
DIRECTIONAL PRECONDITIONER FOR HIGH

FREQUENCY OBSTACLE SCATTERING

LEXING YING

Abstract. The boundary integral method is an efficient approach for
solving time-harmonic obstacle scattering problems by a bounded scat-
terer. This paper presents the directional preconditioner for the itera-
tive solution of linear systems of the boundary integral method. This
new preconditioner builds a data-sparse approximation of the integral
operator, transforms it into a sparse linear system, and computes an
approximate inverse with efficient sparse and hierarchical linear algebra
algorithms. This preconditioner is efficient and results in small and al-
most frequency-independent iteration counts when combined with stan-
dard iterative solvers. Numerical results are provided to demonstrate
the effectiveness of the new preconditioner.

1. Introduction

This paper is concerned with solving the time-harmonic acoustic obstacle
scattering problems in two dimensions. Let Ω ⊂ R2 be a bounded scatterer
with smooth boundary ∂Ω, ω be the frequency, and eiωtuI(x) be the time-
harmonic incident wave. In the sound-soft scattering problem, the scattered
field u(x) satisfies the Helmholtz equation with the Dirichlet boundary con-
dition

∆u(x) + ω2u(x) = 0, x ∈ R2 \ Ω,

u(x) = −uI(x), x ∈ ∂Ω.

In the sound-hard scattering problem, the scattered field u(x) satisfies the
Helmholtz equation with the Neumann boundary condition

∆u(x) + ω2u(x) = 0, x ∈ R2 \ Ω,

∂u(x)

∂n(x)
= −∂uI(x)

∂n(x)
, x ∈ ∂Ω.
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2 LEXING YING

In both cases, u(x) satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂u

∂r
− iωu

)
= 0.

An effective way to solve these problems is the boundary integral method
and, more specifically, the combined field integral equation (CFIE) [11, 25]
formulation. This method relies on the free space Green’s function

G(x, y) =
i

4
H1

0 (ω|x− y|)

of the Helmholtz equation. For the sound-soft scattering, we look for a
surface density q(x), x ∈ ∂Ω such that for each x ∈ ∂Ω,

(1)
1

2
q(x) +

∫
∂Ω

∂G(x, y)

∂n(y)
q(y)dy − iη

∫
∂Ω
G(x, y)q(y)dy = −uI(x).

Once q(x) is computed, the scattered field u(x) can be evaluated through
a boundary integral over ∂Ω. For the sound-hard scattering, we look for
q(x), x ∈ ∂Ω such that for each x ∈ ∂Ω,

(2)
1

2
q(x)−

∫
∂Ω

∂G(x, y)

∂n(x)
q(y)dy +

1

iη

∮
∂Ω

∂2G(x, y)

∂n(x)∂n(y)
q(y)dy = −∂uI(x)

∂n(x)
.

with
∮

being the principal value integral. In both cases, η is typically
chosen to be of order O(ω) (see [21] for example) and we refer to [11,25] for
derivations and discussions of these integral equations.

By introducing the following operators

(Sq)(x) =

∫
∂Ω
G(x, y)q(y)dy,

(Dq)(x) =

∫
∂Ω

∂G(x, y)

∂n(y)
q(y)dy,

(D′q)(x) =

∫
∂Ω

∂G(x, y)

∂n(x)
q(y)dy,

(Nq)(x) =

∮
∂Ω

∂2G(x, y)

∂n(x)∂n(y)
q(y)dy,

we can write (1) and (2) into operator forms:(
1

2
I +D − iηS

)
q = −uI ,(3) (

1

2
I +D′ − 1

iη
N

)
q = −∂uI

∂n
.(4)

Standard approaches for discretizing these boundary integral equations
include the Nyström method, the Galerkin method, and the collocation
method [11,22]. To simplify the presentation, we assume that the Nyström
method is used. For the other approaches, the discussion remains similar
as long as the basis functions employed are local. A typical discretization
of these integral equations requires at least a couple of quadrature points
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per wavelength. Assuming that both the diameter and the boundary length
of Ω are Θ(1), this implies that the boundary is discretized with a set P
of n = O(ω) points. For the resulting linear systems, we shall continue to
use S, D, D′, and N to denote the discrete matrices associated with these
operators. Similarly, q, uI , and ∂uI/∂n are reused to denote the discrete
version of q(x), uI(x), and ∂uI(x)/∂n(x) sampled at the quadrature points.
Therefore, with this slight abuse of notation, the discrete linear systems take
the same form as (3) and (4).

There has been a lot of work devoted to the fast solution of these linear
systems. Since the system is dense, the standard direct solvers such as LU
factorization take O(n3) steps, which is prohibitively expensive. Recently,
several linear-complexity approaches based on recursive interpolative decom-
position have been proposed by [12, 19, 23] for boundary integral equations
with non-oscillatory kernels. However, for high frequency scattering where
the kernel is oscillatory (i.e, ω = Θ(n)), the complexity of these approaches
is still cubic in n. The only exception is for quasi-1D domains [24] where
the boundary integral equation essentially reduces to the 1D case and the
complexity scales linearly in ω.

For this reason, iterative methods such as GMRES and TFQMR [17, 26,
27] are the main approaches for solving these problems. In these cases,
though the CIFEs have much better conditioning properties compared to
other integral formulations, the number of iterations can grow quickly with
ω. Therefore, for high frequency scattering problems, there is a clear need
for improving the conditioning properties of these operators.

Over the past twenty years, there has been a significant amount of re-
search devoted to this task. A couple of algorithms suggest improving the
conditioning property via modifying the standard CFIE formulation. For
example, one line of work is to replace the iη term in (3) with better ap-
proximations of the Dirichlet-to-Neumann (DtN) operator and the 1/(iη)
term in (4) with better approximations of the Neumann-to-Dirichlet (NtD)
operator [1, 3, 4, 8]. Typically, these new approximations are derived from
leading order terms of the pseudo-differential symbols of the DtN and NtD
operators.

A second approach is to precondition the integral equation. Most work
here considers the electric field integral equation for electromagnetic scat-
tering and follows the famous Calderon relationship [2,10,28]. The resulting
integral equations are of Fredholm second kind with good conditioning prop-
erties. However, the number of matrix vector multiplications per iteration
is doubled.

There has also been a lot of work on sparsifying the integral operators
using special basis functions, such as local cosine bases [5, 7] and optimized
wavelet packets [15,16,18,20]. The resulting sparse representations typically

have O(n4/3) non-zero entries. Recently in [14], an approach using the wave
atom transform [13] results a sparse representation with O(n log n) non-zero
entries. In [9], Canning claimed to obtain a sparse approximation with O(n)
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non-zero entries via locally mollified exponential functions. However, when
good accuracy is required, most of these methods access all entries of the
integral operator, thus requiring an O(n2) precomputation cost to assemble
the whole matrix.

In this paper, we propose a new method for preconditioning the CFIEs
by incorporating the ideas from sparse representation. This approach builds
a data-sparse representation of the boundary integral operator, transforms
it into a sparse linear system, and computes an approximate inverse with
efficient sparse and hierarchical linear algebra algorithms. This precondi-
tioner is highly efficient to construct and to apply. It results in small and
almost frequency-independent iteration counts when combined with stan-
dard iterative solvers. The rest of the paper is organized as follows. Section
2 describes the algorithm and Section 3 presents the results. Future work
and open questions are discussed in Section 4.

2. Algorithm

For frequency ω, the wavelength λ is 2π/ω. We assume that the scatterer
boundary ∂Ω is C2 and both the diameter and the boundary length of Ω is
Θ(1). To simplify the discussion, we suppose that the length L of ∂Ω is equal
to 4qλ where q is a positive integer. The actual number 4q is not essential but
it makes the presentation simpler. Combining this with L = Θ(1) implies
that ω = O(4q).

Suppose that ρ : ∂Ω → [0, L] is the arclength parametrization of the
boundary and that the boundary is sampled with n = 4qp discretization
points for some p = Θ(1), i.e., p points per wavelength λ.

2.1. Data-sparse approximation. We start by decomposing the bound-
ary into sufficiently planar segments. Initially, the boundary is partitioned
into 2q segments, each of length 2qλ and with 2qp points. Each such segment
is further partitioned hierarchically until one of two situations happen:

• First, it is stopped if the length of the segment is bounded by 2qλ/
√
c

where c is the maximum absolute value of the curvature in the cur-
rent segment. Such a segment is called almost-planar.
• Second, it is stopped when the length of the segment is bounded by
m`λ. Typically m` = 2 or 4. Such a segment is called a non-planar
leaf.

We denote the final set of segments by G = {P1, . . . , Pm}, where the segments
Pi are ordered according to their positions on the boundary. Notice that
since the boundary is assumed to be C2, all segments in G are almost-planar
for sufficiently large ω. Therefore, in the following discussion, it is safe to
regard all segments Pi as almost-planar.

The discussion here shall treat the sound-soft case (3) and the sound-
hard case (4) in the same way, since the kernels of these two have the same
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oscillatory pattern. Therefore, it is convenient to use the general form

(5) Mq = f

for both of them in the discussion. Based on how the segments are generated,
each Pj is of length 2`jλ for some integer `j and contains 2`jp equally-spaced
discretization points. After ordering the unknowns according to the ordering
of Pj , the matrix M can be written as the following block form

M =

M11 . . . M1m
...

. . .
...

Mm1 . . . Mmm

 ,
where Mij is of size 2`ip× 2`jp. The next step is find a data-sparse approx-
imation for the blocks Mij .

2.1.1. Diagonal blocks. Let us first consider a diagonal block Mjj , which
represents the interaction between Pj and itself. Since Pj is almost planar,
we can treat it approximately as flat. Therefore, we have

Mjj ≈ Bj ,

where Bj is obtained by restricting the integral operator to a straight seg-

ment of length 2`jλ with 2`jp equally spaced quadrature points. Noticing
that Bj only depends on `j and that there are only a few choices for `j ,
we can clearly precompute these matrices. Going through all Pi gives the
following approximation B to the block-diagonal part of M ,

B =

B1

. . .

Bm

 ,
2.1.2. Off-diagonal blocks. Next we consider the off-diagonal blocks, i.e, Mij

with i 6= j. We define

• ci and cj to be the centers of segments Pi and Pj ,
• ti and tj to be the tangent directions of ∂Ω at the centers of Pi and
Pj , and
• aij to be the unit direction from cj to ci, i.e., (ci − cj)/|ci − cj | (see

Figure 1 for an illustration).

!

!! !

!!" !
!

!! ! !! !
!!! !

!! !
!

!! !

Figure 1. The geometric setup of two segments Pi and Pj .
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The main difficulty of working with high frequency Helmholtz kernel
G(x, y) is its highly oscillatory behavior. Since the oscillation of G(x, y)
and its derivatives come from the term exp(iω|x − y|), it is instructive to
focus on exp(iω|x− y|) for a moment. In the following discussion, the sign
∼ is used to denote an approximation up to a non-oscillatory multiplicative
term.

A first observation is that

(6) exp(iω|x− y|) ∼ exp(iωaij · (x− y)).

To see this, assume without loss of generality that aij = (1, 0)t by rotating
the coordinates accordingly and placing the origin on ∂Ω between Pi and
Pj . In the new coordinate system, we have

exp(iω|x− y|) = exp(iω(x1 − y1)) exp(iω(|x− y| − (x1 − y1)))

= exp(iω(x1 − y1)) exp

(
iω(x1 − y1)

(√
1 +
|x2 − y2|2
|x1 − y1|2

− 1

))
,

where x = (x1, x2)t and y = (y1, y2)t. Up to a constant factor, the phase of

the last term can be estimated with ω |x2−y2|2
|x1−y1| .

• When the segments Pi and Pj are Θ(1) distance from each other, we
estimate this by

ω
|x2 − y2|2

|x1 − y1|
. ω(2qλ)2 = Θ(1).

• When Pi and Pj are close to each other, we use quadratic approx-
imation in the rotated frame |x2| . |x1|2 and |y2| . |y1|2 and the
fact that x1 and y1 has different signs to conclude

ω
|x2 − y2|2

|x1 − y1|
. ω|x1 − y1|3 . ω(2qλ)3 = o(1).

In both cases, ω |x2−y2|2
|x1−y1| is bounded and hence (6) is valid up to a non-

oscillatory multiplicative term. Next, we rewrite

exp(iω|x− y|) ∼ exp(iωaij · (x− y))

= exp(iωaij · ((x− ci) + (ci − cj) + (cj − y)))

= exp(iωaij · (x− ci)) · exp(iωaij · (ci − cj)) · exp(−iωaij · (y − cj)).(7)

To approximate the first term in (7), we perform a Taylor expansion for
ρ−1(t) near t = ρ(ci) and evaluate it at ρ(x):∣∣ρ−1(ρ(x))−

(
ρ−1(ρ(ci)) + ti(ρ(x)− ρ(ci))

)∣∣
.

1

2
|ρ(x)− ρ(ci)|2c ≤

1

2
(2`/
√
cλ)2c = O(λ),
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where c is the maximum absolute value of the curvature in T . The inequality
here uses the fact that Pi is almost-planar. This is equivalent to

(x− ci) = (ρ(x)− ρ(ci)) · ti +O(λ).

Multiplying it with iωaij and taking exponential gives the approximation

(8) exp(iωaij · (x− ci)) ∼ exp(i(ωaij · ti)(ρ(x)− ρ(ci)))

Since S is almost-planar, the same argument works for (y − cj) and gives

(y − cj) = (ρ(y)− ρ(cj)) · tj +O(λ)

and

(9) exp(−iωaij · (y − cj)) ∼ exp(i(−ωaij · tj)(ρ(y)− ρ(cj))).

We can now further approximate the phase function of the complex ex-
ponentials in (8) and (9) as follows. Noticing that ωaij · ti ∈ [−ω, ω], we

partition the interval [−ω, ω] into 2`i+1 equally spaced subintervals with a
set Ki of 2`i+1 + 1 gridpoints. We define [k]i to the value of rounding k to
the nearest gridpoint in Ki. Then

(ωaij · ti − [ωaij · ti]i)(ρ(x)− ρ(ci)) ≤
2ω

2`i+1
· 1

2
· 2`iλ

2
=

2π

4
= O(1).

Thus, replacing the phase ωaij · ti with [ωaij · ti]i in (8) introduces an extra
non-oscillatory term

(10) exp(iωaij · (x− ci)) ∼ exp(i[ωaij · ti]i(ρ(x)− ρ(ci)))

Similarly, we partition the interval [−ω, ω] into 2`j equal pieces with a set
Kj of 2`j+1 + 1 gridpoints. By defining [k]j to the value of rounding k to
the nearest gridpoint in Kj , we again have for y ∈ S

(−ωaij · tj − [−ωaij · tj ]j)(ρ(y)− ρ(cj)) ≤
2ω

2`j+1
· 1

2
· 2`jλ

2
=

2π

4
= O(1),

This change of the phase function also introduces an extra non-oscillatory
term

(11) exp(−iωaij · (y − cj)) ∼ exp(i[−ωaij · tj ]j(ρ(y)− ρ(cj))).

By introducing

kiij = [ωaijti]i,

kjij = [−ωaijtj ]j ,
Ui(x, k) = exp(ik(ρ(x)− ρ(ci))),

Uj(y, k) = exp(ik(ρ(y)− ρ(cj))),(12)

and putting (10) and (11) in (7), we have the following approximation

exp(iω|x− y|) ∼ Ui(x, k
i
ij) · exp(iω(ci − cj)aij) · Uj(y, k

j
ij).

for all x ∈ Pi and y ∈ Pj .
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Since the kernel G(x, y) and its derivatives have the same oscillation pat-

tern as exp(iω|x− y|), Ui(x, k
i
ij) and Uj(y, k

j
ij) also capture the oscillations

of G(x, y) for x ∈ Pi and y ∈ Pj . Therefore, repeating the same argument
gives the following representation of the block Mij :

(13) Mij(x, y) = Ui(x, k
i
ij) · M̃ij(x, y) · Uj(y, k

j
ij)

for x ∈ Pi and y ∈ Pj , where the non-oscillatory term M̃ij(x, y) is defined

through this representation. Since M̃ij(x, y) is non-oscillatory, we can ap-
proximate it with Chebyshev interpolation. For this, we define

• Ri and Rj to be the Chebyshev grids of a constant size mc in Pi and
Pj , respectively, and
• Ii and Ij to be the corresponding interpolation operators, with en-

tries given by Ii(x, b) for b ∈ Ri and Ij(y, b) for b ∈ Rj .

This results the following approximation

M̃ij(x, y) ≈ Ii · M̃ij(Ri, Rj) · Itj .

Putting this together with (13) and using matrix form gives

Mij ≈ diag(Ui(:, k
i
ij)) · Ii · M̃ij(Ri, Rj) · Itj · diag(Uj(:, k

j
ij)).

For the data-sparse representation and the preconditioner, we need an
aggressive rank-1 approximation for Mij of form

Mij ≈ Ui(:, k
i
ij))eijUj(·, kjij)

t = diag(Ui(:, k
i
ij)) · wi · eij · wt

j · diag(Uj(·, kjij)),

where eij is a constant to be determined and wi and wj are the all-one

vectors of length 2`ip, and 2`jp, respectively. To determine eij , we can solve
for it from a least square problem

(14) eij = argmine‖Ii · M̃ij(Ri, Rj) · Itj − wi · e · wt
j‖2.

The solution is

eij = (w†i · Ii) · M̃ij(Ri, Rj) · (Itj · (wt
j)
†).

Notice that (w†i · Ii) and (Itj · (wt
j)
†) only depend on `i and `j respectively.

Therefore, they can be precomputed and the remaining cost of computing
eij is equal to O(m2

c).
Going through all pairs (i, j) with i 6= j yields the following approximation

for the off-diagonal part of M :

UEU t.

Here

U =

U1

. . .

Um

 ,
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where Ui is a matrix of size 2`ip× (2`i+1 + 1) given by (12). The E matrix
also has a m×m block form

E =

E11 . . . E1m
...

. . .
...

Em1 . . . Emm


where Eij is a matrix of size (2`i+1 + 1)× (2`j+1 + 1) with rows and columns

indexed by Ki and Kj . Eij is a matrix with value eij at entry (kiij , k
j
ij) and

zero everywhere else. Here we emphasize that

• Ui is a partial Fourier matrix, and
• E is extremely sparse.

These observations turn out to be essential in the construction of the pre-
conditioner.

Summarizing the discussion for both the diagonal and off-diagonal blocks,
we hold the data-sparse approximation

(15) M ≈ B + UEU t.

2.2. Directional preconditioner. To precondition (5), we use the approx-
imation (15) and consider the solution q of

(B + UEU t)q = f.

First, introducing new vectors r = −U tq and p = −Er gives an equivalent
augmented system

(16)

B U 0
U t 0 I
0 I E

qp
r

 =

f0
0

 .
Factorizing the matrix in (16) gives
(17) I
U tB−1 I

I

I I
−T I

B −S
W

I I −T
I

I B−1U
I

I

 ,
with

S = U tB−1U, T = S−1, W = E + T.

Since both U and B are block-diagonal, S and T are also block-diagonal

S =

S1

. . .

Sm

 , T =

T1

. . .

Tm

 ,
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with Si = U t
iB
−1
i Ui and Ti = S−1

i . Inverting the factorization (17) givesqp
r

 =

I −B−1U
I

I

I I T
I

B−1

−T
W−1


I I

T I

 I
−U tB−1 I

I

f0
0

 .(18)

Applying (18) exactly can be quite costly. In order to construct an efficient
preconditioner, it is essential to approximate (18) aggressively while without
sacrificing too much accuracy. For a matrix A, we shall use the notation
bAc to stand for its approximation, but the actual approximation scheme
can be different for different matrices.

• First, the 2`ip × 2`ip matrix Bi is the restriction of the integral
operator to a straight segment of length 2`iλ. Since the geometry
is fixed and there are only a few choices for `i, all Bi and B−1

i can
be precomputed. Since this is also a one-dimensional problem (i.e.,
restriction to a straight segment), we can use the hierarchical matrix
algebra [6] or the hierarchical semi-separable (HSS) matrices [29] to
compress and apply B−1

i efficiently. We denote the approximation

of B−1
i with bB−1

i c and accordingly bB−1c for B−1.
• Second, since each Ui is a partial Fourier matrix, applying U and U t

reduces to a number of FFTs, which is highly efficient.
• Third, Si and Ti can be precomputed as they only depend on Ui and
Bi, both of which have already been precomputed. An important
observation is that Ti is numerically sparse (see Figure 2). Therefore,
for the sake of efficiency, we approximate Ti with bTic, which is ob-
tained by thresholding the entries in absolute value. In the numerical
results, the number of non-zero entries in bTic is kept proportional
to the dimension of Ti. This approximation of T is denoted by bT c.
• The final task is to build an approximate inverse of W = E + T .

Here, the essential observation is that
– T concentrates on its anti-diagonal (see Figure 2).

Based on this, we define bW c to be the sum of E and the anti-
diagonal of T (i.e., thresholding the rest entries of T to zero). bW c
is extremely sparse as the number of non-zeros is about 3/2 times
the dimension of the matrix in most cases. Hence, we perform a
sparse LU decomposition and set

bW c = LbW cRbW c,

where LbW c and RbW c are sparse upper and lower triangular matrices
up to possible permutations.



DIRECTIONAL PRECONDITIONER FOR HIGH FREQUENCY SCATTERING 11

 

 

10 20 30 40 50 60

10

20

30

40

50

60 −2.5

−2

−1.5

−1

−0.5

0

 

 

10 20 30 40 50 60

10

20

30

40

50

60

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−6

−5.5

−5

−4.5

−4

−3.5

 

 

10 20 30 40 50 60

10

20

30

40

50

60

1.5

2

2.5

3

3.5

Figure 2. The absolute value of the entries of Si (left) and
Ti (right) in logarithmic scale (base 10) for the sound-soft
case (top row) and the sound-hard case (bottom row). For
this specific segment, `i = 5 and p = 8. Hence, there are 256
equally-spaced quadrature points in Pi and the cardinality
of Ki is 65. Both Si and Ti are numerical sparse and anti-
diagonally dominant.

Once these approximations have been formed, we approximate (18) withqp
r

⇐
I −bB−1cU

I
I

I I bT c
I

bB−1c
−bT c

R−1
bW cL

−1
bW c


I I

bT c I

 I
−U tbB−1c I

I

f0
0

 .(19)

We emphasize again that the following approximations are used for comput-
ing (19):

• replacing B−1 with bB−1c via hierarchical matrix or HSS approxi-
mation for each B−1

i ,
• applying U rapidly via fast Fourier transform for each Ui,
• replacing T with bT c via sparse approximation for each Ti, and
• replacing W−1 with R−1

bW cL
−1
bW c via sparse backward and forward

substitutions for LbW c and RbW c.

Based on (19), our preconditioner is defined as follows. For a given f , it

• forms vector (f t, 0, 0)t,
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• carries out the computation of (19), and
• extracts the first component q of the resulting vector.

Since the key step of constructing a data-sparse representation of the op-
erator relies on the directional nature of the kernel G(x, y), we name it
directional preconditioner.

2.3. Complexity analysis. We first consider the setup cost the precondi-
tioner, i.e., the approximate factorization in (19). Since the matrices B−1

i
and Ti for a segment Pi only depend on the integer length parameter `i of
Pi, the possible choices for these matrices are fixed and independent of the
scatterer. All these possible choices can be precomputed once and for all
and stored for future use.

As a result, the setup algorithm only consists of two parts: the evaluation
of E and bW c, and the sparse factorization bW c = LbW cRbW c.

• For the first part, since E only has ω non-zero entries and computing
each entry takes O(1) steps (14), the overall cost for this step is
O(ω) = O(n). Once E is formed, computing bW c also takes at most
O(n) steps.
• The cost of the second part is more complicated. For a geometry that

is uniformly convex, it can be shown that the number of non-zero
entries in LbW c and RbW c is O(n log n). However, for a boundary

with a significant flat part, the cost increases to O(n3/2). The reason
is that the restriction of bW c to the first and last members of all Ki

(i.e., the most tangential directions) is of size O(
√
n)×O(

√
n) and is

filled significantly due to the flat part. Constructing LU decompo-
sition directly for this part already requires O(n3/2) steps. In order
to reduce the complexity, the LU factorization of this submatrix is
computed with the hierarchical matrix algebra [6] or the HSS ma-
trices [29] as the flat part the problem is essentially a 1D problem.
Using these hierarchical algorithms reduces the factorization cost to
O(n).

Adding these numbers together shows that the setup cost of the precondi-
tioner is of order O(n).

Now consider the application cost of the preconditioner (19). For the
major steps of applying (19), we have the following estimates:

• The application of bB−1c is linear time due to the hierarchical matrix
algebra approximation for B−1

i .
• The application of U is O(n log n) since each Ui is a partial Fourier

matrix and the FFT can be used.
• The application of bT c is O(n) since the number of non-zeros in bT c

is proportional to O(n) after we threshold each Ti.
• Applying R−1

bW cL
−1
bW c also takes linear time by using sparse backward

and forward substitution algorithm, along with the hierarchical ma-
trix algebra or HSS matrix for the two tangential submatrices.
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Putting these together shows that the application cost of the preconditioner
scales like O(n log n).

3. Numerical Results

The proposed preconditioner is implemented in Matlab. The numerical
results in this section are obtained on a desktop computer with a 3.60GHz
CPU. Numerical tests are carried out for two domains shown in Figure 3.
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Figure 3. The two scatterers used in the numerical tests.
(a) an ellipse. (b) a bean-shaped object.

In these experiments, we discretize the domain boundary using the Nyström
method with p = 8 points per wavelength. The Chebyshev grid size mc used
to construct eij is set to be 10. The boundary condition for both the Dirich-
let and Neumann problems are obtained by considering an incoming plane
wave pointing towards the positive x direction in R2.

For the iterative solution of the linear system, we use GMRES with rela-
tive tolerance equal to 10−6 and restart number equal to 80. For the matrix-
vector multiplication routine in the iterative solver, the fast algorithm de-
scribed in [30] is used.

We first consider the Dirichlet problem of sound-soft scattering. The
results for the two domains are reported in Tables 1 and 2, where

• Ts is the setup time of the preconditioner in seconds,
• Ta is the application time of the preconditioner in seconds,
• Tm is the matrix-vector multiplication time using the algorithm from

[30],
• np is the iteration number of the iterative solver when the precondi-

tioner is used, and finally,
• nn is the iteration number without any preconditioning.

The ratio Ta/Tm is a good indicator of computation cost of applying the
preconditioner, while np/nn shows the effectiveness of the preconditioner.

The results show that the setup time of the preconditioner is typically
equivalent to a couple of fast matrix-vector multiplications, while the ap-
plication time of the preconditioner is much lower. Therefore, the cost of
applying the preconditioner is almost negligible during the iterative solution.
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ω n Ts Ta Tm np nn
5.3e+03 3.3e+04 5.3e+00 2.4e-02 1.5e+00 14 47
2.1e+04 1.3e+05 2.5e+01 7.4e-02 6.3e+00 16 71
8.5e+04 5.2e+05 1.5e+02 3.7e-01 2.8e+01 19 114

Table 1. Numerical results of the sound-soft scattering for
the ellipse.

ω n Ts Ta Tm np nn
5.2e+03 3.3e+04 5.3e+00 1.0e-02 1.8e+00 14 50
2.1e+04 1.3e+05 2.2e+01 5.6e-02 7.7e+00 16 74
8.3e+04 5.2e+05 9.2e+01 3.2e-01 3.3e+01 18 118

Table 2. Numerical results of the sound-soft scattering for
the bean-shaped object.

Second, the iteration number of the preconditioned system is significantly
lower than the one of the unpreconditioned system. More importantly, the
iteration number of the former scales like O(logω), thus almost frequency-
independent.

Next, we consider the Neumann problem of sound-hard scattering. The
results for the two domains are reported in Tables 3 and 4. The results are
qualitatively similar to the one for the Dirichlet problem and demonstrate
the effectiveness of the preconditioner for the sound-hard scattering problem.

ω n Ts Ta Tm np nn
5.3e+03 3.3e+04 7.3e+00 1.3e-02 1.5e+00 15 38
2.1e+04 1.3e+05 3.1e+01 8.2e-02 6.4e+00 19 56
8.5e+04 5.2e+05 1.7e+02 4.2e-01 2.8e+01 23 81

Table 3. Numerical results of the sound-hard scattering for
the ellipse.

ω n Ts Ta Tm np nn
5.2e+03 3.3e+04 7.3e+00 1.7e-02 1.9e+00 15 36
2.1e+04 1.3e+05 2.9e+01 4.7e-02 7.7e+00 18 51
8.3e+04 5.2e+05 1.2e+02 2.9e-01 3.4e+01 22 72

Table 4. Numerical results of the sound-hard scattering for
the bean-shaped object.
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4. Conclusion

This paper presented the directional preconditioner for the combined field
integral equations (CFIEs) of high frequency acoustic obstacle scattering in
2D. The main idea is to construct a data-sparse approximation of the linear
operator, transform it into an approximate sparse linear system, and form
an approximate inverse using efficient sparse and hierarchical linear algebra
algorithms.

We have assumed that the boundary is discretized with an equally spaced
set of discretization points. For non-equally spaced points, the construction
goes through as well, except that the FFT has to be replaced with non-
uniform FFTs. As a result, some of the scatterer-independent precomputa-
tion can become dependent on the discretization pattern.

A major part of future work is to extend this approach to 3D scatterers.
While the main idea should work, the lack of equally-spaced discretization
for general surfaces pose a clear challenge for this approach.

One potential long term goal is to construct a direct solver for the bound-
ary integral equations of the obstacle scattering problem. It is not clear at
this point whether such a direct solver even exists. However, this paper can
be viewed a first step of exploring in this direction.

One important ingredient of our approach is to transform a dense oscil-
latory matrix to a sparse one. Once it is in a sparse form, we can leverage
the amazing power of sparse linear algebra algorithms. While traditionally
there is relatively little overlap between the work in integral equations and
the one in sparse linear algebra, this work hints at fruitful exchange of ideas
between these two fields.
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[6] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical matrices, 2006. Max-Planck-
Institute Lecture Notes.

[7] B. Bradie, R. Coifman, and A. Grossmann, Fast numerical computations of oscillatory
integrals related to acoustic scattering. I, Appl. Comput. Harmon. Anal. 1 (1993),
no. 1, 94–99. MR1256529



16 LEXING YING

[8] Oscar Bruno, Tim Elling, and Catalin Turc, Regularized integral equations and fast
high-order solvers for sound-hard acoustic scattering problems, Internat. J. Numer.
Methods Engrg. 91 (2012), no. 10, 1045–1072. MR2969771

[9] Francis X. Canning, Sparse approximation for solving integral equations with oscil-
latory kernels, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 71–87. MR1145176
(92h:65196)

[10] Snorre H. Christiansen and Jean-Claude Nédélec, A preconditioner for the electric
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