
SHUFFLING CARDS AND STOPPING TIMES 

DAVID ALDOUS* 
Depurtment of Stutistics, University of California, Berkeley, CA 94720 

PERSI DIACONIS** 
Department of Stutistics, Stanford University, Stanford, CA 94305 

1. Introduction. How many times must a deck of cards be shuffled until it is close to random? 
There is an elementary technique which often yields sharp estimates in such problems. The 
method is best understood through a simple example. 

EXAMPLE1. Top in at random shuffle. Consider the following method of mixing a deck of 
cards: the top card is removed and inserted into the deck at a random position. This procedure is 
repeated a number of times. The following argument should convince the reader that about 
n log n shuffles suffice to mix up n cards. The argument depends on following the bottom card of 
the deck. This card stays at the bottom until the first time (TI) a card is inserted below it. 
Standard calculations, reviewed below, imply this takes about n shuffles. As the shuffles continue, 
eventually a second card is inserted below the original bottom card (this takes about n/2 further 
shuffles). Consider the instant (T,) that a second card is inserted below the original bottom card. 
The two cards under the original bottom card are equally likely to be in relative order low-high or 
high-low. 

Similarly, the first time a h r d  card is inserted below the original bottom card, each of the 6 
possible orders of the 3 bottom cards is equally likely. Now consider the first time T,-, that the 
original bottom card comes up to the top. By an inductive argument, all (n - l ) !  arrangements of 
the lower cards are equally likely. When the original bottom card is inserted at random, at time 
T = q,-, + 1, then all n! possible arrangements of the deck are equally likely. 

a b c c a h u a d c 
b c u a h a d d c d 
c a h b d d c c a u 
d d d d c c h b h h 

FIG. I. Example of repeated top in at random shuffles of a 4-card deck. 

When the original bottom card is at position k from the bottom, the waiting time for a new 
card to be inserted below it is about n / k .  Thus the waiting time T for the bottom card to come to 
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the top and be inserted is about 

This paper presents a rigorous version of the argument and illustrates its use in a variety of 
random walk problems. The next section introduces the basic mathematical set up. Section 3 
details a number of examples drawn from applications such as computer generated pseudo 
random numbers. Section 4 treats ordinary riffle shuffling, analyzing a model introduced by 
Gilbert, Shannon, and Reeds. Section 5 explains a sense in which the method of stopping times 
always works and compares this to two other techniques (Fourier analysis and coupling). Some 
open problems are listed. 

2. The Basic Set-Up. Repeated shuffling is best treated as random walk on the permutation 
group S,,. For later applications, we treat an arbitrary finite group G. Given some scheme for 
randomly picking elements of G, let Q(g) be the probability that g is picked. The numbers 
{ Q(g) : g E G) are a (probability) distribution: Q(g) > 0 and ZQ(g) = 1. Repeated indepen- 

products 

Xo = identity 

Xl = 61 

Xk = 6kXk-1 = [ k t , - 1  . . . 61. 

The random variables Xo, XI, X2, . . . , are the random walk on G with step distribution Q. Thlnk 
of Xk as the position at time k of a randomly-moving particle. The distribution of X2, that is the 
set of probabilities P(X2 = g), g E G, is given by convolution 

For Q(h)Q(ghV') is the chance that element h was picked first and gh-' was picked second; for 
any h, this makes the product equal to g. Similarly, P(Xk = g) = where Qk* is the 
repeated convolution 

In modelling shuffling of an n-card deck, the state of the deck is represented as a permutation 
m E S,,, meaning that the card originally at position i is now at position m(i). 

In Example 1, G = S,,, and using cycle notation for permutations m, 

Q(m) = 0, else. 

Here 6, is a randomly chosen cycle, Xk is the state of the deck after k shuffles, and Qk*(m) is the 
chance that the state after k shuffles is m. In Fig. 1, 6, = (3,2, I), [,= (3,2,1) and X2 = &':[,= 

(1,2, 3). 
We shall study the distribution Qk*. Note that Qk* can be defined by (2.1) without using the 

richer structure of the random walk (X,); however, this richer structure is essential for our 
method of analysis. 

A fundamental result is that repeated convolutions converge to the uniform distribution U :  

unless Q is concentrated on some coset of some subgroup. This was first proved by Markov 
(1906)-see Feller (1968), Section 15.10 for a clear discussion-and can nowadays be regarded as 
a special case of the basic limit theory of finite Markov chains. Poincari. (1912) gave a Fourier 
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analytic proof, and subsequent workers have extended (2.2) to general compact groups-see 
Grenander (1963), Heyer (1977), Diaconis (1982) for surveys. A version of this result is given here 
as Theorem 3 of Section 3. 

Despite this work on abstracting the asymptotic result (2.2), little attention has been paid until 
recently to the kind of non-asymptotic questions whch are the subject of t h s  paper. 

A natural way to measure the difference between two probability distributions Q,, Q, on G is 
by variation distance 

There are equivalent definitions 

where Q(A) = C,,,Q(g), Q( f )  = Cf(g)Q(g), and I l f I I  = maxlf(g)l. Thestring of equalitiesis 
proved by noting that the maxima occur for A = { g  : Q,(g) > Q,(g)) and for f = 1, - 1,; 
Thus, two distributions are close in variation distance if and only if they are uniformly close on all 
subsets. Plainly 0 < llQ, - Q211< 1. 

An example may be useful. Suppose, after well-shuffling a deck of n cards, that you happen to 
see the bottom card, c. Then your distribution Q on S,, is uniform on the set of permutations m 
for whch m(c) = n, and llQ - UII = 1- l /n .  This shows the variation distance can be very 
"unforgiving" of small deviations from uniformity. 

Given a distribution Q on a group G, (2.2) says 


def 

(2.4) d,(k) = 1lek*- UII+ 0 a s k +  co. 

Where Q models a random shuffle, d (k)  measures how close k repeated shuffles get the deck 
to being perfectly (uniformly) shuffled. One might suppose d(k)  decreases smoothly from (near) 1 
to 0; and it is not hard to show d(k)  is decreasing. However, 

THEOREM1. For the "top in at random" shuffle, Example 1, 
(a) d(n log n + cn) < ep'; all c > 0, n > 2. 
(b) d ( n 1 o g n - c , n ) + l a s n +  w ;  allc, ,+ w.  

T h s  gives a sharp sense to the assertion that n log n shuffles are enough. T h s  is a particular 
case of a general cut-off phenomenon, which occurs in all shuffling models we have been able to 
analyze; there is a critical number k, of shuffles such that d(k, + o(k,)) - 0 but d(k, - o(k,)) 
= 1. (See Fig. 2.) 
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Our aim is to determine k, in particular cases. This is quite different from looking at asymptotics 
in (2.4): it is elementary that d(k)  - 0 geometrically fast, and Perron-Frobenius theory says 
d (k )  - ahk, where a ,  h have eigenvalue/eigenvector interpretation, but these asymptotics miss 
the cut-off phenomenon. For card players, the question is not "exactly how close to uniform is the 
deck after a million riffle shuffles?", but "is 7 shuffles enough?". 

The main purpose of this paper is to show how upper bounds on d(k),  like (a) in Theorem 1, 
can be obtained using the notion of strong uniform times, whlch we now define in two steps. 

DEFINITION the set of all G-valued infinite sequences 1. Let G be a finite group, and G" 
g = (g,, g,, . . .). A stopping rule f is a function f :  G" {1 ,2 ,3 ,. . ; m) such that if f (g) = j ,-
then T(g) =j for all g with 2, = g,, i < j .  

DEFINITION2. Let Q be a distribution on G, and let (X,) be the associated random walk. 
Given a stopping rule f ,  the random time T = ?(x,, X,, . . .) is a stopping time. Call T a strong 
uniform time (for U) if for each k < w 

(a) P ( T  = k, Xk = g) does not depend on g. 

REMARK(i). Note that (a) is equivalent to 
(b) P(Xk = glT = k) = l/IGI, g E G 

and to 

REMARK(ii). Picture the process of picking group elements and multiplying. A stopping time is 
a rule which tells you when to "stop" with the current value of the product. The time is strong 
uniform if, conditional on stopping after k steps, the value of the product is uniform on G. 

REMARK(iii). In Example 1, we defined a time T as the first time that the original bottom card 
has come to the top and been inserted into the deck. This is certainly a stopping time, and the 
inductive argument in Section 1shows that, given T = k, all arrangements of the deck are equally 
likely. 

REMARK(iv). In practice it is often useful to have a slightly more general notion of stopping 
time, which allows the decision on whether or not to stop at n to depend not only on (XI, . . . ,X,) 
but also on the value of some random quantity Y independent of the X process. Such a time T is 
called a randomized stopping time T; our results extend to this case without essential change. 

Here is a basic upper bound lemma which relates strong uniform times to the distance between 
ek*and the uniform distribution. 

LEMMA1. Let Q be a probability distribution on a finite group G. Let T be a strong uniform time 
for Q. Then 

d ( k )  IIQk*- UII < P ( T  > k ) ,  all k 2 0. 

Proof. For any A c G 

and so 
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We conclude this section by using Lemma 1 and elementary probability concepts to prove 
Theorem 1.Here is one elementary result we shall use in several examples. 

LEMMA 2. Sample uniformly with replacement from an urn with n balls. Let V be the number of 
draws required until each ball has been drawn at least once. Then 

Proof. Let m = n log n + cn. For each ball b let A, be the event "ball b not drawn in the 
first m draws". Then 

REMARK.This is the famous "coupon-collector's problem", discussed in Feller (1968). The 
asymptotics are P(V > n log n + cn) + 1- e ~ p ( - e - ~ )as n + oo, c fixed. So for c not small 
the bound in Lemma 2 is close to sharp. 

Proof of Theorem 1. Recall we have argued that T, the first time that the original bottom card 
has come to the top and been inserted into the deck, is a strong uniform time for this shuffling 
scheme. We shall prove that T has the same distribution as V in Lemma 2; then assertion (a) is a 
consequence of Lemmas 1and 2. 

We can write 

(2.5) T =  TI + (T2 - TI) + . . .  +(T,- ,  - T,-2) + ( T - T,-,), 

where q. is the time until the ith card is placed under the original bottom card. When exactly i 
cards are under the original bottom card b, the chance that the current top card is inserted below 

i + 1  
b is -, and hence the random variable q+,- has geometric distribution 

n 


The random variable V in Lemma 2 can be written as 

(2.7) v =  ( v - K-,) + (v,-l - K-,) + . . .  +(v2  - vl) + vl, 

where is the number of draws required until i distinct balls have been drawn at least once. 
After i distinct balls have been drawn, the chance that a draw produces a not-previously-drawn 

n - i  
ball is -. So v - v-, has distribution 

n 

P ( y  - v-, =j )  = -
n - i  

1 
n 
) 
- l j-1 

; j > l .  
n I 

Comparing with (2.6), we see that corresponding terms (T+ l  - ?I) and ( K  -, - K -,-,) have the 
same distribution; since the summands within each of (2.5) and (2.7) are independent, it follows 
that the sums T and V have the same distribution, as required. 

To prove (b), fix j and let A, be the set of configurations of the deck such that the bottom j 
original cards remain in their original relative order. Plainly U(A,) = l / j !  Let k = k(n) be of the 
form n log n - c,n, c, + oo. We shall show 

(2.8) Q ~ * ( A , )  + 1 a s n  + oo; jfixed. 

Then d(k)  2 max {ek*(A,) - U(A,)) + 1as n + oo, establishing part (b). 
j

To prove (2.8), observe that ek*(A,) 2 P ( T  - ?;-,> k). For T - I ; - ,  is distributed as the 
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time for the card initially j th  from bottom to come to the top and be inserted; and if this has not 
occurred by time k, then the original bottom j cards must still be in their original relative order at 
time k. Thus it suffices to show 

(2.9) ~ ( T - ? ; - , < k ) + o  a s n + w ;  jfixed. 

We shall prove this using Chebyshev's inequality: 

var( z )
P ( I Z  - EZI > a )  ,< ---- , where a > 0, and Z is any random variable. 

a 2  

From (2.6), 

and so from (2.5) 
n - 1  

E(T- T,)  = C 7= nlogn + O(n) ,  
i = j  ' + 1 

and Chebyshev's inequality applied to Z = T - ?;_,readily yields (2.9). 

REMARK.Note that the "strong uniform time" property of T played no role in establishing the 
lower bound (b). Essentially, we get lower bounds by guessing some set A for which lQk*(A)-
U(A) I should be large, and using the obvious (from (2.3)) inequality 

d ( k )  = 1lQk*- UII > I ~ ~ * ( A )- U(A)I. 

3. Examples. We present constructions of strong uniform times for a variety of random walks: 
simple random walk on the circle, general random walks on finite groups, and a random walk 
arising in random number generation. Sometimes our arguments give the optimal rate, often they 
give the correct order of magnitude. 

EXAMPLE2. Simple random walk on the integers mod n.Let n be a positive odd integer. Let Z,, 
be the integers mod n, thought of as n points on a circle. Imagine a particle which moves by steps, 
each step being equally likely to move 1 to the right or 1 to the left. Thls random walk has step 
distribution Q on Z,,; 

1 
(3.1) Q(1) = Q(-1) = - .2 

The following theorem shows that the number of steps k required to become uniform is slightly 
more than n2. 

THEOREM 2. Let n > 3 be an odd integer. For simple random walk on the integers mod n defined 
by (3.1), for k > n2, 

d (k )  G 6e-ak/112 

with a = 4.rr2/3. 

Proof. First consider n = 5 and the following 5 patterns 

A sequence of successive steps of the walk on Z, yields a sequence of f symbols. Consider the 
sequence in disjoint blocks of 4. Stop the first time T that a block of 4 equals one of the above 5 
patterns. Thus, if the sequence starts + + - +, + + + -, + + - -, T = 12. 
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This stopping time is clearly a strong uniform time; given that T = 12, all 5 final positions in 
Z, are equally likely. Such sets of k-tuples can be chosen for any odd n. It  turns out that to get 
the correct rate of convergence, k should be chosen as a large multiple of n2. Here are some 
details. 

For fixed integers n and k, with n odd, let B, be the set of binary k-tuples with j pluses 
(mod M). 

Let j *  be the index corresponding to the smallest IB,, 1. Partition the set of binary k-tuples 
into n groups of size IB,*l, the j th  group being chosen arbitrarily from B,. The random walk 
generates a sequence of symbols. Consider these in disjoint blocks of length k. Define T as the 
first time a block equals one of the chosen group. This clearly yields a strong uniform time. The 
following lemma gives an explicit upper bound for d(k).  

LEMMA3. Let T be as defined above. For n 2 3 and k 2 n2, 

P ( T  > k) g 6 e - 0 ~ 1 " ~  

with a = 4.rr2/3. 

Proof. The number of elements in B, is 

this being a classical identity due to C. Ramus (see Knuth (1973, p. 70)). The chance of a given 
block falling in the chosen group equals 

Now 

x 
Straightforward calculus using quadratic approximations to cosine such as cos x < 1- -,<

3 
epX2I3for 0 6 x < ~ / 2leads to the stated result. Further details may be found in Chung, 
Diaconis, and Graham (1986). 

REMARK.There is a lower bound for d(k)  of the form ae-pk/"' for positive a and f i ,  so 
somewhat more than n2 steps really are required. One way to prove this is to use the central limit 
theorem; this implies that after k steps the walk has moved a net distance of order k1/2.Hence we 
need k of order n2 at least in order that the distribution after k steps is close to uniform. Further 
details are in Chung, Diaconis and Graham (1986). 

There is a sense in which the cutoff phenomenon does not occur for t k s  example. It is possible 
to show there is a continuous function d*(t), with d*(t)  4 0 as t - co, such that for simple 
random walk on Z,,, 

mkmld(k) - d*(k/n2)l 4 0 as n - m. 

Indeed, as n 4 co, a rescaled version of the random walk tends to Brownian motion on the circle. 
The function d*(t)  is the variation distance to uniformity for Brownian motion at time t .  

EXAMPLE3. A boundfor generalproblems. Let G be a finite group and Q a probability on G. 
The following result shows that Q*k converges to the uniform distribution geometrically fast 
provided Q is not concentrated on a subgroup or a translate of a subgroup. To see the need for 
this condition, consider Example 2 above (simple random walk on Z,). If n is even, then the 



340 DAVID ALDOUS AND PERSI DIACONIS [May 

particle is at an even position after an even number of steps-the distribution never converges to 
uniform. 

A simple way to force convergence is the following: 

(3.2) Suppose for some k, and 0 .:c < 1, Q*ko(g) 2 cU(g) for all E G .  

THEOREM3. Condition (3.2) implies 

d (k )  < (1 - c)'k'kol for all k >, k, . 

Proof. The argument proceeds by constructing another process which behaves like the original 
random walk but easily exhibits a strong uniform time. Suppose first that k, = 1, so Q(g) 2 cU(g) 
for all g. Define 

R(g )  = [Q(g )  - cU(g)l/[l  - cl .  
Observe that R(g)  is a probability and 

(3.3) Q(g> = (1 - c)R(g)  + cU(g).  
Consider a new random walk defined as follows. For each step, flip a coin with probability of 
heads c. If the coin comes up heads, take the step according to U(g). If the coin comes up tails, 
take the step according to R(g). Because of (3.3), each step is taken according to Q overall. Let T 
be the first time that the coin comes up heads. Then T is a (randomized) stopping time and 
because the convolution of the uniform distribution with any distribution is uniform, T is a strong 
uniform time. 

Clearly, 

P { T > k )  = ( 1 - ~ ) ~  

For k, > 1, apply the argument to the probability Q*ko. 

REMARK(i). The argument given is valid for a probability on a general compact group. In this 
form, Theorem 3 is due to Kloss (1959). The proof we give is very close to techniques exploited by 
Athreya and Ney (1977) for general state space Markov processes. 

REMARK(ii). While Theorem 3 seems quantitative, the simplicity of the argument should make 
one suspicious. The reader can see the difficulty by trying to get a rate of convergence for simple 
random walk on Zn.  Estimating c and k, is not an easy problem, we do not know how to use 
Theorem 3 to get the correct rate of convergence for any non-trivial problem. 

EXAMPLE 4. A random walk on Zn arising in random number generation. Random number 
generators often work by recursively computing Xk+, = axk + b (modulo n), where a ,  b and n 
are chosen carefully-see Knuth (1981). Of course the sequence Xk is really deterministic and 
exhibits many regularities. To improve things, various schemes have been suggested involving 
combining several generators. In one scheme, a and b are chosen each step from another 
generator. If this second source is considered truly random (it may bC the result of a physical 
generator using a radioactive source) one may inquire how long it takes Xk to become random. 

For example, if a = 1and b = 0, +1, or -1each with probability 1/3, the process becomes 
simple random walk on Zn : Xk = X,-, + bk(mod n) with a slightly different step size than 
considered in Example 2. The argument given there can easily be adapted to show that slightly 
more than n2 steps are required to become random. 

We now consider the effect of a deterministic doubling: 

1 
(3.4) Xk = 2Xkp, + bk(mod n), bk = 0, +1with probability - .

3 

We will show that this dramatically speeds things up: from n2 down to log n loglog n. The 
argument is presented as a non-trivial illustration of the method of strong uniform times. It 
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involves a novel construction of an almost uniform time. For simplicity, we take n = 2' - 1 (a 
common choice in the application). 

THEOREM4. Let Q,  be the probability distribution of X, defined by (3.4) with n = 2' - 1. Let 
d(k)  = IlQ, - Ull. Then 

1 
d ( c l l o g l )  + O  a s h  a, fort> -

log 3 ' 

Proof. Observe first that if 6, takes values f1with probability 1/2, then 

is very close to uniformly distributed mod 2' - 1. Indeed, 

Thus 

The argument proceeds by finding a stopping time T such that the process stopped at time T has 
distribution at least as close to uniform as U*.  An appropriate modification of the upper bound 
lemma will complete the proof. We isolate the steps as a sequence of lemmas. The first and second 
lemmas are elementary with proofs omitted. 

LEMMA4. Let X,, X,, . . . be a process with ualues in a finite group G. Write Q,  for the 
probability distribution of X,. Let T be a stopping time with the property that for some E > 0, 

1lQk(.lT =j )  - UII 6 E ;  all j  ,< k. 

Then 

IIQk - UllG E + P ( T  > k) .  

LEMMA5. Let Q ,  and Q2 be probability distributions on a finite group G. Then 

llQTQ2 - UII llQi - ull. 
To state the third lemma, an appropriate stopping time T must be defined. Using the defining 

recurrence X, = 2 X k - ,  + bk(mod n ) ,  

(3.6) X, = 2,-'b1 + 2,-,b2 + . . .  +b,(mod n ) .  

Since n = 2' - 1, 2' = l(mod n ) .  Group the terms on the right side of (3.6) by distinct powers 
of 2: 

with 

A,  = b, + b,,, + b,,,, ..., A ,  = b, + b,,, + . . . ,etc. 

Define T as the first time each of the sums A,, A,, . . . ,A,  contains at least one non-zero 
summand. 

LEMMA6. The probability distribution of X, given T =j < k is the convolution of U* defined 
above with an independent random variable. 
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Proof. Let 6: be the first non-zero summand in Ai.Write 

Clearly the first term on the right has distribution U*. Further,.given all the remaining values of 
bk, and the labels of 6J, all 2' values of 6:, . . . ,6j+ are equally likely, so the decomposition of Xk 
is into independent parts. 

Using Lemmas 5,6, along with the bound (3.5) allows us to take E = 2/2' in Lemma 4 for this 
stopping time T. To complete the proof of Theorem 4, it only remains to estimate P ( T  > k). 

Toward this end, consider k = a1 for integer a ,  

log 1+ c 
For large I, this is approximately 1- exp{-lep" ' O g 3 ) .  If a = -for some value of c, this 

log 3 
becomes 1 - exp{-ep') which is well approximated by epc for large c. It follows that for c 

1log 1 
large, -+ cl steps suffice to be close to uniform. This is more than was claimed in Theorem 

log 3 
4. 

REMARK. Chung, Diaconis and Graham (1986) give a more detailed analysis, showing that 
1log 1 is the correct order of magnitude. 

4. An Analysis of Riffle Shuffles. In this section we analyze the most commonly used method 
of shuffling cards-the ordinary riffle shuffle. This involves cutting the deck approximately in 
half, and interleaving (or riffling) the two halves together. We begin by introducing a mathemati-
cal model for shuffling suggested by Gilbert, Shannon and Reeds. Following Reeds, we introduce 
a strong uniform time for this model and show how the calculations reduce to simple facts about 
the birthday problem. 

The diagram gives the result of a single riffle shuffle of a 10 card deck in the usual i + n(i) 
format 

Thls shuffle is the result of cutting 4 cards off the top of a 10 card "deck" and riffling the packets 
together, first dropping cards 10, 9, 8, then card 4, then 7, and so on. 

This permutation has two rising sequences 

n(1) < n(2) < 4 3 )  < n(4) and n(5) < n(6) < n(7) < n(8) < n(9) < n(10) 

In general, a permutation n of n cards made by a riffle shuffle will have exactly 2 rising sequences 
(unless it is the identity, which has 1). Conversely, any permutation of n cards with 1or 2 rising 
sequences can be obtained by a physical riffle. Thus the mathematical definition of a riffle shuffle 
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is "a permutation with 1or 2 rising sequences". Suppose c cards are initially cut off the top. Then 
there are ( a) possible riffle shuffles (1 of which is the identity). To see why, label each of the c 
cards cut with "0"and the others with "1". After the shuffle, the labels form a binary n-tuple with 
c "0"s: there are (a) such n-tuples and each corresponds to a unique riffle shuffle. Finally, the 
total number of possible riffle shuffles is 

Some stage magicians can perform "perfect" shuffles, but for most of us the result of a shuffle 
is somewhat random. The actual distribution of one shuffle (that is, the set of probabilities of each 
of the 2" - n possible riffle shuffles) will depend on the skill of the individual shuffler. The 
following model for random riffle shuffle, suggested by Gilbert and Shannon (1955) and Reeds 
(1981), is mathematically tractable and qualitatively similar to shuffles done by amateur card 
players. 

1st description. Begin by choosing an integer c from 0,1,. . .,n according to the binomial 
1 

distribution P{C = c)  = -(a). Then, c cards are cut off and held in the left hand, and n - c
2" 

cards are held in the right hand. The cards are dropped from a given hand with probability 
proportional to packet size. Thus, the chance that a card is first dropped from the left hand packet 
is c/n. If this happens, the chance that the next card is dropped from the left packet is 
(c  - l)/(n - 1). 

There are two other descriptions of this shuffling mechanism that are useful. 

2nd description. Cut an n card deck according to a binomial distribution. If c cards are cut off, 
pick one of the ( z)possible shuffles uniformly. 

3rd description. This generates T-' with the correct probability. Label the back of each card 
with the result of an independent, fair coin flip as 0 or 1.Remove all cards labelled 0 and place 
them on top of the deck, keeping them in the same relative order. 

LEMMA7. The three descriptionsyield the same probability distribution. 

Proof. The second and third descriptions are equivalent. Indeed, the binary labelling chooses a 
binomially distributed number of zeros, and conditional on this choice, all possible placements of 
the zeros are equally likely. 

The first and second descriptions are equivalent. Suppose c cards have been cut off. For the 
first description, a given shuffle is specified by a sequence Dl, D,, . . . ,D,, where each D, can be 
L or R and c of the D,'s must be L. Under the given model, the chance of all such sequences, 
determined by multiplying the chance at each stage, is c!(n - c)!/n! !J 

The argument to follow analyzes the repeated inverse shuffle. This has the same distance to 
uniform as repeated shuffling because of the following lemma. I 

LEMMA8. Let G be a finite group, T : G + G one-to-one, and Q a probability on G. Then 

I l Q  - ull = llQT-' - ull, 

where QT- '(g) = Q(T-'(g)) is the probability induced by T. 

The results of repeated inverse shuffles of n cards can be recorded by forming a binary matrix 
with n rows. The first column records the zeros and ones that determine the first shuffle, and so 
on. The i th row of the matrix is associated to the i th card in the original ordering of the deck, 
recording in coordinate j the behavior of this card on the j th  shuffle. 
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LEMMA9 (Reeds). Let T be the first time that the binary matrix formed from inverse shuffling has 
distinct rows. Then T is a strong uniform time. 

Proof. The matrix can be considered as formed by flipping a fair coin to fill out the i ,  j entry. 
At every stage, the rows are independent binary vectors. The joint distribution of the rows, 
conditional on being all distinct, is invariant under permutations. 

After the first inverse shuffle, all cards associated to binary vectors starting with 0 are above 
cards with binary vectors starting with 1. After two shuffles, cards associated with binary vectors 
starting (0,O) are on top followed by cards associated to vectors beginning (1, O), followed by 
(0, I), followed by (1,l) at the bottom of the deck. 

Inductively, the inverse shuffles sort the binary vectors (from right to left) in lexicographic 
order. At time T the vectors are all distinct, and all sorted. By permutation invariance, any of the 
n cards is equally likely to have been associated with the smallest row of the matrix (and so be on 
top). Similarly, at time T ,  all n!  orders are equally likely. 

To complete this analysis, the chance that T > k must be computed. Thls is simply the 
probability that if n balls are dropped into 2k boxes there are not two or more balls in a box. If 
the balls are thought of as people, and the boxes as birthdays, we have the familiar question of the 
birthday problem and its well-known answer. This yields: 

THEOREM5. For Q the Gilbert-Shannon-Reeds distribution defined in Lemma 7 ,  

Standard calculus shows that if k = 210g2(n/c), 
c2 

In this sense, 210g2n is the cut off point for this bound. Exact computation of the right side of 
(4.1) when n = 52 gives the bounds 

k upper bound 
10 .73 
11 .48 
12 .28 
13 .15 
14 .08 

REMARK(a). The lovely new idea here is to consider shuffling as inverse sorting. The argument 
works for any symmetric method of labelling the cards. For example, biased cuts can be modeled 
by flipping an unfair coin. To model cutting off exactly j cards each time, fill the columns of the 
matrix with the results of n draws without replacement from an urn containing j balls labelled 
zero and n - j balls labelled one. These lead to slightly unorthodox birthday problems which turn 
out to be easy to work with. 
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REMARK(b). The argument can be refined. Suppose shuffling is stopped slightly before all 
rows of the matrix are distinct-e.g., stop after 210g n shuffles. Cards associated to identical 
binary rows correspond to cards in their original relative positions. It is possible to bound how far 
such permutations are from uniform and get bounds on - UII. Reeds (1981) has used such 
arguments to show that 9 or fewer shuffles make the variation distance small for 52 cards. 

REMARK(c). A variety of ad hoc techniques have been used to get lower bounds. One simple 
method that works well is to simply follow the top card after repeated shuffles. This executes a 
Markov chain on n states with a simple transition matrix. For n in the range of real deck sizes, 
n X n matrices can be numerically multiplied and then the variation distance to uniform 
computed. Reeds (1981) has carried this out for decks of size 52 and shown that - U 1 1  > . I .  
Techniques which allow asymptotic verification that k = (3/2)log, n is the right cutoff for large n 
are described in Aldous (1983a). These analyses, and the results quoted above, suggest that seven 
riffle shuffles are needed to get close to random. 

REMARK (d). Other mathematical models for riffle shuffling are suggested in Donner and 
Uppulini (1970), Epstein (1977), and Thorp (1973). Bore1 and Cheron (1955) and Kosambi and 
Rao (1958) discuss the problem in a less formal way. Where conclusions are drawn, 6 to 7 shuffles 
are recommended to randomize 52 cards. 

REMARK(e). Of course, our ability to shuffle cards depends on practice and agility. The model 
produces shuffles with single cards being dropped about 1/2 of the time, pairs of cards being 
dropped about 1/4 of the time, and i cards blocks being dropped about 1/2' of the time. 
Professional dealers drop single cards 80% of the time, pairs about 18% of the time and hardly 
ever drop 3 or more cards. Less sophisticated card handlers drop single cards about 60% of the 
time. Further discussion is in Diaconis (1982) or Epstein (1977). 

It is not clear if neater shuffling makes for a better randomization mechanism. After all, eight 
perfect shuffles bring a deck back to order. Diaconis, Kantor, and Graham (1983) contains an 
extensive discussion of the mathematics of perfect shuffles, giving history and applications to 
gambling, computer science and group theory. 

The shuffle analyzed above is the most random among all single shuffles with a given 
distribution of cut size, being uniform among the possible outcomes. It may therefore serve as a 
lower bound; any less uniform shuffle might take at least as long to randomize things. Further 
discussion is in Mellish (1973). 

REMARK(f). One may ask, "Does it matter?" It seems to many people that if a deck of cards is 
shuffled 3 or 4 times, it will be quite mixed up for practical purposes with none of the esoteric 
patterns involved in the above analysis coming in. 

Magicians and card cheats have long taken advantage of such patterns. Suppose a deck of 52 
cards in known order is shuffled 3 times and cut arbitrarily in between these shuffles. Then a card 
is taken out, noted and replaced in a different position. The noted card can be determined with 
near certainty! Gardner (1977) describes card tricks based on the inefficiency of too few riffle 
shuffles. 

Berger (1973) describes a different appearance of pattern. He compared the distribution of 
hands at tournament bridge before and after computers were used to randomize the order of the 
deck. The earlier, hand shuffled, distribution showed noticeable patterns (the suit distributions 
were too near "even" 4333) that a knowledgeable expert could use. 

It  is worth noting that it is not totally trivial to shuffle cards on a computer. The usual method, 
described in Knuth (1981), goes as follows. Imagine the n cards in a row. At stage i, pick a 
random position between i and n and switch the card at the chosen position with the card at 
position i. Carried out for 1< i < n - 1, this results in a uniform permutation. In the early days 
of computer randomization, we are told that Bridge Clubs randomized by choosing about 60 
random transpositions (as opposed to 51 carefully randomized transpositions). As the analysis of 
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Diaconis and Shahshahani (1981) shows, 60 is not enough. 

REMARK(g). While revising this paper we noted the following question and answer in a 
newspaper bridge column ("The Aces", by Bobby Wolff). 

Q: 	 How many times should a deck be shuffled before it is dealt? My fellow players insist on at 
least seven or eight shuffles. Isn't this overdoing it? 

A: 	 The laws stipulate that the deck must be "thoroughly shuffled". While no specific number 
is stated, I would guess that five or six shuffles would be about right; seven or eight would 
not be out of order. 

5. Other Techniques and Open Problems. A number of other natural random walks admit 
elegant analyses with strong uniform times. For example, Andre Broder (1985) has given stopping 
times for simple random walk on the "cube" Z,d, and for the problem of randomizing n cards by 
random transpositions. We can similarly analyze nearest neighbor random walks on a variety of 2 
point homogeneous spaces. It is natural to inquire if a suitable stopping time can always be found. 
This problem is analyzed in Aldous and Diaconis (1985): let us merely state two results. 

We need to introduce a second notion of distance to the uniform distribution. Let Q be a 
probability on a finite group G. The separation of ek*to the uniform distribution U after k steps 
is defined as 

~ ( k )= l ~ l m a x { ~ ( g )- Qk*(g) ) .  
g 

Clearly 0 < s (k)  < 1with s(k)  = 0 if and only if ek*= U. The separation is an upper bound 
for the variation distance: 

d( k) < s ( k )  

because 

l l Q k *  - - 1 1  = C { u ( g >  - Qk*(g) ) .  
g :  p k * ( g ) < U ( g )  

The following result generalizes Lemma 1. 

THEOREM 6. If T is a strong uniform time for the random walk generated by Q on G, then 

(5.I) s ( k )  G P ( T  > k ) ;  all k 2 0. 


Conversely, for every random walk there exists a randomized strong uniform time T such that 

(5.1) holds with equality. 

While separation and variation distance can differ, for random walk problems there is a sense 
in which they only differ by a factor of 2. For 0 < E < $, define 

and observe that +(E) decreases as E decreases, and +(E) - 4e1I2 as E + 0. 

THEOREM 7. For any distribution Q on any finite group G, r 

1 
s(2k) < +(2d(k) ) :  k 2 1,provided d (k )  < - .

8 

Thus, if k steps suffice to make the variation distance small, at most 2k steps are required to 
make the separation small. 

Coupling is a probabilistic technique closely related to strong uniform times which achieves the 
exact variation distance. The coupling technique applies to Markov chains far more general than 
random walks on groups: see Griffeath (1975, 1978), Pitman (1976), Athreya and Ney (1977). 

Random walk involves repeated convolution and it is natural to try to use Fourier analysis or 
its non-commutative analog, group representation. Such techniques can sometimes give very sharp 
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bounds. Letac (1981) and Takhcs (1982) are readable surveys. Diaconis and Shahshahani (1981, 
1984) present further examples. Robbins and Bolker (1981) use other techniques. 

Despite this range of available techniques, there are some shuffling methods for which we do 
not have good results on how many shuffles are needed; for example: 

(i) Riffle shuffles where there is a tendency for successive cards to be dropped from opposite 
hands. 

(ii) Overhand shuffle, The deck is divided into K blocks in some random way, and the order 
of the blocks is reversed. 

(iii) Semi-random transposition. At the k th shuffle, transpose the k th card (counting modulo 
n) with a uniform random card. 

From a theoretical viewpoint, there are interesting questions concerning the cut-off phenomenon. 
This occurs in all the examples we can explicitly calculate, but we know no general result which 
says that the phenomenon must happen for all "reasonable" shuffling methods. 

Acknowledgment. We thank Brad Efron, Leo Flatto, and Larry Shepp for help with Example 
1, and Jim Reeds for help with Section 4. 
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WHAT IS A DIFFERENTIAL? 

A NEW ANSWER FROM THE GENERALIZED RIEMANN INTEGRAL 


SOLOMON LEADER 
Mathematics Department, Hill Center, Busch Campus, Rutgers University, New Brunswick, NJ 08903 

Unlike derivatives which gained a solid basis in Cauchy's theory of limits, differentials found 
no effective accommodation with the rising level of rigor in calculus. Justly castigated by Berkeley 
as "ghosts of departed quantities", differentials clung fortuitously to the notational niche in 
calculus created for them by Leibniz. In this century they came to be presented as functionals on 
tangent spaces, a constricted role that made them respectable but evaded the issue of their wider 
role in integration. The resurrection of infinitesimals by nonstandard analysis rekindled interest in 
Leibniz' original concept of differential. 

We present here a completely new approach to differentials in one dimension. This approach is 
motivated by the following considerations: (i) differentials spring directly from the integration 
process, (ii) the utility of differentials in integration extends beyond conventional differential 
forms, (iii) a viable theory of differentials is readily attainable by standqd analysis, and (iv) the 
generalized Riemann integral fills a vital gap in analysis and should have an innovative impact on 
our calculus and real variables courses. In the theory expounded here differentials on a 1-cell K 
form a Riesz space (lattice-ordered linear space). So for each differential a we have the 
differentials 

l a ( = a V  - a ,  a + = a V O ,  and a - = ( - a ) + =  - ( a ~ 0 )  

Solomon Leader: I wrote my Ph.D. thesis in analysis at Princeton in 1952 under the late Salomon Bochner. For 
the past 33 years I have been at Rutgers figuring out how calculus should be taught. My main interests have been in 
measure theory, integration, proximity spaces, and fixed points. In warm weather my favorite diversion is 
body-surfing off Long Beach Island. My wife and I enjoy snorkeling in the Virgin Islands and welcome any excuse 
to visit Switzerland. 




