
Appl. Comput. Harmon. Anal. 33 (2012) 148–158
Contents lists available at SciVerse ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Letter to the Editor

A fast algorithm for multilinear operators

Haizhao Yang a, Lexing Ying b,∗
a Department of Mathematics, The University of Texas at Austin, Austin, TX, United States
b Department of Mathematics and ICES, The University of Texas at Austin, Austin, TX, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 January 2012
Revised 19 March 2012
Accepted 24 March 2012
Available online 30 March 2012
Communicated by M.V. Wickerhauser

Keywords:
Multilinear operators
Fast Fourier transform
Multiscale decomposition
Low-rank approximation

This paper introduces a fast algorithm for computing multilinear integrals which are
defined through Fourier multipliers. The algorithm is based on generating a hierarchical
decomposition of the summation domain into squares, constructing a low-rank approxi-
mation for the multiplier function within each square, and applying an FFT based fast
convolution algorithm for the computation associated with each square. The resulting
algorithm is accurate and has a linear complexity, up to logarithmic factors, with respect
to the number of the unknowns in the input functions. Numerical results are presented to
demonstrate the properties of this algorithm.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with a class of multilinear integrals. Let m(ξ1, . . . , ξk) for ξi ∈ Rd be a bounded multiplier function
that is smooth away from the origin. Given k functions f1, . . . , fk in the Schwartz space S(Rd), we define the multilinear
operator T : (f1, . . . , fk) → T (f1, . . . , fk) by

T (f1, . . . , fk)(x) =
∫
Rd

dξ

(
e2π ixξ

∫
ξ=ξ1+···+ξk

m(ξ1, . . . , ξk) f̂1(ξ1) . . . f̂k(ξk)dξ1 . . .dξk−1

)
,

or, equivalently in the Fourier domain,

̂T (f1, . . . , fk)(ξ) =
∫

ξ=ξ1+···+ξk

m(ξ1, . . . , ξk) f̂1(ξ1) . . . f̂k(ξk)dξ1 . . .dξk−1.

This type of multilinear integral operator has been studied extensively in harmonic analysis. When m(ξ1, . . . , ξk) = 1,
then T (f1, . . . , fk) = f1 . . . fk reduces to the pointwise multiplication operator. An important class of multiplier functions
m(ξ1, . . . , ξk) that plays an important role is the symbols of order 0 in the sense that∣∣∇ jm(ξ1, . . . , ξk)

∣∣ �
∣∣(ξ1, . . . , ξk)

∣∣−| j|
(1)

for any multiindex j = (j1, . . . , jk) � 0 (see Fig. 1 (left) for an example). The Coifman–Meyer theorem [2,3] states that, when
m is a symbol of order 0, the operator T maps L p1 × · · · × L pk → L p if 1 < pi < ∞, 1 � i � k, 1/p1 + · · · + 1/pk = 1/p, and

* Corresponding author.
E-mail address: lexing@math.utexas.edu (L. Ying).
1063-5203/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.acha.2012.03.010

http://dx.doi.org/10.1016/j.acha.2012.03.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:lexing@math.utexas.edu
http://dx.doi.org/10.1016/j.acha.2012.03.010

H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158 149
Fig. 1. Symbols with N = 256. Left: a symbol of order 0. Right: a piecewise symbol of order 0 with a diagonal discontinuity.

1 < p < ∞. Sometimes one also considers a multiplier m(ξ1, . . . , ξk) that has linear discontinuities through the origin but
satisfies (1) otherwise. For example, if m(ξ1, ξ2) = 1

i (sgn(ξ2) − sgn(ξ1 + ξ2)), then T (f1, f2) = f1 H(f2) − H(f1 f2) where H
stands for the Hilbert transform. Fig. 1 (right) gives an example of such a symbol with a diagonal discontinuity.

In this paper, we are concerned with the numerical computation of such multiplier integrals, particularly the 1D bilinear
case (i.e., d = 1 and k = 2)

̂T (f1, f2)(ξ) =
∫

ξ=ξ1+ξ2

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2)dξ1 =
∫
Ω

m(ξ1, ξ − ξ1) f̂1(ξ1) f̂2(ξ − ξ1)dξ1. (2)

Let us start by introducing a discrete analog of the multiplier operator. Let N be an integer which is also an integral
power of 2 for simplicity. We define the Cartesian grid X and the associated Fourier grid Ω:

X =
{

0

N
, . . . ,

N − 1

N

}
and Ω =

{
− N

2
, . . . ,

N

2
− 1

}
.

For any discrete function f defined on X , its Fourier transform f̂ (ξ) is defined by

f̂ (ξ) = 1

N

∑
x∈X

e−2π ixξ f (x)

and the inverse Fourier transform is

f (x) =
∑
ξ∈Ω

e2π ixξ f̂ (ξ).

For two discrete functions defined on X , say f1, f2, the discrete multilinear operator, also denoted by T , computes a function
u(ξ) defined by

u(ξ) := ̂T (f1, f2)(ξ) =
∑

ξ=ξ1+ξ2, ξ1,ξ2∈Ω

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2),

for ξ ∈ Ω , where the summation in the ξ variable is taken modulo N (i.e., ξ = ξ1 + ξ2 for ξ, ξ1, ξ2 ∈ Ω if and only if
ξ ≡ ξ1 + ξ2 (mod N)). When f1 and f2 are compactly supported in [0,1] and nearly band-limited, the discrete operator
defined above provides an accurate approximation to the continuous one when N is sufficiently large.

The direct computation of the discrete operator would go through all ξ ∈ Ω and, for each fixed ξ , take the sum over
all ξ1 ∈ Ω (see (2)). Since |Ω| = N , this naive algorithm takes O (N2) steps, which can be quite expensive for large values
of N . In this paper, we introduce a fast algorithm of which the complexity scales essentially linear with respect to N for a
suitable subset of the symbols of order 0.

1.1. Outline of the approach

We restrict ourselves to an analytic subset of symbols of order 0, where we call m an analytic symbol of order 0 if∣∣∇ jm(ξ1, ξ2)
∣∣ � D · C | j| · j! · ∣∣(ξ1, ξ2)

∣∣−| j|

away from the origin for any multiindex j = (j1, . . . , jk) � 0. Here C and D are uniform constants independent of j. Com-
pared to the definition of symbols of order 0, we have more precise control of the norm of the derivatives of the symbol. For

150 H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158
such a symbol m(ξ1, ξ2), let us first consider a square S = S1 × S2 in the (ξ1, ξ2) plane, where S1 and S2 are two intervals
in ξ1 and ξ2 coordinates, respectively. Let w S be the width of S and dS be the distance between S and the origin. As we
shall see, if w S/dS is less than a constant depending on C and D , then m(ξ1, ξ2) is numerically low-rank. More specifically,
for any ε > 0, there exists an integer t = O (log(1/ε)) and two classes of functions {αS

1,p(ξ1)}1�p�t and {αS
2,p(ξ2)}1�p�t

such that∣∣∣∣∣m(ξ1, ξ2) −
t∑

p=1

αS
1,p(ξ1)α

S
2,p(ξ2)

∣∣∣∣∣ � ε

for any (ξ1, ξ2) ∈ S . Here the superscript S emphasizes dependence on the square S .
Once the low-rank approximation is identified, the partial sum uS (ξ) associated with the square S ,

uS(ξ) =
∑

ξ=ξ1+ξ2, (ξ1,ξ2)∈S

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2),

can be approximated with

uS(ξ) ≈
t∑

p=1

∑
ξ=ξ1+ξ2, (ξ1,ξ2)∈S

(
αS

1,p(ξ1) f̂1(ξ1)
)(

αS
2,p(ξ2) f̂2(ξ2)

)
.

For each fixed p, the discrete convolution can be performed with an FFT in O (w S log w S) steps.
The above discussion addresses the computation for one single square S . For the whole computation, we generate a

hierarchical decomposition that subdivides the domain [−N/2, N/2]2 into multiple squares S that satisfy the condition
on w S/dS and then apply the fast convolution algorithm to each square. As we shall see, the number of square scales
like O (log N) since the ratio bound on w S/dS is a constant independent of N . As a result, the overall complexity of the
algorithm is O (N log N log(1/ε)). This algorithm can be easily generalized to piecewise analytic symbols of order 0, for
which the complexity scales like O (N log2 N log(1/ε)) as shown in Section 2.2.

1.2. Related work

Multilinear operators have been intensively studied in harmonic analysis. However, there has been little research on their
numerical application and the current work is probably the first attempt at fast evaluation of such operators. However, the
main idea behind the proposed algorithm, i.e., generating hierarchical decomposition of the integral operator and applying
low-rank and/or FFT based techniques is well known.

Hairer, Lubich, and Schlichte considered the fast evaluation of temporal convolution in [6]. The summation domain, which
was geometrically a triangle, was partitioned hierarchically into squares and the computation associated with each square
was accelerated using FFT. In [1,7,8], the authors constructed exponential-based low-rank approximations of the convolution
kernel so that the integration could be performed using explicit time-stepping.

In [11], Fomel and Ying considered the computation of partial Fourier transforms where the summation frequencies are
spatially dependent, which have several applications in high frequency wave propagation and computational seismology. The
computational domain is again hierarchically partitioned into manageable components. In 1D, the summation associated
with each component is commutated using fractional Fourier transform, while in higher dimensions, the computation of
each component is accelerated using the butterfly algorithm [10].

The algorithm of this paper is very much along the same line of thought. The rest of this paper is organized as follows:
we present the fast computation of multilinear operators in Section 2. In Section 3, some numerical examples are provided.
Finally, we talk about the conclusion and future work in Section 4.

2. Algorithm description

In this section, we first consider an analytic symbol m(ξ1, ξ2) and then extend the algorithm to piecewise analytic
symbols with linear discontinuities. Finally, we comment on more general cases with d � 2 and k � 3.

2.1. Analytic symbols

We shall work with analytic symbols of order 0 given by the following definition.

Definition 2.1. A bounded function m(ξ1, ξ2) is an analytic symbol of order 0 if∣∣∇ jm(ξ1, ξ2)
∣∣ � D · C | j| · j! · ∣∣(ξ1, ξ2)

∣∣−| j|

for some constants C and D , for all j � 0.

H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158 151
Fig. 2. Hierarchical decomposition of the summation domain for a smooth symbol with N = 4096.

The computation of (2) involves all possible pairs (ξ1, ξ2) for ξ1, ξ2 ∈ Ω , which are the integer points in the domain
S0 = [−N/2, N/2)2. The main idea of the algorithm is to partition this summation domain S0 hierarchically into appropriate
squares and then apply fast algorithms to speed up the computation associated with each square.

For each square S , we define w S to be its width and dS to be its distance to the origin. This decomposition step splits S0
recursively into squares S until either w S/dS � 2/C or w S is less than or equal to a prescribed constant width w0. More
precisely, the algorithm proceeds as follows.

Algorithm 2.2 (Hierarchical decomposition of an analytic symbol).

1: Initialize the queue Q to contain only the square S0 = [−N/2, N/2)2 and the set S to be empty, and let w0 be some
small positive constant

2: while Q is not empty do
3: Pop a square S from Q
4: if w S/dS � 2/C or w S � w0 then
5: Put S into S
6: else
7: Partition S uniformly into four squares and put them into Q
8: end if
9: end while

At the end of this algorithm, the union of the squares in S is equal to [−N/2, N/2]2 (see Fig. 2 for a typical example).
For each square S in S , we define the partial sum uS (ξ) to be the summation associated with S , i.e.,

uS(ξ) :=
∑

ξ=ξ1+ξ2, (ξ1,ξ2)∈S

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2),

such that

u(ξ) = ̂T (f1, f2)(ξ) =
∑
S∈S

uS(ξ).

There are clearly two classes of squares in S . The first class consists of small squares of size w S � w0. There are only O (1)

of them and we may simply use direct computation to evaluate their contribution. The second class consists of squares that
satisfy w S/dS � 2/C , of which there are only O (log N) by construction (see Fig. 2). The following theorem provides the
basis for speeding up the computation associated with these squares.

Theorem 2.3. Let m(ξ1, ξ2) be an analytic symbol of order 0 with constants C , D. Consider a square S = S1 × S2 in the (ξ1, ξ2) plane.
Let w S = |S1| = |S2| be the width of S and dS be the distance between S and the origin. Then if w S/dS � 2/C, then for any ε > 0
there exist t = O C,D(log(1/ε)) and functions {αS

1,p(ξ1)}1�p�t and {αS
2,p(ξ2)}1�p�t such that

∣∣∣∣∣m(ξ1, ξ2) −
t∑

p=1

αS
1,p(ξ1)α

S
2,p(ξ2)

∣∣∣∣∣ � ε

for any (ξ1, ξ2) ∈ S.

152 H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158
Proof. The proof relies on Chebyshev interpolation. Let f be a smooth function on B = [a,b] and I B
n be the operator of n

point Chebyshev interpolation. Then the following estimate holds (see [9] for example):

∥∥ f − IB
n f

∥∥∞ � (b − a)n+1

22n+1(n + 1)! max
ξ∈B

∣∣ f (n+1)(ξ)
∣∣

and

∥∥IB
n

∥∥∞→∞ � 1 + 2

π
log(n + 1).

Let I S1
t be the Chebyshev interpolation operator in the ξ1 direction on interval S1 with t points and similarly I S2

t be the
one in the ξ2 direction on S2. Using the fact that |∇ jm(ξ1, ξ2)| � D · C | j| · j! · |(ξ1, ξ2)|−| j| , we find that∥∥m − I S1

t I S2
t m

∥∥∞ = ∥∥m − I S1
t m

∥∥∞ + ∥∥I S1
t m − I S1

t I S2
t m

∥∥∞

�
∥∥m − I S1

t m
∥∥∞ +

(
1 + 2

π
log(t + 1)

)∥∥m − I S2
t m

∥∥∞

=
(

2 + 2

π
log(t + 1)

)
2

(
w S

4

)t+1 1

(t + 1)! DCt+1(t + 1)! 1

dt+1
S

=
(

2 + 2

π
log(t + 1)

)
2D

(
w S C

4dS

)(t+1)

�
(

2 + 2

π
log(t + 1)

)
2D

(
1

2

)t+1

,

where we have used the condition w S/dS � 2/C in the last line. In order to make the final estimate bounded by ε from
above, we can choose t = 2 log(4D/ε).

The Chebyshev interpolation in fact provides a low-rank approximation. To see this, let ξ
S1
i be the i-th Chebyshev point

in interval S1 and L S1
t,i to be the i-th Lagrange basis function of the Chebyshev grid on S1. Define ξ

S2
i and L S2

t,i for the ξ2
variable in a similar way. Then,

I S1
t I S2

t m =
t∑

i1,i2=1

LS1
t,i1

(ξ1)LS2
t,i2

(ξ2)m
(
ξ

S1
i1

, ξ
S1
i2

) =
t∑

p=1

(
t∑

i1=1

LS2
t,p(ξ2)m

(
ξ

S1
i1

, ξ
S2
p

))
LS2

t,p(ξ2).

Now, defining

αS
1,p(ξ1) =

t∑
i1=1

LS2
t,p(ξ2)m

(
ξ

S1
i1

, ξ
S2
p

)
and αS

2,p(ξ2) = LS2
t,p(ξ2)

finishes the proof. �
This theorem explicitly constructs a low-rank approximation from Chebyshev interpolation. In practice, the rank of this

approximation is far from optimal since its construction only exploits the smoothness of the multiplier m(ξ1, ξ2). A more
effective approximation is the pseudoskeleton decomposition [5], where the functions {αS

1,p(ξ1)} and {αS
2,p(ξ2)} behave

roughly like m(·, ξ S1
p) and m(ξ

S2
p , ·) for some carefully chosen {ξ S1

p } and {ξ S2
p }, respectively. A randomized procedure for

constructing pseudoskeleton decompositions was proposed in [4], and empirically it has a complexity which is only propor-
tional to O (w S). A brief outline of this procedure is given in Appendix A for completeness. In our numerical experiment, in
Section 3, this procedure is used to generate the low-rank approximation for S .

The importance of the low-rank approximation is that, once {αS
1,p(ξ1)} and {αS

2,p(ξ2)} are available, the partial sum uS(ξ)

associated with the square S can be approximated by

uS(ξ) ≈
t∑

p=1

∑
ξ=ξ1+ξ2, (ξ1,ξ2)∈S

(
αS

1,p(ξ1) f̂1(ξ1)
)(

αS
2,p(ξ2) f̂2(ξ2)

)
.

First, we observe that uS (ξ) is zero if ξ /∈ S1 + S2. Therefore, when S1 and S2 are short intervals, the above sum will only
update a small portion of ξ . Secondly, since the second sum is a discrete convolution, it can be computed in linear cost
with the help of FFTs. More precisely, the algorithm goes as follows.

H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158 153
Algorithm 2.4 (Fast computation of the partial sum uS(ξ) associated with a square S).

1: for p = 1, . . . , t do
2: Compute αS

1,p(ξ1) f̂1(ξ1) for ξ1 ∈ S1, extend by zero to a vector of length 2w S , and apply an FFT to the result.

3: Compute αS
2,p(ξ2) f̂2(ξ2) for ξ2 ∈ S2, extend by zero to a vector of length 2w S , and apply an FFT to the result.

4: Multiply the two results and apply an inverse FFT to the product.
5: Add the result to the ξ locations at S1 + S2.
6: end for

Since this algorithm only uses FFTs of size O (w S) and t = O (log(1/ε)), the total cost is O (w S log w S log(1/ε)).
Piecing together all components, the full algorithm proceeds as follows:

Algorithm 2.5 (Fast application of an analytic symbol).

1: Apply Algorithm 2.2 to construct a hierarchical decomposition.
2: for each S in S do
3: if S satisfies w S/dS � 2/C then
4: Compute its contribution using Algorithm 2.4.
5: else
6: Compute its contribution using direction computation.
7: end if
8: end for

The following theorem provides the complexity and error estimates of the proposed algorithm.

Theorem 2.6. For an analytic symbol m(ξ1, ξ2), the proposed algorithm has a complexity of order O (N log N log(1/ε)) and the �∞
error of ̂T (f1, f2)(ξ) is bounded by

ε min
(‖ f̂1‖1‖ f̂2‖∞,‖ f̂1‖∞‖ f̂2‖1

)
.

Proof. Let us consider the complexity first. Let N = 2n . The computational cost of the squares S with w S � w0 is clearly
constant since there are only O (1) of them and w0 is a prescribed constant. Therefore, the main cost is from the rest of the
squares with w S/dS � 2/C . All squares in S are of size 2s and, for each fixed s, there are O (1) box of with 2s . Therefore,
the cost is bounded by

n∑
s=0

O
(
2s log

(
2s) log(1/ε)

) = O
(
N log N log(1/ε)

)
.

To estimate the pointwise error, let us define ma(ξ1, ξ2) as our low-rank approximation to m(ξ1, ξ2). By construction, we
have ∣∣m(ξ1, ξ2) − ma(ξ1, ξ2)

∣∣ � ε

for any (ξ1, ξ2). Therefore the error is bounded by∑
ξ=ξ1+ξ2

∣∣m(ξ1, ξ2) − ma(ξ1, ξ2)
∣∣∣∣ f̂1(ξ1)

∣∣∣∣ f̂2(ξ2)
∣∣ � ε

∑
ξ=ξ1+ξ2

∣∣ f̂1(ξ1)
∣∣∣∣ f̂2(ξ2)

∣∣
� ε min

(‖ f̂1‖1‖ f̂2‖∞,‖ f̂1‖∞‖ f̂2‖1
)

by Hölder’s inequality. �
2.2. Piecewise analytic symbols

We now extend this algorithm to the case where the symbol has linear discontinuities through the origin.

Definition 2.7. A bounded function m(ξ1, ξ2) is a piecewise analytic symbol of order 0 if there exist lines L1, . . . , L� that go
through the origin in the (ξ1, ξ2) plane and partition the plane into regions R1, . . . , R2� , and within each region∣∣∇ jm(ξ1, ξ2)

∣∣ � D · C | j| · j! · ∣∣(ξ1, ξ2)
∣∣−| j|

for some uniform constants C and D for all j � 0.

154 H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158
Fig. 3. Hierarchical decomposition of the summation domain for a piecewise smooth symbol with a diagonal discontinuity for N = 4096.

Relative to the smooth case, the only complication arises when a square S overlaps with more than one region. Due
to its discontinuities, the symbol m(ξ1, ξ2) is no longer numerically low-rank in general. Therefore, one needs to further
partition these squares. The resulting hierarchical decomposition is very similar to the one for smooth symbols, except for
a minor modification on the partitioning criteria.

Algorithm 2.8 (Hierarchical decomposition of a piecewise analytic symbol).

1: Initialize the queue Q to contain the square [−N/2, N/2]2 and the set S to be empty. Let w0 be a small constant
2: while Q is not empty do
3: Pop a square S from L
4: if w S/dS � 2/C or (w S � w0 and dist(S, Li) > 0 for all Li) then
5: Put S into S
6: else
7: Partition S uniformly into four squares and put them into Q
8: end if
9: end while

Now in the final set S , the small squares of width w0 are close to either the origin or the lines Li . For any fixed s, there
can now be as many as O (N/2s) squares of width 2s due to the linear discontinuities. See Fig. 3 for an example.

Theorem 2.9. For a piecewise analytic symbol m(ξ1, ξ2), the proposed algorithm has a complexity of order O (N log2 N log(1/ε)) and

the error of ̂T (f1, f2)(ξ) is bounded in the infinity norm by

ε min
(‖ f̂1‖1‖ f̂2‖∞,‖ f̂1‖∞‖ f̂2‖1

)
.

Proof. Let us consider the complexity first. Let N = 2n . All the squares in S are of size 2s and, for each fixed s, there are
O (N/2s) boxes of width 2s . Therefore, the total cost is bounded by

n∑
s=0

O
(
N/2s · 2s log

(
2s) log(1/ε)

) = O
(
N log2 N log(1/ε)

)
.

The error estimate is the same as in the proof of the previous theorem. �
2.3. Extensions

The algorithms for smooth symbols can naturally be extended to more general cases with d � 2 and k � 3. Parallel to
the discretization of the 1D case, we define grids X and Ω as

X =
{

0

N
, . . . ,

N − 1

N

}d

and Ω = {−N/2, . . . , N/2 − 1}d

and the discrete operator T as

̂T (f1, . . . , fk)(ξ) =
∑

m(ξ1, . . . , ξk) f̂1(ξ1) . . . f̂k(ξk)
ξ=ξ1+···+ξk, ξ1,...,ξk∈Ω

H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158 155
for f1, . . . , fk defined on X . A direct computation clearly takes O (Ndk) steps. When m(ξ1, . . . , ξk) is an analytic symbol of
order 0, we can again prove the theorem using Chebyshev interpolation.

Theorem 2.10. Let m(ξ1, . . . , ξk) be an analytic symbol of order 0 with constants C, D. Consider a dk-dimensional hypercube S =
S1 × · · · × Sk in the (ξ1, . . . , ξk) space, where each Si is a d-dimensional hypercube. Let w S be the width of S and dS be the distance
between S and the origin. Then if w S/dS � 2/C, then for any ε > 0 there exist an integer t = O C,D(logdk−1(1/ε)) and k sets of
functions {αS

1,p(ξ1)}1�p�t , . . . , {αS
k,p(ξk)}1�p�t such that∣∣∣∣∣m(ξ1, . . . , ξk) −

t∑
p=1

αS
1,p(ξ1) . . . αS

k,p(ξk)

∣∣∣∣∣ � ε

for any (ξ1, . . . , ξk) ∈ S.

The hierarchical decomposition step proceeds almost the same, except that now each hypercube S splits into 2dk smaller
hypercubes. For a given hypercube S ∈ S that satisfies w S/dS � 2/C , the algorithm for its partial sum uS (ξ) proceeds as
follows.

Algorithm 2.11 (Fast computation of the partial sum uS (ξ) associated with a hypercube S).

1: for p = 1, . . . , t do
2: Compute α1,S

p (ξ1) f̂1(ξ1) for ξ1 ∈ S1, extend by zero to a hypercube of width kw S , and apply a d-dimensional FFT to it.

3: Do the same for αS
2,p(ξ2) f̂2(ξ2), . . . ,α

k,S
p (ξk) f̂k(ξk).

4: Multiply these results and apply a d-dimensional inverse FFT of width kw S to the product.
5: Add the result to the ξ locations of the hypercube S1 + · · · + Sk .
6: end for

A similar theorem can be proved regarding the complexity of the whole algorithm and it offers a tremendous speedup
over the naive O (Ndk) algorithm.

Theorem 2.12. For a piecewise analytic symbol m(ξ1, . . . , ξk), the proposed algorithm has a complexity of order O (Nd log N ×
logdk−1(1/ε)).

3. Numerical results

In this section, we provide several numerical examples to illustrate the accuracy and efficiency of the proposed algo-
rithms. All results are obtained on a desktop computer with a 2.6 GHz CPU. The low-rank approximation for each S ∈ S is
generated using the randomized algorithm described Appendix A, where the parameter ε is used to control the accuracy
of the approximation. The discrete functions f1 and f2 are generated as Gaussian random noise. For each example, we
test with different values of N and ε. The running time for evaluating the multilinear operator is reported in seconds. We
denote the approximate solution computed from our algorithm by ua(ξ). To measure the error with reasonable efficiency,
we randomly select a subset P of Ω and estimate the error using the relative �∞ error:

maxξ∈P {|ua(ξ) − u(ξ)|}
maxξ∈P {|u(ξ)|} .

In the numerical experiment, P consists of 200 points from Ω .
We first test the algorithm in Section 2.1 for d = 1 and k = 2. In the first example, m(ξ1, ξ2) is an analytic symbol of

order 0 given by

m(ξ1, ξ2) = ξ1√
1 + ξ2

1 + ξ2
2

. (3)

The results for different values of N and ε are reported in Table 1. In each test, the estimated relative �∞ error is well
below the prescribed accuracy ε. For each fixed ε value, the running time scales approximately linearly with respect to the
size of the problem, N . For a fixed value of N , the running time only grows slightly when the threshold ε is decreased.

In the second example, we set m(ξ1, ξ2) to be

m(ξ1, ξ2) = ξ1ξ2

1 + ξ2
1 + ξ2

2

, (4)

which is again an analytic symbol of order 0. The results of this symbol are summarized in Table 2 and the asymptotic
behavior of the algorithm is again compatible with the theoretical claims.

156 H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158
Table 1
Results from the first example with m(ξ1, ξ2) given in (3).

ε N Time Error

1.00e–03 8192 4.27e–02 7.25e–05
1.00e–03 16 384 6.23e–02 7.39e–05
1.00e–03 32 768 1.22e–01 6.25e–05
1.00e–03 65 536 2.42e–01 9.94e–05

1.00e–06 8192 5.05e–02 4.63e–08
1.00e–06 16 384 9.39e–02 5.60e–08
1.00e–06 32 768 1.84e–01 3.02e–08
1.00e–06 65 536 3.75e–01 5.57e–08

1.00e–09 8192 6.43e–02 1.50e–10
1.00e–09 16 384 1.20e–01 1.29e–10
1.00e–09 32 768 2.36e–01 1.29e–10
1.00e–09 65 536 4.85e–01 1.48e–10

Table 2
Results from the second example with m(ξ1, ξ2) given in (4).

ε N Time Error

1.00e–03 8192 3.69e–02 1.25e–04
1.00e–03 16 384 6.78e–02 9.38e–05
1.00e–03 32 768 1.31e–01 6.53e–05
1.00e–03 65 536 2.65e–01 1.07e–04

1.00e–06 8192 5.35e–02 3.70e–08
1.00e–06 16 384 9.95e–02 6.15e–08
1.00e–06 32 768 1.96e–01 8.05e–08
1.00e–06 65 536 3.97e–01 5.22e–08

1.00e–09 8192 7.05e–02 7.09e–11
1.00e–09 16 384 1.32e–01 9.00e–11
1.00e–09 32 768 2.61e–01 1.12e–10
1.00e–09 65 536 5.34e–01 7.90e–11

Table 3
Results from the third example with m(ξ1, ξ2) given in (5).

ε N Time Error

1.00e–03 8192 2.80e–01 6.54e–05
1.00e–03 16 384 5.77e–01 5.50e–05
1.00e–03 32 768 1.13e+00 8.42e–05
1.00e–03 65 536 2.23e+00 1.87e–04

1.00e–06 8192 3.21e–01 6.79e–08
1.00e–06 16 384 6.16e–01 5.61e–08
1.00e–06 32 768 1.21e+00 1.08e–07
1.00e–06 65 536 2.43e+00 6.47e–08

1.00e–09 8192 3.40e–01 1.60e–10
1.00e–09 16 384 6.53e–01 1.12e–10
1.00e–09 32 768 1.32e+00 1.53e–10
1.00e–09 65 536 2.73e+00 9.30e–11

In the third example, m(ξ1, ξ2) is a piecewise analytic symbol of order 0 given by

m(ξ1, ξ2) =

⎧⎪⎨
⎪⎩

ξ1ξ2

1+ξ2
1 +ξ2

2
, ξ2 � ξ1,

ξ1√
1+ξ2

1 +ξ2
2

ξ2 < ξ1.
(5)

Clearly it has a diagonal discontinuity and the algorithms in Section 2.2 are used for the computation. The results for
this symbol are summarized in Table 3. The actual running times are significantly higher due to the existence of the
discontinuities near the diagonal. However, the asymptotic near-linear complexity is clear from the results.

In the final example, we test the 2D bilinear case (i.e., d = 2). Letting ξ1 = (ξ1,1, ξ1,2) and ξ2 = (ξ2,1, ξ2,2), we set

m(ξ1, ξ2) = m(ξ1,1, ξ1,2, ξ2,1, ξ2,2) = ξ1,1√
1 + ξ2

1,1 + ξ2
1,2 + ξ2

2,1 + ξ2
2,2

. (6)

H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158 157
Table 4
Results from the fourth example with m(ξ1, ξ2) given in (6).

ε N Time Error

1.00e–03 256 2.09e+00 3.08e–04
1.00e–03 512 5.61e+00 1.36e–04
1.00e–03 1024 2.22e+01 1.26e–04

1.00e–06 256 2.67e+00 3.51e–07
1.00e–06 512 8.52e+00 4.17e–07
1.00e–06 1024 3.45e+01 1.27e–06

1.00e–09 256 3.74e+00 8.03e–10
1.00e–09 512 1.20e+01 6.93e–10
1.00e–09 1024 4.97e+01 4.01e–10

Now f1 and f2 are defined on an N × N grid and Section 2.3 claims that the running time should be almost linear with
respect to N2. The numerical results are summarized in Table 4 and the numbers are indeed compatible with the theoretical
claim.

4. Conclusions and discussions

In this paper, we propose a fast algorithm for evaluating multilinear operator with a certain class of multipliers. For the
1D bilinear case, the algorithm starts by constructing a hierarchical decomposition of the summation domain in Fourier
space into squares, and then performs FFT-based convolutions to speed up the computation associated with each individual
square. The complexity of the algorithm is of order O (N log N log(1/ε)) and O (N log2 N log(1/ε)) for smooth and piecewise
symbols of order 0, respectively. We also generalize the algorithm to the higher-dimensional smooth symbol case. Numerical
results are provided to demonstrate the efficiency and accuracy of the algorithm.

For the more general case, k > 3, Theorem 2.10 proves the existence of low-rank approximation of the symbol
m(ξ1, . . . , ξk) restricted to a hypercube S . As we mentioned earlier, the low-rank approximation based directly on Chebyshev
interpolation is often not efficient and other approximations are more computationally favorable. The randomized procedure,
which gives good practical results for the bilinear case, does not have a direct generalization for k > 3. In fact, generating
low-rank approximations for higher-dimensional tensors is a very active field of research and has attracted a lot of attention
in recent years.

In our discussion, we assume that N is the parameter while d and k are fixed small constants. However, in many
applications, one can no longer assume that d and k are small. For these cases, the algorithms developed here are no longer
efficient (for example see the log(dk−1)(1/ε) dependence in Theorem 2.12) and new insights would be required to make
them practical.

Acknowledgments

This work was partially supported by an NSF CAREER grant DMS-0846501. The authors thank Jack Poulson for providing
suggestions and comments.

Appendix A. A randomized approach for low-rank approximation

In this appendix, we briefly outline the randomized algorithm proposed in [4] for generating numerical low-rank ap-
proximation. For each square S = S1 × S2 in S , we define a matrix M as

M = (
m(ξ1, ξ2)

)
ξ1∈S1,ξ2∈S2

.

The following algorithm generates an approximate low-rank factorization M ≈ M1M2 where the columns of M1 and the
rows of M2 give the functions {αS

1,p} and {αS
2,p}, respectively.

The ε-rank of an m × n matrix M , denoted by rε(M) or just rε if M is fixed, is the number of singular values of M that
are greater than or equal to ε. We call M numerically low-rank if rε is much smaller than the dimensions of M even for
small ε. The algorithm described below aims to construct a separated approximation of the form

M ≈ C D R

with accuracy O (ε), where the number of columns in C and the number of rows in R are roughly rε . Here, we adopt the
standard notation for a submatrix: given a row index set I and a column index set J , M(I, J) is the submatrix with entries
from rows in I and columns in J .

1. Randomly sample a set of βrε rows and denote the index set by S = (si). Here β is the oversampling factor. Perform
pivoted QR decomposition on the matrix M(S, :) and obtain

158 H. Yang, L. Ying / Appl. Comput. Harmon. Anal. 33 (2012) 148–158
M(S, P) = Q R,

where P = (pi) is the resulting permutation vector of the columns and R = (ri j) is upper triangular. Let k be the largest
index such that rkk � ε. Define the index set Sc to be {p1, . . . , pk}.

2. Randomly sample a set of βrε columns and denote the index set by S = (si). Perform a pivoted LQ decomposition on
the rows of M(:, S):

M(P , S) = L Q ,

where P is the resulting permutation vector of the rows and L = (�i j) is lower triangular. Let k be the largest index
such that �kk � ε. Define the index set Sr to be {p1, . . . , pk}.

3. Perform a pivoted QR decomposition on the columns of M(:, Sc) and a pivoted LQ decomposition on the rows of M(Sr, :)
respectively:

M(:, Sc) · Pc = Q c Rc, Pr · M(Sr, :) = Lr Q r,

where Pc and Pr are the resulting permutation matrices that reorder the columns of M(:, Sc) and the rows of M(Sr, :),
respectively.

4. We seek a factorization of the form M ≈ Q c · D · Q r . In order to do so efficiently, we restrict ourselves to the rows in Sr

and columns in Sc and solve the following problem:

min
D

∥∥M(Sr, Sc) − Q c(Sr, :) · D · Q c(:, Sc)
∥∥

F .

A simple least-squares solution gives D = (Q c(Sr, :))+M(Sr, Sc)(Q r(:, Sc))
+ , where (·)+ stands for the pseudoinverse.

Therefore, the resulting factorization is

M ≈ Q c · ((Q c(Sr, :)
)+ · M(Sr, Sc) · (Q r(:, Sc)

)+) · Q r .

Finally, we set

C = Q c, D = (
Q c(Sr, :)

)+ · M(Sr, Sc) · (Q r(:, Sc)
)+

, R = Q r .

Once we have M ≈ C D R , setting M1 = C D and M2 = R gives the desired low-rank approximation.
In practice, setting the oversampling factor β to 5 is sufficient for an accurate approximation. Notice that the most

computationally intensive steps of this algorithm are the pivoted QR decompositions of matrices of size m × O (rε) and the
pivoted LQ decompositions of matrices of size O (rε) × n. When ε is fixed and rε can be treated as a constant, the cost of
this algorithm is only linear in max(m,n).

References

[1] G. Capobianco, D. Conte, I. Del Prete, E. Russo, Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations, BIT 47 (2)
(2007) 259–275.

[2] R.R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975) 315–331.
[3] R.R. Coifman, Y. Meyer, Wavelets: Calderón–Zygmund and Multilinear Operators, Cambridge Stud. Adv. Math., Cambridge University Press, 1997.
[4] B. Engquist, L. Ying, A fast directional algorithm for high frequency acoustic scattering in two dimensions, Commun. Math. Sci. 7 (2) (2009) 327–345.
[5] S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl. 261 (1997) 1–21.
[6] E. Hairer, C. Lubich, M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Statist. Comput. 6 (3) (1985) 532–541.
[7] C. Lubich, A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput. 24 (1) (2002) 161–182 (electronic).
[8] A. Schädle, M. López-Fernández, C. Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput. 28 (2) (2006) 421–438 (electronic).
[9] E. Süli, D.F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.

[10] L. Ying, Sparse Fourier transform via butterfly algorithm, SIAM J. Sci. Comput. 31 (3) (2009) 1678–1694.
[11] L. Ying, S. Fomel, Fast computation of partial Fourier transforms, Multiscale Model. Simul. 8 (1) (2009) 110–124.

	A fast algorithm for multilinear operators
	1 Introduction
	1.1 Outline of the approach
	1.2 Related work

	2 Algorithm description
	2.1 Analytic symbols
	2.2 Piecewise analytic symbols
	2.3 Extensions

	3 Numerical results
	4 Conclusions and discussions
	Acknowledgments
	Appendix A A randomized approach for low-rank approximation
	References

