ≈ Ã−1g using the factorization from Algorithm 3. Complexity
= O(b4n2).

v:,1:b,: = bT̃1:bcg:,1:b,:
v:,b+1,: = bT̃b+1c(g:,b+1,: − Ãb+1,1:bv:,1:b,:)
for m = b+ 1, . . . , n− 1 do
v:,m+1,: = bT̃m+1c(g:,m+1,: − Ãm+1,mv:,m,:)

end for
for m = n− 1, . . . , b+ 1 do
v:,m,: = v:,m,: − bT̃mc(Ãm,m+1v:,m+1,:)

end for
v:,1:b,: = v:,1:b,: − bT̃1:bc(Ã1:b,b+1v:,b+1,:)

4.2 Putting together

As we pointed out earlier, the matrix Ã can be anyone of Hm,m = b, . . . , n, where Algorithms
3 and 4 can be applied. Notice that solving the subproblems exactly with the nested dissection
algorithm results in the approximation bTmc to Tm. This extra-level of approximation defines a

further approximation, which shall be denoted by TTmU : α ∈ Cn2 → β ∈ Cn2

(to be precise,

for the first b layers, it is TT1:bU : α ∈ Cn2b → β ∈ Cn2b). The steps for carrying out TTmU are
similar to the ones for bTmc except that one uses Algorithms 3 and 4 to solve the quasi-2D problems
approximately (instead of the nested dissection method that solves them exactly).

Given all these preparations, the setup algorithm of the recursive sweeping preconditioner can
be summarized compactly in Algorithm 5 and the application algorithm is given in Algorithm 6.

In the outer loop of Algorithm 6, the unknowns are eliminated layer by layer in the x3 direction.
In the application of TTmU, there is the inner loop in which the unknowns in each quasi-2D problem
are eliminated in the x2 direction. The whole algorithm serves as a preconditioner for the original
linear system (3). Notice that, in the recursive sweeping preconditioner, the quasi-2D problems
are solved only approximately. Therefore, the overall accuracy might not be as good as the non-
recursive method. But as we will show in the next section, the performance of the preconditioner
is only mildly affected.
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Algorithm 5 Construction of the recursive moving PML sweeping preconditioner of the linear
system (3). Complexity = O(b6n3) = O(b6N).

Construct the inner moving PML sweeping preconditioner of Hb by Algorithm 3. This gives
TT1:bU.
for m = b+ 1, . . . , n do

Construct the inner moving PML sweeping preconditioner of Hm by Algorithm 3. This gives
TTmU.

end for

Algorithm 6 Computation of u ≈ A−1f using the factorization from Algorithm 5. Complexity
= O(b4n3) = O(b4N).

u:,:,1:b = TT1:bUf:,:,1:b
u:,:,b+1 = TTb+1U(f:,:,b+1 −Ab+1,1:bu:,:,1:b)
for m = b+ 1, . . . , n− 1 do
u:,:,m+1 = TTm+1U(f:,:,m+1 −Am+1,mu:,:,m)

end for
for m = n− 1, . . . , b+ 1 do
u:,:,m = u:,:,m − TTmU(Am,m+1u:,:,m+1)

end for
u:,:,1:b = u:,:,1:b − TT1:bU(A1:b,b+1u:,:,b+1)

The above algorithms are described in a way to present the main ideas clearly. In the actual
implementations, a couple of modifications are taken in order to maximize the efficiency:

1. For each auxiliary problem, both in the inner loop and the outer loop, several layers are
processed together instead of one layer.

2. For the PML introduced in the auxiliary problems, the number of layers in the auxiliary PML
region does not have to match the number of layers b used for the boundary PML at x2 = 0
and x3 = 0. In fact, the thickness of the auxiliary PML is typically thinner for the sake of
efficiency.

3. The problem we described above has zero Dirichlet boundary conditions on the other four faces
of the cube. If instead, the PMLs are put on all the faces, then the sweeping preconditioner
sweeps with two fronts from two opposite faces respectively and they meet in the middle with
a subproblem with PML on both sides instead of only one side, as described in [7].

5 Numerical Results

In this section we test several numerical examples to illustrate the performance of the recursive
sweeping preconditioner. All algorithms are implemented in MATLAB and the tests are performed
on a 2.0 GHz computer with 256 GB memory. We use the GMRES algorithm as the iterative solver
with relative residual 10−3 and restart value 40 for the entire 3D system. The quasi-2D problems
are solved approximately by applying the inner sweeping preconditioner only once for the sake of
efficiency. The velocity fields and forces tested are kept the same with [7] so that the results can be
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compared easily. The PMLs are put on all six sides of the cube [0, 1]3 to simulate the Sommerfeld
radiation condition.

We test three velocity fields (see Figure 4):

(a) A converging lens with a Gaussian profile at the center of the domain.

(b) A vertical waveguide with a Gaussian cross-section.

(c) A random velocity field.

(a) (b) (c)

Figure 4: The three velocity fields tested.

For each velocity field, the tests are performed for two external forces:

(a) A Gaussian point source centered at (1/2, 1/2, 1/4).

(b) A Gaussian wave packet with wavelength comparable to the typical wavelength of the domain.
The packet centers at (1/2, 1/4, 1/4) and points to the direction (0, 1/

√
2, 1/
√

2).

We vary the typical wave number ω/(2π), test the behavior of the recursive preconditioner, and
compare the results with the non-recursive preconditioner.

In these tests, each wavelength is discretized with q = 8 points. The width of the PML at the
boundary of the cube is 9h, and the width of the auxiliary PML for the middle layers is 5h. The
number of layers processed in each auxiliary problem is 4. The algorithm sweeps with two fronts
from x3 = 0 and x3 = 1 in the outer loop, and with two fronts from x2 = 0 and x2 = 1 in the inner
loop.

The results are reported in the following tables. Tsetup is the time used to construct the pre-
conditioner in seconds. Tsolve is the time used to solve the system in the preconditioned GMRES
solver in seconds and Niter is the corresponding iteration number. “NR” stands for the original
non-recursive method while “R” stands for the recursive method introduced in this paper. The
“ratio” is the time cost of the recursive method over the non-recursive method. The numerical im-
plementation of the non-recursive method is slightly improved as compared to [7], by incorporating
a more accurate PML discretization. Therefore, the results here for the non-recursive method are
better compared to the ones in [7].

From these tests we can make the following observations:

1. The setup time of the recursive preconditioner is significantly dropped compared to the non-
recursive one. The advantage becomes more and more obvious when the problem size gets
larger. This is because the setup cost of the recursive method scales like O(N) and the
non-recursive one scales like O(N4/3).
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Tsetup Niter Tsolve
ω/(2π) q N NR R ratio f(x) NR R NR R ratio

8 8 633 46.923 19.823 42%
(a) 3 4 12.313 16.355 133%
(b) 4 4 14.973 16.862 113%

16 8 1273 537.12 180.99 34%
(a) 3 4 116.44 169.34 145%
(b) 4 4 150.67 168.65 112%

32 8 2553 5927.0 1308.0 22%
(a) 4 5 1273.0 2039.8 160%
(b) 4 5 1312.1 2070.4 158%

Table 1: Results for velocity field (a) in Figure 4. Solutions with ω/(2π) = 16 at x1 = 0.5 are
presented.

2. The iteration number of the recursive preconditioner increases only slightly compared to
the non-recursive one. Typically it needs about 1 more iteration. This is mainly because
the recursive method solves the quasi-2D auxiliary problems approximately while the non-
recursive one solves them accurately.

3. The application time of the recursive sweeping preconditioner is not as fast as the non-recursive
method, due to a larger prefactor of the time complexity. However, we think this sacrifice is
acceptable since a huge amount of time is saved in the setup process. One thing that needs
to be pointed out is that the ratio of the solve time increases as the problem size increases,
which seems to be unexpected since the solve time of the recursive method scales like O(N)
and the non-recursive one scales like O(N logN). The reason of this behavior is, when the
problem size increases, the size of the dense linear algebra operations increases as well in
the non-recursive method since the front size in the nested dissection method gets larger,
while in the recursive method, the size of the dense linear algebra operations in the quasi-1D
block LDU setup process and solve process is kept the same. Since MATLAB processes large
scale dense linear algebra operations in a parallel way, the non-recursive method gains some
advantages from this.

The memory cost of the recursive method is also advantageous. In our implementation, the
recursive method costs only 30% memory compared to the non-recursive method in the N = 2553
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Tsetup Niter Tsolve
ω/(2π) q N NR R ratio f(x) NR R NR R ratio

8 8 633 48.855 18.490 38%
(a) 3 4 11.249 15.996 142%
(b) 3 5 11.048 19.581 177%

16 8 1273 524.61 163.16 31%
(a) 4 5 152.32 212.59 140%
(b) 3 5 111.71 213.24 191%

32 8 2553 6038.8 1319.0 22%
(a) 5 6 1676.7 2471.9 147%
(b) 4 5 1345.3 2084.6 155%

Table 2: Results for velocity field (b) in Figure 4. Solutions with ω/(2π) = 16 at x1 = 0.5 are
presented.

case. Theoretically, the memory cost of the recursive method scales like O(N) while the non-
recursive one scales like O(N log(N)). This is another main advantage of the recursive method.

6 Conclusion and Future Work

In this paper, we introduced a new recursive sweeping preconditioner for the 3D Helmholtz equation
based on the moving PML sweeping preconditioner proposed in [7]. The idea of the sweeping
preconditioner is used recursively for the auxiliary quasi-2D problems. Both the setup cost and
application cost of the preconditioner are reduced to strict linear complexity. The iteration number
remains essentially independent of the problem size when combined with the standard GMRES
solver. Numerical results show that the setup time drops significantly compared to the non-recursive
method, while the solve cost increases only slightly.

Several questions still remain open and some potential improvements can be made. First, we
use the PML to simulate the Sommerfeld condition. Many other simulations of the absorbing
boundary condition can be implemented and the recursive sweeping idea can be used as long as the
stencil of the simulation is local. Second, the numerical scheme used in this paper is the standard
central difference scheme, whose dispersion relationship is a poor approximation of the true one.
More accurate numerical schemes can be implemented and the iteration number may be dropped
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Tsetup Niter Tsolve
ω/(2π) q N NR R ratio f(x) NR R NR R ratio

8 8 633 48.949 18.213 37%
(a) 4 4 16.487 16.252 99%
(b) 4 4 15.747 16.513 105%

16 8 1273 553.70 147.00 27%
(a) 4 4 158.41 170.59 108%
(b) 5 5 196.91 215.84 110%

32 8 2553 6024.1 1299.2 22%
(a) 5 5 1599.6 1929.1 121%
(b) 5 6 1635.2 2314.5 142%

Table 3: Results for velocity field (c) in Figure 4. Solutions with ω/(2π) = 16 at x1 = 0.5 are
presented.

potentially benefiting from the increment of the accuracy of the numerical scheme.
Parallel processing can also be introduced to the current recursive method. First, When sweeping

from both sides of the domain, either in the outer loop of the algorithm or in the inner loop, the
processing of the two fronts can be paralleled so in total it could be 4 times faster with parallelization
theoretically. Second, the quasi-1D problems are solved by the block LDU factorization in the
current setting. If instead, we use the 1D nested dissection algorithm for the quasi-1D problems,
then it can be easily paralleled and the total cost will remain essentially the same. Last, one can
notice that, the setup process of the algorithm is essentially O(n2) quasi-1D subproblems which are
independent with each other so this process can be done in parallel, and compared to the original
method, which contains only O(n) quasi-2D independent subproblems, the potential advantages of
parallelization in the setup stage is more obvious here.

There are also several other advantages of the recursive sweeping method that concern flexibility.
First, as mentioned above, the setup process contains O(n2) quasi-1D independent subproblems.
So if the velocity field is modified on a subdomain which involves only limited subproblems, then
the factorization can be updated with only a slight modification on these involved subproblems.
Compared to the original method, where the subproblems are O(n) quasi-2D plates, the recursive
method is more flexible on updating the factorization. This could be advantageous in seismic
imaging where the velocity field is tested and modified frequently. Second, when the factorization
for the O(n2) subproblems is done, there are naturally two ways of using the factorization. One is,
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as mentioned in this paper, sweeping along the x3 direction in the outer loop, and sweeping along
the x2 direction in the inner loop. Another choice is to do the opposite, which is sweeping along
the x2 direction in the outer loop and the x3 direction in the inner loop. Each of these two choices
shows some “bias” since the residual of the system is accumulated in some “chosen” order. So one
may ask that, is it possible to combine the two choices together to make the solve process more
flexible such that the total solve time can be even less? This is another interesting question to be
examined.
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