
Found Comput Math (2010) 10: 569–613
DOI 10.1007/s10208-010-9070-4

Scattering in Flatland: Efficient Representations
via Wave Atoms

Laurent Demanet · Lexing Ying

Received: 23 May 2008 / Revised: 9 October 2009 / Accepted: 27 February 2010 /
Published online: 3 June 2010
© SFoCM 2010

Abstract This paper presents a numerical compression strategy for the boundary
integral equation of acoustic scattering in two dimensions. These equations have os-
cillatory kernels that we represent in a basis of wave atoms, and compress by thresh-
olding the small coefficients to zero.

This phenomenon was perhaps first observed in 1993 by Bradie, Coifman, and
Grossman, in the context of local Fourier bases (Bradie et al. in Appl. Comput. Har-
mon. Anal. 1:94–99, 1993). Their results have since then been extended in various
ways. The purpose of this paper is to bridge a theoretical gap and prove that a well-
chosen fixed expansion, the non-standard wave atom form, provides a compression
of the acoustic single- and double-layer potentials with wave number k as O(k)-by-
O(k) matrices with Cεδk

1+δ non-negligible entries, with δ > 0 arbitrarily small, and
ε the desired accuracy. The argument assumes smooth, separated, and not necessarily
convex scatterers in two dimensions. The essential features of wave atoms that al-
low this result to be written as a theorem are a sharp time-frequency localization that
wavelet packets do not obey, and a parabolic scaling (wavelength of the wave packet)
∼ (essential diameter)2. Numerical experiments support the estimate and show that
this wave atom representation may be of interest for applications where the same
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scattering problem needs to be solved for many boundary conditions, for example,
the computation of radar cross sections.

Keywords Fast algorithm · Wave propagation · Boundary integral equation ·
Computational harmonic analysis
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1 Introduction

This paper is concerned with the sparse representation of the boundary integral op-
erator of two-dimensional scattering problems. Let D be a bounded soft scatterer in
R

2 with a smooth boundary and uinc(x) be the incoming wave field. The scattered
field u(x) satisfies the two-dimensional exterior Dirichlet problem of the Helmholtz
equation:

−Δu(x) − k2u(x) = 0 in R
d \ D̄,

u(x) = −uinc(x) for x ∈ ∂D,

lim|x|→∞ |x|1/2
((

x

|x| ,∇u(x)

)
− iku(x)

)
= 0.

Typically, the higher the wave number k, the harder the computational problem. One
attractive method for dealing with this equation is to reformulate it using a boundary
integral equation for an unknown field φ(x) on ∂D:

1

2
φ(x) +

∫
∂D

(
∂G(x, y)

∂ny

− iηG(x, y)

)
φ(y)dy = −uinc(x), (1)

where ny stands for the exterior normal direction of ∂D at the point y, and η is a
coupling constant of order O(k). This is the combined field boundary integral equa-
tion [18]. The kernels G(x,y) and ∂G(x,y)

∂ny
are, respectively, the Green’s function of

the Helmholtz equation and its normal derivative, given by

G(x,y) = i

4
H

(1)
0

(
k‖x − y‖),

and

∂G

∂ny

(x, y) = ik

4
H

(1)
1

(
k‖x − y‖) x − y

‖x − y‖ · ny.

Once φ(x) is obtained from solving the integral equation, the scattered field u(x) at
x ∈ R

2\D̄ can be evaluated as

u(x) =
∫

∂D

(
∂G(x, y)

∂ny

− iηG(x, y)

)
φ(y)dy.
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An important property of (1) from the computational point of view is that its condition
number is often quite small and, as a result, one can advantageously solve (1) with
an iterative algorithm like GMRES. At each step of the iterative solver, we need to
apply the integral operator to a given function. Since the integral operator is dense,
applying the operator directly is too expensive. In this paper, we address this issue by
efficiently representing the operator as a sparse matrix in a system of wave atoms.

Local cosines or wavelet packets have already been proposed for this task with
great practical success, see Sect. 1.5 for some references, but we believe that the
following two reasons make a case for wave atom frames:

• The proposed construction is non-adaptive: wave atom frames of L2 are not de-
signed for a specific value of k, and no optimization algorithm is needed to find a
provably good basis. To achieve this result, the essential property of wave atoms is
a parabolic scaling that we discuss later.

• The choice of numerical realization for wave atoms follows some of the experience
garnered throughout the 1990s in the study of local Fourier bases and wavelet
packets. In particular, wave atoms offer a clean multiscale structure in the sense
that they avoid the “frequency leakage” associated with wavelet packets defined
from filterbanks. These aspects are discussed in [10].

Of course, any non-adaptive all-purpose numerical compression method is likely
to lag in performance behind an adaptive strategy that would include at least the
former in its scope; but this is no excuse for discarding their study. Proper insight
about architectures and scalings is important for designing the solution around which,
for instance, a library of bases should be deployed for a best basis search.

The main result of this paper says that the wave atom frame is in some sense
near-optimal for representing the integral operator in (1) as a sparse matrix. Namely,
full matrices would involve O(k2) elements but we show that Cεk matrix elements
suffice to represent G, and Cεδk

1+δ matrix elements suffice to represent ∂G/∂ny

to a given accuracy ε, for arbitrarily small δ > 0. In the sequel we systematically
write O(k1+1/∞) for the latter case. We believe that these bounds would not hold
for wavelet packets, for instance, even if the best decomposition tree is chosen. In
particular, wavelets would obviously not be suited for the job.

The potential implication of this result for scientific computing is discussed in
Sect. 1.4 below, where it is explained that more ingredients are needed for obtaining
fast algorithms.

1.1 Wave Atoms

Frames of wave atoms were introduced in [10] on the basis that they provide sparse
representations of certain oscillatory patterns. As alluded to earlier, they are a special
kind of oriented wavelet package which does not suffer from the frequency leaking
associated to filterbanks, and which obeys the important parabolic scaling relation

wavelength of the wave packet ∼ (essential diameter)2.

The wavelength of the wave packet is not to be confused with the wavelength
2π/k of the physical problem.
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Let us recall the construction of wave atoms, and refer the reader to [10] for more
details. In one dimension, wave atoms are an orthonormal basis indexed by the triple
of integers λ ≡ (j,m,n). The construction is in the frequency domain; our convention
for the Fourier transform is

f̂ (ω) =
∫

Rn

e−ix·ωf (x)dx, f (x) = 1

(2π)n

∫
Rn

eix·ωf̂ (ω)dω.

• First, j ≥ 0 is a scale parameter that should be thought of as indexing dilations of
a factor 4; in other words, one should consider a first partition of the positive fre-
quency axis into intervals of the form [c122j , c222j+2] (for some constants c1, c2
that will accommodate overlapping of basis functions). Choosing j such that fre-
quency ω is proportional to 22j is in contrast with wavelet theory, where ω ∼ 2j

over the positive frequency support of a wavelet.
• The parameter m with c12j ≤ m < c22j+2 then indexes the further partitioning of

each interval [c122j , c222j+2] into O(2j ) subintervals of size O(2j ). More pre-
cisely, wave atoms are centered in frequency near ±ωλ where

ωλ ≈ π2jm, c12j ≤ m < c22j+2

and are compactly supported in the union of two intervals of length 2π × 2j . The
parabolic scaling is now apparent; the size of the support in frequency (∼ 2j ) is
proportional to the square root of the offset from the origin (∼ 22j ).

• The parameter n ∈ Z indexes translations. A wave atom is centered in space near

xλ = 2−j n,

and has essential support as narrow as the uncertainty principle allows, i.e., of
length O(2−j ).

We define Ω to be the set of all admissible indices, i.e.,

Ω = {(j,m,n) : j ≥ 0, c12j ≤ m < c22j+2, n ∈ Z
}
.

Basis functions are then written

ϕλ(x) = 2j/2ϕ(j,m)

(
2j x − n

)
ei2j mx, λ ∈ Ω, (2)

where ϕ(j,m) depends weakly on j and m, and needs to be chosen adequately to
form an orthobasis. The underlying delicate construction of the ϕ(j,m) is due to Ville-
moes [23] and summarized in [10].

In two dimensions, wave atoms are individually, but not collectively, formed as
tensor products of the one-dimensional basis functions. The construction is “mul-
tiresolution” in the sense that there is only one dilation parameter; the indexing
5-tuple of integers is μ ≡ (j,m,n) where m = (m1,m2) and n = (n1, n2). More
precisely, at scale j , the valid values for m = (m1,m2) satisfy 0 ≤ m1,m2 < c22j+2

and c12j ≤ max(m1,m2).
Wave atoms come as an orthonormal basis in two dimensions, but can be made

fully directional—supported in a narrow cone in frequency with apex at the origin
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[2]—at the expense of increasing the redundancy to two or four. The definition of
such variants makes use of a unitary recombination involving Hilbert-transformed
basis functions as in the definition of complex wavelet transforms, and is fully ex-
plained in [10].

None of the results of this paper would depend on the choice of variant; and
for convenience we use the frame of wave atoms with redundancy four. With x =
(x1, x2), the only property of wave atoms that we will need is the characterization

ϕμ(x) = 2j ϕ(j,m)

(
2j x1 − n1,2j x2 − n2

)
ei2j m·x, (3)

where ϕ(j,m) is a C∞ non-oscillatory bump that depends on j and m, but in a non-
essential manner, i.e.,

∣∣∂α
x ϕ(j,m)(x)

∣∣≤ Cα,M

(
1 + ‖x‖)−M

, ∀M > 0, (4)

with Cα,M independent of j and m. In addition, each ϕ(j,m) is simply the tensor
product of two corresponding bumps for the 1D transform.

Although they may not necessarily form an orthonormal basis, wave atoms still
form a tight frame in the sense that expanding a function is an isometry from L2(R2)

to �2(μ),

‖f ‖2
2 =
∑
μ

∣∣〈f,ϕμ〉∣∣2

which is equivalent to

f =
∑
μ

〈f,ϕμ〉ϕμ. (5)

The same properties hold in one dimension.
The closest analog to a “continuous wave atom transform” was introduced in the

mathematical literature by Córdoba and Fefferman in [8]. Wave atoms can be com-
pared to brushlets [20], but Villemoes’s construction uses “local complex exponen-
tials” instead of local cosines in frequency.

Discretized wave atoms are described in [9, 10]; they inherit the localization and
tight-frame properties of their continuous counterpart. In particular, their bandlimited
character confers an immediate control over the accuracy of computing inner prod-
ucts via quadrature. They come with fast FFT-based O(N logN) algorithms for both
the forward and adjoint transforms (see [10] for details).

1.2 Operator Expansions

As functions can be analyzed and synthesized using coefficients, operators can also
be expanded from matrix elements in a tight frame.

• The standard form of an operator A in the wave atom frame ϕλ is

A =
∑
λ∈Ω

∑
λ′∈Ω

ϕλAλ,λ′ 〈·, ϕλ′ 〉,
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where Aλ,λ′ = 〈Aϕλ′ , ϕλ〉. For each fixed λ, we define S(λ) to be the set of all λ′
such that the modulus of Aλ,λ′ is above a certain threshold. The sparse representa-
tion of A then takes the form

A ≈
∑
λ

ϕλ

∑
λ′∈S(λ)

Aλ,λ′ 〈·, ϕλ′ 〉.

In practice, the sums in λ and λ′ are also truncated in scale to account for the finite
number of samples N of the functions to which A is applied. The above equation
naturally gives rise to an efficient method of applying the operator A to a given
function f :
– Apply the forward wave atom transform to compute the coefficients fλ′ :=

〈f,ϕλ′ 〉.
– For each λ, compute gλ :=∑λ′∈S(λ) Aλ,λ′fλ′ .
– Apply the adjoint wave atom transform to gλ to synthesize Af , i.e., Af ≈∑

λ ϕλgλ.
• The non-standard form of A in the two-dimensional frame ϕμ is the set of coeffi-

cients Aμ = ∫
R2 A(x1, x2)ϕμ(x1, x2)dx1 dx2, such that the distributional kernel of

A is expanded as

A(x1, x2) =
∑
μ

Aμϕμ(x1, x2).

For a fixed threshold value, we define S to be the set of all μ such that Aμ is
above the threshold in modulus. The sparse representation of A is now A(x1, x2) ≈∑

μ∈S Aμϕμ(x1, x2). Applying A to a given function f efficiently using this ex-
pansion is more involved than the case of the standard form. For a fixed index
μ = (j,m,n) with m = (m1,m2) and n = (n1, n2), we define the two 1D wave
atom indices:

λ
μ
1 = (j,m1, n1) and λ

μ
2 = (j,m2, n2). (6)

Since the two-dimensional index m = (m1,m2) satisfies 0 ≤ m1,m2 < c22j+2 and
c12j ≤ max(m1,m2), the set of all possible choices for λ

μ
1 and λ

μ
2 are

0 ≤ m1 < c22j+2, and 0 ≤ m2 < c22j+2. (7)

Some of the indices in (7) are not admissible, i.e., they are not part of the set
of indices for the 1D wave atom transform, since if μ = (j,m,n) corresponds to
a 1D wave atom it would need to satisfy c12j ≤ m < c22j+2. Non-admissible in-
dices correspond to Gabor-type wave forms that partition the frequency domain
uniformly and, hence, violate the parabolic scaling. We use Ωe to denote this ex-
tended index set

Ωe = {(j,m,n) : j ≥ 0,0 ≤ m < c22j+2, n ∈ Z
}
.

Again, such extended indices are needed because the 2D wave atom transform is
not simply a tensor product of 1D transforms. The situation is the same for 2D
MRA wavelets not being tensor products of two 1D wavelet bases.
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The frame formed by the basis functions ϕλ with λ ∈ Ωe is called the extended
wave atom frame. For a given function f , the computation of all the coefficients
〈f,ϕλ〉 with λ ∈ Ωe can be done easily by extending the existing forward wave
atom transform to include the extra m indices (0 ≤ m < c12j ) in Ωe. The adjoint
transform can be extended similarly and the resulting transform is called the ad-
joint extended wave atom transform. We note that these new transforms are not
orthonormal any more since parts of the input functions are analyzed redundantly.

Using the notation in (6) and the tensor-product property of ϕμ, we have

A(x1, x2) ≈
∑
μ∈S

Aμϕλ
μ
1
(x1)ϕλ

μ
2
(x2). (8)

When A is applied to a given function f , we have

Af (x1) ≈
∑
μ∈S

Aμϕλ
μ
1
(x1)

(∫
ϕλ

μ
2
(x2)f (x2)dx2

)

=
∑
λ∈Ωe

ϕλ

∑
μ∈S:λμ

1 =λ

Aμ

(∫
ϕλ

μ
2
(x2)f (x2)dx2

)
.

Using the extended transforms, we can derive from the above equation a fast algo-
rithm for applying A to f using the non-standard form:
– Apply the forward extended wave atom transform to compute the coefficients

fλ′ := 〈f,ϕλ′ 〉 for all indices λ′ ∈ Ωe.
– For each λ ∈ Ωe , compute gλ :=∑μ∈S:λμ

1 =λ Aμfλ
μ
2

.
– Apply the inverse extended wave atom transform to synthesize Af from gλ, i.e.,

Af ≈∑λ∈Ωe ϕλgλ.
We would like to point out that non-standard expansions only exist for two-

dimensional frames that have a tensor-product representation for each basis func-
tion, since the decomposition in (8) is essential for the derivation. For example,
there is no known non-standard form representation for an operator in the tight
frame of curvelets [6].

In what follows we focus exclusively on the non-standard form, because of its rel-
ative simplicity over the standard form. The isotropy of the envelope of ϕμ makes
some of the stationary-phase arguments in the sequel simpler in our view. We can
however not exclude at this point that the standard form may enjoy comparable spar-
sity properties as the non-standard form.

1.3 Sparsity of the Non-standard Wave Atom Matrix

In this section, we formulate the main result on sparsity of the non-standard wave
atom matrix of the acoustic single- and double-layer potentials, in two dimensions.

The scatterer is a union of closed, non-intersecting C∞ curves Ω =⋃n
α=1 Ωα

embedded in R
2. For each α, assume that x(t) : Iα �→ Ωα is a C∞ periodic parame-

trization of Ωα , and take Iα = [0,1] for simplicity.
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We assume the following mild geometric regularity condition on the scatterer:
there exists D > 0 such that

∥∥x(s) − x(t)
∥∥≥ D

∣∣e2π is − e2π it
∣∣, (9)

essentially meaning that the curve Ωα defining the scatterer cannot intersect itself.
We write d(s, t) ≡ |e2π is − e2π it | for the Euclidean distance on the unit circle.

When s ∈ Iα , t ∈ Iβ with 1 ≤ α,β ≤ n, let

G0(s, t) = i

4
H

(1)
0

(
k
∥∥x(s) − x(t)

∥∥)∥∥ẋ(t)
∥∥, (10)

and

G1(s, t) = ik

4
H

(1)
1

(
k
∥∥x(s) − x(t)

∥∥) x(s) − x(t)

‖x(s) − x(t)‖ · nx(t)

∥∥ẋ(t)
∥∥. (11)

The non-standard wave atom matrices of G0 and G1, restricted to a Cartesian
product Iα × Iβ of intervals, are

K0
μ = 〈G0, ϕμ〉, K1

μ = 〈G1, ϕμ〉.

Our main result below concerns the existence of ε-approximants K̃0
μ and K̃1

μ, corre-
sponding to the restriction of μ to sets Λ0 and Λ1, i.e., with a = 0,1,

K̃a
μ =

{
Ka

μ if μ ∈ Λa;
0 otherwise,

and chosen by definition such that
∥∥Ka − K̃a

∥∥
�2(μ)

≤ ε, a = 0,1. (12)

The �2 norm of a non-standard wave atom matrix is equivalent to a Hilbert–Schmidt
norm for the corresponding operator, by the tight-frame property of wave atoms. This
norm is of course stronger than the operator L2-to-L2 norm; and much stronger than
the �∞(μ) norm used in [5].

In what follows the notation A � B means A ≤ CB for some constant C that
depends only on the non-essential parameters. Similarly, the notation A � ε−1/∞
means A ≤ CMε−1/M for all M > 0. The constants may change from line to line.

Theorem 1 Assume the scatterer is smooth and geometrically regular in the sense
of (9). In the notations just introduced, there exist sets Λ0 and Λ1 that define ε-
approximants of K0

μ and K1
μ respectively, and whose cardinality obeys

|Λ0| ≤ C0
M

[
kε−1/M +

(
1

ε

)2+1/M]
, (13)

|Λ1| ≤ C1
M

[
k1+1/Mε−1/M +

(
k

ε

)2/3+1/M]
, (14)
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for all M > 0, and where C0
M , C1

M depend only on M and the geometry of the scat-
terers.

The terms proportional to k or k1+1/∞ are due to the oscillations when s �= t ,
and the terms ε−2−1/∞ and (k/ε)2/3+1/∞ are due to the kernels’ singularities on the
diagonal s = t . While the growth rate in k for the oscillations term is smaller for G0
than for G1, the growth rate for the diagonal contribution is smaller for G1 than for
G0 since

k2/3ε−2/3 = k1/3k1/3ε−2/3 ≤ max
(
k, k, ε−2)≤ 3

(
k + ε−2).

Theorem 1 can also be formulated using relative errors instead of absolute errors.
This viewpoint is important for considering the composed kernel

G(0,1)(s, t) = G1(s, t) − iηG0(s, t), η � k.

Call K
(0,1)
μ the non-standard wave atom matrix of G(0,1). In the following result, we

quantify the number of terms needed to obtain the relative error estimate

∥∥Ka − K̃a
∥∥

�2(μ)
≤ ε
∥∥Ka

∥∥
�2(μ)

, a = 0,1,or (0,1).

Corollary 2 Let η � k. In the assumptions and notations of Theorem 1, let Δ0, Δ1
and Δ(0,1) be the sets of wave atom coefficients needed to represent the operators G0,
G1, resp. G(0,1) up to relative accuracy ε. Then

|Δ0| ≤ C0
M

[(
kε−2)1+1/M]

, (15)

|Δ1| ≤ C1
M

[
k1+1/Mε−1/M + (kε−2)1/3+1/M]

, (16)

|Δ(0,1)| ≤ C
(0,1)
M

[(
kε−2)1+1/M]

, (17)

for all M > 0, and where the constants depend only on M and on the geometry of the
scatterers.

We do not know if factors such as k1/∞ and ε−1/∞ could be replaced by log
factors.

The proofs of Theorem 1 and Corollary 2 occupy Sect. 2. The main ingredients are
sparsity estimates in �p , stationary-phase considerations, vaguelette-type estimates
adapted to wave atoms, and �2 correspondence scale-by-scale with wavelets.

It is interesting to note that the parabolic scaling of wave atoms is a necessary
ingredient to obtain the right sparsity results. Any less oscillating basis functions
(such as wavelets) would be too numerous to cover the support of the oscillatory
kernel. Any more oscillating wave packets (such as Gabor) would require that too
many frequencies are involved at any given location to recover the warped pattern to
good accuracy. The parabolic scaling is also an essential ingredient in the dyadic–
parabolic decomposition of Fourier integral operators, another kind of oscillatory
integral [8].
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1.4 Overview and Criticism of the Algorithm

Some numerical experiments that support the theory are presented in Sect. 3. The
procedure followed for these experiments can be summarized as follows.

1. Evaluate the kernel on a Cartesian grid of N2 points in (s, t) space, where N

is proportional to k, the wave number. Form the non-standard representation of
this kernel by taking the 2D wave atom transform of the sampled kernel—an
O(N2 logN) operation. Choose a threshold related to the eventual accuracy, and
reduce to zero the wave atom coefficients below the threshold in magnitude—an
O(N2) operation. The thresholded non-standard form is now available.

2. To apply the operator to a function, start by computing the extended 1D wave atom
transform of the function, in O(N logN) operations. Compute the extended wave
atom representation of the result of applying the operator, as discussed in Sect. 1.3.
The complexity of this step ranges from O(N1+1/∞) to O(N2) depending on the
data structure used for dealing with the wave atom matrix. Finally, compute an
inverse extended wave atom transform in O(N logN) operations.

A word of caution on what has been achieved is in order.
First, this paper’s numerical experiments are only meant to highlight the sparsity

structure of the wave atom matrices. With a proper way to handle this sparsity at the
level of the matrix’s band structure, low-complexity O(N1+1/∞) algorithms could in
principle be obtained for fast application of the operator itself. However, this paper
only deals with full N -by-N matrices numerically, hence does not attempt to realize
this speed-up in practice.

Second, even if wave atom matrices were properly stored as sparse banded matri-
ces, there is the question of how to form this matrix other than by applying the wave
atom transform directly to the kernel with O(N2) complexity. This question is not
addressed here. It is less of a concern if the precomputation can be amortized over
several applications of the matrix, such as when the scattering problem needs to be
solved several times with different incoming waves uinc(x). One important example
is the computation of bistatic cross sections, where one needs to calculate the far-field
patterns of scattered fields for all possible incoming plane waves. If the wave number
k changes, however, there is at present no way to re-use previous computation.

Third, the numerical experiments presented here are only for “scattering in flat-
land” (in reference to the satirical novel by Abbott [1]), i.e., in two spatial dimen-
sions. A solution similar in spirit in the three-dimensional case would involve more
involved wave packet constructions. We also make no mathematical claim that spar-
sity would carry over for scatterers with corners, although we believe that similar
estimates would hold. Singular scatterers would give rise to an interesting wavefront
set for the kernel.

Finally, for inversion it is important to consider the condition number of the in-
tegral operator. It affects the speed of convergence of the scattering series. The con-
ditioning question is mostly disjoint of that of realizing the operator numerically to
some arbitrary precision. In our numerical experiments, compression of the direct
operator neither helps nor hurts inversion in any substantial way.
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1.5 Related Work

There has been a lot of work on sparsifying the integral operator of (1), or some
variants of it, in appropriate bases. In [5], Bradie et al. showed that the operator be-
comes sparse in a local cosine basis. They proved that the number of coefficients with
absolute value greater than any fixed ε is bounded by O(k log k) when the constant
depends on ε. Notice that our result in Theorem 1 is stronger as the �2 norm is used
instead in (12). In [3], Averbuch et al. extended the work in [5] by performing best
basis search in the class of adaptive hierarchical local cosine bases.

Besides the local cosine transform, adaptive wavelet packets have been used to
sparsify the integral operator as well. Deng and Ling [11] applied the best basis algo-
rithm to the integral operator to choose the right one-dimensional wavelet packet ba-
sis. Golik [15] independently proposed to apply the best basis algorithm on the right-
hand side of the integral equation (1). Shortly afterwards, Deng and Ling [12] gave
similar results by using a predefined wavelet packet basis that refines the frequency
domain near k. All of these approaches work with the standard form expansion of
the integral operator. Recently in [16], Huybrechs and Vandewalle used the best basis
algorithm for two-dimensional wavelet packets to construct a non-standard sparse ex-
pansion of the integral operator. In all of these results, the numbers of non-negligible
coefficients in the expansions were reported to scale like O(k4/3). However, our re-
sult shows that, by using the non-standard form based on wave atoms, the number of
significant coefficients scales like O(k1+1/∞).

Most of the approaches on sparsifying (1) in well-chosen bases require the con-
struction of the full integral operator. Since this step itself takes O(k2) operations,
it poses a computational difficulty for large k values. In [4], Beylkin et al. proposed
a solution to the related problem of sparsifying the boundary integral operator of
the Laplace equation. They successfully avoided the construction of the full integral
operator by predicting the location of the large coefficients and applying a special
one-point quadrature rule to compute the coefficients. The corresponding solution
for the integral operator of the Helmholtz equation is still missing.

There has been a different class of methods, initiated by Rokhlin in [21, 22], that
requires no construction of the integral operator and takes O(k logk) operations in 2D
to apply the integral operator. A common feature of these methods [7, 13, 14, 21, 22]
is that they partition the spatial domain hierarchically with a tree structure and com-
pute the interaction between the tree nodes in a multiscale fashion: Whenever two
nodes of the tree are well separated, the interaction (of the integral operator) between
them is accelerated either by Fourier transform-type techniques [7, 21, 22] or by di-
rectional low-rank representations [13, 14].

A criticism of the methods in [7, 13, 14, 21, 22] is that the constant in front of
the complexity O(k logk) is often quite high. On the other hand, since the FFT-based
wave atom transforms are extremely efficient, applying the operator in the wave atom
frame has a very small constant once the non-standard sparse representation is con-
structed. Therefore, for applications where one needs to solve the same Helmholtz
equation with many different right-hand sides, the current approach based on the
wave atom basis can potentially offer a competitive alternative. As mentioned earlier,
one important example is the computation of the radar cross section.
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2 Sparsity Analysis

This section contains the proof of Theorem 1. The overarching strategy is to reduce
the �2 approximation problem to an estimate of �p sparsity through a basic result of
approximation theory, the direct “Jackson” estimate

∥∥Kμ − K̃μ

∥∥
2≤ C|Λ| 1

2 − 1
p ‖Kμ‖p,

where ‖Kμ‖p
p =∑μ |Kμ|p . Here K̃μ refers to the approximation of Kμ where only

the |Λ| largest terms in magnitude are kept, and the others put to zero. The inequality
is valid for all values of 0 < p < 2 for which ‖Kμ‖p is finite. For a proof, see [19],
p. 390.

If the �2 error is to be made less than ε, it is enough to have Kμ in some �p space,
0 < p < 2, and take the number of terms defining K̃μ to be

|Λ| ≥ Cpε
2p

p−2 ‖Kμ‖
2p

2−p
p (18)

for some adequate Cp > 0. The sequence Kμ will be split into several fragments that
will be studied independently. For each of these fragments F in μ space, the inequal-
ity (18) will be complemented by an estimate of the form ‖Kμ‖�p(F ) ≤ Cpkq(p), for
all p > p0. Three scenarios will occur in the sequel:

• If

p0 = 0 and q(p) = 1

p
− 1

2
, (19)

then |F | � kε−1/∞, which is the first term in (13).
• If

p0 = 1 and q(p) = 0, (20)

then |F | � ε−2−1/∞, which is the second term in (13).
• If

p0 = 1

2
and q(p) = 1

p
− 1 + δ, (21)

for arbitrarily small δ > 0, then |F | � (k/ε)2/3+1/∞, which is the second term
in (14).

The problem is therefore reduced to identifying contributions in the sequence Kμ

that obey either one of the three estimates above. In what follows we focus on the
kernel K = G0. We mention in Sect. 2.9 how the proof needs to be modified to treat
the kernel G1.

2.1 Smoothness of Hankel Functions

Bessel and Hankel functions have well-known asymptotic expansions near the origin
and near infinity. That these asymptotic behaviors also determine smoothness in a
sharp way over the whole half-line is perhaps less well-known, so we formulate these
results as lemmas that we prove in the appendix.
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Lemma 1 For all integers m ≥ 0 and n ≥ 0 there exists Cm,n > 0 such that for all
k > 0,

∣∣∣∣
(

d

dx

)m[
e−ikxH (1)

n (kx)
]∣∣∣∣≤

⎧⎪⎨
⎪⎩

Cmn(kx)−1/2x−m if kx ≥ 1;
Cmn(kx)−nx−m if 0 < kx < 1 and m + n > 0;
C(1 + | logkx|) if 0 < kx < 1 and m = n = 0.

(22)
The same results hold if 1 is replaced by any number c > 0 in kx < 1 vs. kx ≥ 1.

The point of (22) is that Cm,n is independent of k. Slightly more regularity can
be obtained near the origin when multiplying with an adequate power of x, as the
following lemma shows in the case of H

(1)
1 .

Lemma 2 For every integer m ≥ 0 there exists Cm > 0 such that, for 0 < x ≤ 1,

∣∣∣∣
(

d

dx

)m[
xH

(1)
1 (x)

]∣∣∣∣≤
⎧⎪⎨
⎪⎩

Cm if m = 0,1;
C2(1 + | logx|) if m = 2;
Cmx2−m if m > 2.

(23)

Finally, we will need the following lower bound.

Lemma 3 For each n ≥ 0, there exist cn > 0 and Cn > 0 such that, when x > cn,
∣∣H(1)

n (x)
∣∣≥ Cnx

−1/2.

2.2 Dyadic Partitioning

Consider K as in Theorem 1, with s ∈ Iα and t ∈ Iβ . If α = β , K presents a singular-
ity on its diagonal, whereas if α �= β it presents no such singularity. The case α = β

is representative and is treated in the sequel without loss of generality.
In this section we assume, as we have above, that Iα = [0,1]. The first step of the

proof is to partition the periodized square Iα × Iα at each scale j , into dyadic squares
denoted

Q = [2−j q1,2−j (q1 + 1)
]× [2−j q2,2−j (q2 + 1)

]
, q1, q2 ∈ Z

+.

We define wQ a window localized near Q through

wQ(s, t) = w
(
2j s − q1,2j t − q2

)
,

where w is compactly supported on [−1,2]2 and of class C∞. As a result wQ is
compactly supported inside

3Q ≡ [2−j (q1 − 1),2−j (q1 + 2)
]× [2−j (q2 − 1),2−j (q2 + 2)

]
.

We also write xQ = (2−j q1,2−j q2) for the bottom-left corner of Q, not to be con-
fused with x, which is in physical space.



582 Found Comput Math (2010) 10: 569–613

Denote by Qj the set of dyadic squares at scale j ; we assume that w is chosen so
that we have the scale-by-scale partition of unity property

∑
Q∈Qj

wQ = 1.

The kernel is now analyzed at each scale j as K =∑Q∈Qj
KQ, where KQ =

wQK . We take the scale j of the dyadic partitioning to match the scale j in the wave
atom expansion; namely if μ = (j,m,n), then

Kμ = 〈K,ϕμ〉 =
∑

Q∈Qj

〈KQ,ϕμ〉.

When 0 < p ≤ 1, an estimate on the total �p norm can then be obtained from the
p-triangle inequality, as follows:

∑
j

∑
m

∑
n

|Kj,m,n|p ≤
∑
j

∑
Q∈Qj

∑
m

∑
n

∣∣〈KQ,ϕj,m,n〉∣∣p. (24)

When p ≥ 1, then the regular triangle inequality will be invoked instead, for instance
as in

(∑
j

∑
m

∑
n

|Kj,m,n|p
)1/p

≤
∑
j

∑
Q∈Qj

(∑
m

∑
n

∣∣〈KQ,ϕj,m,n〉∣∣p
)1/p

. (25)

The rationale for introducing a partitioning into dyadic squares is the technical
fact that wave atoms are not built compactly supported in space. The windows wQ

allow to cleanly separate different regions of the parameter patch in which the kernel
K oscillates with different local wave vectors. Note also that the dyadic partitioning
is a mathematical tool for the proof of Theorem 1, and is not part of the construction
of the wave atom transform.

The proof’s architecture is summarized in the table at the end of this section.
Dyadic squares are first classified according to their location with respect to the diag-
onal s = t , where K is singular.

1. Diagonal squares. Dyadic squares will be considered “diagonal squares” as soon
as the distance from their center to the diagonal s = t is less than 1/k. We
call the locus S = {d(s, t) ≤ 1/k} the diagonal strip. Scale-by-scale, the condi-
tion on the square’s centers reads d(2−j q1,2−j q2) ≤ 3 max(2−j , 1

k
). (We need

to use the circle distance d since q1 and q2 are defined modulo 2j .) There are
O(2j max(1,2j /k)) such diagonal squares at scale j . They correspond to the case
kx � 1 in Lemma 1.

2. Non-diagonal squares. When d(2−j q1,2−j q2) > 3 max(2−j ,1/k), we say the
square is non-diagonal. In those squares, the kernel KQ is C∞ but oscillatory.
There are O(22j ) such non-diagonal squares at scale j . They correspond to the
case kx � 1 in Lemma 1.
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Non-diagonal squares are further subdivided into near-field and far-field squares,
depending on their distance to the diagonal. The threshold is at d(s, t) ≤ C for some
constant C, determined as follows. Lemma 1 identifies the argument of the Han-
kel function as a phase. For the kernel K , this phase is kφ(s, t) where φ(s, t) =
‖x(s) − x(t)‖. The constant C mentioned earlier is chosen such that φ cannot be
stationary in the near-field; however, there may be stationary points in the far-field.
This distinction is important for the �p summation estimate in Sect. 2.5. A counting
argument for the number of dyadic square where the phase φ is near-stationary is
provided in Sect. 2.3.

Diagonal squares need to be further partitioned, or need further classifying, de-
pending on the scale j . When the scale is large (j small), a diagonal dyadic square
may not be contained inside the diagonal strip S; the triangular portions that extend
outside the strip are smoothly cut out and give rise to the off-strip contribution. When
the scale is small (j large), a square in the diagonal strip may intersect the diagonal
s = t , or may not. The former case gives rise to the singular on-strip contribution, and
the latter case is the regular on-strip contribution. More details on this subdivision
are given at the beginning of Sect. 2.6. It is important to make a distinction between
these contributions as they give rise to very different decay estimates for the wave
atom matrix elements.

Non-diagonal squares Diagonal squares

Near-field Far-field Off-strip On-strip
Singular Regular

2.3 Geometry of Stationary-Phase Points

The phase φ(s, t) = ‖x(s) − x(t)‖ mentioned earlier generates typical oscillations as
long as ∇φ has large magnitude. On the other hand, we recognize ∇φ = 0 as being
the “stationary point set” for the kernel considered. In this section, we argue that the
locus of near-critical (or near-stationary) points of φ necessarily has small measure.
The following lemma makes this heuristic precise in terms of the scale defect j ′.

Lemma 4 Let φ(s, t) = ‖x(s) − x(t)‖ for s, t in some Iα . For j ′ ≥ 0, let

Kj

(
j ′)= {(q1, q2) : ∥∥∇φ

(
2−j q1,2−j q2

)∥∥∞ ≤ 2−j ′}
.

Then there exists C > 0 such that the cardinality of Kj (j
′) obeys

∣∣Kj

(
j ′)∣∣≤ C2j+(j−j ′)+

where (x)+ = x if x ≥ 0, and zero otherwise.

Proof Let r = (x(s) − x(t))/‖x(s) − x(t)‖; the gradient of the phase is ∇φ(s, t) =
(ẋ(s) · r,−ẋ(t) · r). The condition ‖∇φ(s, t)‖∞ ≤ 2−j ′

, i.e.

∣∣ẋ(s) · r
∣∣≤ 2−j ′

and
∣∣ẋ(t) · r

∣∣≤ 2−j ′
,
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is for large j ′ an almost-perpendicularity condition between tangent vectors to the
curve Ωα and the chord joining x(s) and x(t).

Now fix s = 2−j q1, and let n(s) be either normal vector to Ωα at x(s). Let θ be
the angle between r and n(s), such that |ẋ(s) · r| = ‖ẋ(s)‖| sin θ |. Since the parame-
trization is non-degenerate, the first condition |ẋ(s) · r| ≤ 2−j ′

implies θ ≤ C2−j ′
for

some adequately large C > 0.
Consider therefore a cone Γ with apex at x(s), axis n(s), and opening θ ≤ C2−j ′

.
The second condition |ẋ(t) · r| ≤ 2−j ′

is satisfied only if the curve Ωα intersects a
chord inside the cone at a near-right angle, and as a consequence, every chord inside
the cone at a near-right angle, differing from π/2 by O(2−j ′

). Because Ωα has finite
length, bounded curvature, and obeys the geometric regularity property (9), there can
only be a finite number of such intersections. The total length of Ωα ∩ Γ is therefore
O(2−j ′

).
Since the points x(2−j q2) are a distance C2−j apart from each other, there are at

most O(max(1,2j−j ′
)) points indexed by q2 that obey the two almost-orthogonality

conditions, which can be written as O(2(j−j ′)+). Since q1 takes on O(2j ) values, the
total number of couples (q1, q2) obeying the conditions is O(2j 2(j−j ′)+). �

We will also need the observation that near-stationary-phase points can only occur
far away from the diagonal.

Lemma 5 As before, let d(s, t) = |e2π is − e2π it |. There exist two constants C1,C2 >

0 such that, if d(s, t) ≤ C1, then
∥∥∇φ(s, t)

∥∥∞ ≥ C2.

Proof As previously,
∥∥∇φ(s, t)

∥∥∞ = min
(∣∣ẋ(s) · r

∣∣, ∣∣ẋ(t) · r
∣∣),

and we write |ẋ(s) · r| as ‖ẋ(s)‖| cos(θs)|, where θs is the angle between the chord
(x(s),x(t)) and the tangent vector ẋ(s). This angle obeys |θs | � d(s, t)|, hence the
cosine factor is greater than 1/2 as long as d(s, t) ≤ C1 for some adequate C1. The
factor ‖ẋ(s)‖ is also bounded away from zero by regularity of the parametrization.
The same argument can be made for |ẋ(t) · r|. �

2.4 Non-diagonal Kernel Fragments: Decay of Individual Coefficients

The intuition for this section is that wave atom coefficients are small whenever their
wavenumber differs from the local wave number of the kernel. It is an integration by
parts argument, and it is not entirely trivial for two reasons: (1) the length scale of
the decay in coefficient space must be chosen carefully as a function of k (parameter
β below), and (2) Bessel functions have a leading-order 1/

√
x decay that must be

preserved throughout the differentiations.
Within non-diagonal squares, d(s, t) � 1/k and kφ(s, t) � 1, so Lemma 1 asserts

that K can be written as

K(s, t) = eikφ(s,t)a
(
kφ(s, t), s, t

)
,
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where φ(s, t) = ‖x(s)− x(t)‖ and the dependence of a on k is mild in comparison to
that of eikφ ; ∣∣∣∣ dn

dφn
a
(
kφ(s, t), s, t

)∣∣∣∣≤ Cn

1√
kφ(s, t)

φ(s, t)−n.

The presence of additional arguments s and t is needed to account for factors such
as the Jacobian ‖x′(t)‖; all the derivatives of these factors are O(1) by assumption.
Therefore, the chain rule yields

∣∣∣∣ dα1

dsα1

dα2

dtα2
a
(
kφ(s, t), s, t

)∣∣∣∣≤ Cα

1√
kφ(s, t)

φ(s, t)−|α|, φ(s, t) � 1. (26)

Fix j > 0 and Q ∈ Qj . We seek a good bound on

〈KQ,ϕj,m,n〉 =
∫

3Q

wQ(s, t)a
(
kφ(s, t), s, t

)
eikφ(s,t)e−i2j m·(s,t)

× 2jϕ(j,m)

(
2j s − n1,2j t − n2

)
ds dt,

where ϕ(j,m) has been introduced in (3). Without loss of generality, we perform
a translation to choose the coordinates s and t such that xQ = 0 and wQ(s, t) =
w(2j s,2j t).

A first bound estimating the decay in n can be obtained by using (1) the almost-
exponential decay (4) for ϕ(j,m), (2) the estimate ‖wQ‖L1 � 2−2j that follows from
|3Q| � 2−2j , and (3) an L∞ bound for the rest of the integrand, disregarding the
oscillations. The result is

∣∣〈KQ,ϕj,m,n〉∣∣≤ CM2−j sup
(s,t)∈3Q

[(
kφ(s, t)

)−1/2](1 + ‖n‖)−M
, ∀M > 0.

The size of the first-order Taylor remainder of kφ(s, t) over 3Q is O(2j ) times
smaller that the value of kφ(xQ) itself, so we may evaluate φ at xQ at the expense of
a multiplicative constant in the estimate. We get

∣∣〈KQ,ϕj,m,n〉∣∣≤ CM2−j
(
kφ(xQ)

)−1/2(1 + ‖n‖)−M
, ∀M > 0. (27)

Capturing the decay in m, however, requires integrations by parts. Heuristically,
the objective is to show that the wave atom coefficients decay almost exponentially
in m, with a length scale of 1 in all directions (in units of m), independently of
j—at least in the representative case j � 1

2 log2 k. To this end let us introduce the
self-adjoint differential operator

L = I − βΔ(s,t) − iβk(Δφ(s, t))

1 + β‖k∇φ(s, t) − 2j m‖2
,

with

β = 1

max(2−2j k2,22j )
.
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We see that L leaves the exponential exp i[k∇φ(s, t) − 2j m · (s, t)] unchanged,
hence we introduce M copies of L, and integrate by parts in s and t to pass the
differentiations to the non-oscillatory factors. The scaling parameter β has been cho-
sen such that the repeated action of L on the rest of the integrand introduces powers
of 1/(1+β‖k∇φ(s, t)−2j m‖2), but otherwise only worsens the bound by a constant
independent of μ = (j,m,n). Indeed, β ≤ 2−2j , and

• The action of each derivative on wQ or ϕ(j,m) produces a factor 2j balanced by√
β .

• The action of each derivative on a produces a factor 1/φ(s, t), which by (9) is
comparable to 1/d(s, t). Since we are in the presence of non-diagonal squares,
1/d(s, t) � min(2j , k) ≤ 2j . Again, each derivative produces a factor 2j , which is
balanced by

√
β . Note that the leading factor 1/

√
kφ in the bound (26) is harmless

since it is carried through the differentiations.

It is then tedious but straightforward to combine these observations and conclude
that, for all M > 0,∣∣LM

[
w
(
2j s,2j t

)
a
(
kφ(s, t), s, t

)
ϕ(j,m)

(
2j s − n1,2j t − n2

)]∣∣
≤ CM

1√
kφ(s, t)

1

(1 + β‖k∇φ(s, t) − 2j m‖2)M
.

Since L is a differential operator, the support of the integrand remains 3Q regard-
less of M , hence we still get a factor |3Q| ∼ 2−2j from the integral over s and t .
With the L2 normalization factor 2j coming from (3), the overall dependence on
scale is 2−j . The resulting bound is∣∣〈KQ,ϕj,m,n〉∣∣ ≤ CM2−j sup

(s,t)∈3Q

[(
kφ(s, t)

)−1/2

× (1 + β
∥∥k∇φ(s, t) − 2j m

∥∥2)−M]
, ∀M > 0. (28)

The second factor inside the square brackets can be written as
(

1 +
∥∥∥∥k2−j∇φ(s, t) − m

2−jβ−1/2

∥∥∥∥
2)−M

,

showing that in m-space, it is a fast-decaying bump centered at k2−j∇φ(s, t)

and of characteristic width 2−jβ−1/2. Over the set 3Q, we have the estimate
|k2−j∇φ(s, t) − k2−j∇φ(xQ)| = O(k2−2j ). The quantity k2−2j is in all cases less
than the length scale 2−j β−1/2 (which is why we could not simply have taken
β = 2−2j ), so we may replace ∇φ(s, t) by ∇φ(xQ) in the expression of the bump, at
the expense of a multiplicative constant depending only on M .

We have also seen earlier that (kφ(s, t))−1/2 can safely be replaced by
(kφ(xQ))−1/2 in the region d(s, t) � 1, at the expense of another multiplicative con-
stant. With these observations, we can take the geometric mean of (27) and (28) and
obtain the central bound∣∣〈KQ,ϕj,m,n〉∣∣≤ CM2−j

(
kφ(xQ)

)−1/2(1+β
∥∥k∇φ(xQ)−2j m

∥∥2)−M(1+‖n‖)−M
,

(29)
for all M > 0.
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2.5 Non-diagonal Kernel Fragments: �p Summation

The expression just obtained can be used to show �p summability and verify proper
growth as a function of k. Only the case p ≤ 1 is interesting and treated in this section.
We tackle the different sums in the right-hand side of (24) in the order as written, from
right to left.

• The sum over n is readily seen to contribute a multiplicative constant independent
of the other parameters j,Q, and m.

• Consider the sum over m, and pull out the factor 2−jp(kφ(xQ))−p/2. (We will not
worry about this factor until we treat the sum over Q.) The range of values for m
is an annulus ‖m‖∞ � 2j , so we can compare the sum over m to the integral

∫
Cj

(
1 + β

∥∥k∇φ(xQ) − 2j x
∥∥2)−Mp dx,

where Cj = {x ∈ R
2 : C12j ≤ ‖x‖∞ ≤ C22j } for some C1,C2 > 0. In what fol-

lows, take M sufficiently large so that, say, Mp ≥ 5. Two cases need to be consid-
ered, corresponding to 22j ≤ k (large scales), and 22j > k (small scales).
– If 22j ≤ k, then β = 22j k−2. It will be sufficient to consider only the upper

bound for ‖x‖∞, whence we have the bound

∫
‖x‖∞≤C2j

(
1 +

∥∥∥∥2−j k∇φ(xQ) − x
2−2j k

∥∥∥∥
2)−Mp

dx.

With Lemma 4 in mind, we introduce the scale defect j ′
Q as the unique integer

such that
1

2
2−j ′

Q <
∥∥∇φ(xQ)

∥∥≤ 2−j ′
Q.

The integrand is a bump that essentially lies outside of the region of integration

as soon as k2−(j+j ′
Q) � 2j .

More precisely, observe that

sup
x:‖x‖∞≤C2j

(
1 +

∥∥∥∥2−j k∇φ(xQ) − x
2−2j k

∥∥∥∥
2)−Mp

≤ C
(
1 + 2j

(
2−j ′

Q − C′k−122j
)
+
)−2Mp

hence the integral is bounded by a first expression,

C22j
(
1 + 2j

(
2−j ′

Q − Ck−122j
)
+
)−2Mp

. (30)

A second bound can be obtained by letting x′ = x − 2−j k∇φ(xQ) and ex-
tending the region of integration to the complement of a square in x′, of the
form

∥∥x′∥∥∞ ≥ sjQ =
(

1

2
k2−(j+j ′

Q) − C2j

)
.
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If sjQ ≤ k2−2j , we might as well put it to zero and obtain the bound C(k22−2j )2

for the integral. If sjQ > k2−2j , the integrand can be made homogeneous in x
and the integral bounded by

∫
r>sjQ

(
r

k2−2j

)−2Mp

r dr � (sjQ)2
(

sjQ

k2−2j

)−2Mp

≤ (k2−2j
)2( sjQ

k2−2j

)−2Mp+2

.

Now uniformly over sjQ, the resulting bound is

C
(
k2−2j

)2(1 + 2j
(
2−j ′

Q − k−122j
)
+
)−2Mp+2

. (31)

The minimum of (30) and (31) is

C min
(
22j , k22−4j

)(
1 + 2j

(
2−j ′

Q − k−122j
)
+
)−2Mp+2

. (32)

– If k ≤ 22j , then β = 2−2j . This time we will only consider the lower bound for
‖x‖∞, and write∫

‖x‖∞≥C2j

(
1 + ∥∥2−j k∇φ(xQ) − x

∥∥2)−Mp
dx.

Since ‖∇φ(xQ)‖ is O(1) and 2−j k ≤ 2j , there exists a value j∗ ≤ 1
2 log2 k + C

such that for all j ≥ j∗, the center of the bump is inside the square ‖x‖∞ ≤ C2j

(the constant C changes from expression to expression). When this occurs, we
can let x′ = x − 2−j k∇φ(xQ) as before and consider the integral outside of a
smaller square and bound∫

‖x‖∞≥C2j

(
1 + ‖x‖2)−Mp dx ≤ 2−2j (Mp−2), j ≥ j∗. (33)

For the few values of j such that 1
2 log2 k ≤ j ≤ j∗, we recover the previous

estimate, namely C(k2−2j )2, which is O(1).
• Consider now the sum over Q, and recall that the bounds just obtained need to be

multiplied by 2−jp(kφ(xQ))−p/2. Pull out the factor 2−jp one more time. Again,
we need to separately consider 22j ≤ k (large scales) and 22j ≥ k (small scales).
For small scales, the bound (33) is uniform in Q, hence the sum over Q ∈ Qj

simply contributes a factor 22j .
For large scales, the strategy is to split the sum over Q into a near-field contribu-

tion, for which d(s, t) ≤ C1 in the sense of Lemma 5, and a far-field contribution,
for which stationary-phase points must be handled adequately. The terms in the
far-field sum are then further broken down into groups corresponding to the same
value of the scale defect, which Lemma 4 helps identify. Schematically,

∑
Q∈Qj

=
∑

Q∈near-field

+
∑
j ′>0

[ ∑
Q:scale defect=j ′

]
.
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Consider the two regions separately.
– Near-field. In this region, φ(xQ) may be as small as 1/k, hence we estimate

(kφ(xQ))−p/2 � 1. By Lemma 5, the scale defect j ′
Q is bounded by a constant,

hence the bound (32) becomes

C min
(
22j , k22−4j

)(
1 + 2j

(
1 − k−122j

)
+
)−2Mp+2

. (34)

We claim that this quantity is always less than a constant independent of
j and k. Indeed, if j is so large that 22j k−1 ≥ 1/2, then k22−4j ≤ 4, and it
suffices to use the trivial minoration 1 + 2j (1 − k−122j )+ ≥ 1. If on the other
hand 22j k−1 < 1/2, then we have 1 + 2j (1 − k−122j )+ ≥ 1

2 2j , which implies
that (34) is bounded by

C min
(
22j , k22−4j

)
2−2j (Mp−2) ≤ C2−2j (−1+Mp−2) ≤ 1,

because we chose Mp ≥ 5. The sum over Q then contributes a factor propor-
tional to the number of non-diagonal squares, i.e., 22j .

– Far-field. The leading factor (kφ(xQ))−p/2 now contributes a factor k−p/2, since
φ(xQ) ≥ C in the far-field. For the sum over Q, we use equation (32) one more
time and write

C min
(
22j , k22−4j

) ∑
Q∈far-field

(
1 + 2j

(
2−j ′

Q − k−122j
)
+
)−Mp+2

.

For each Q, find the closest integer j ′ ≤ j to j ′
Q. As long as j ′ < j , Lemma 4

asserts that the number of terms comparable to (1+2j (2−j ′ −k−122j )+)−Mp+2

is O(22j−j ′
). The endpoint j ′ = j receives the contribution of arbitrary large

j ′
Q, meaning terms that can be as large as O(1); however by Lemma 4 there can

only be O(2j ) such terms. After indexing terms by j ′ in place of Q, we get the
bound

C min
(
22j , k22−4j

)[
2j +

∑
−C≤j ′<j

22j−j ′(
1 + 2j

(
2−j ′ − k−122j

)
+
)−Mp+2

]
.

It is easy to see that the summand peaks for j ′ near j0 = min(j,−2j + log2 k);
it decreases geometrically for j ≤ j0 because of the factor in brackets, and de-
creases geometrically for j ≥ j0 because of the factor 22j−j ′

. The result is a
bound

C min
(
22j , k22−4j

)
max

(
24j k−1,2j

)= C min
(
k,23j

)
.

• What remains after gathering the various bounds is a constant CM,p times∑
j≤ 1

2 log2 k+C

2−jp22j (near-field)

+
∑

j≤ 1
2 log2 k+C

k−p/22−jp min
(
k,23j

)
(far-field)

+
∑

j> 1
2 log2 k+C

22j 2−jp2−2j (Mp−2) (small scales).
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The near-field contribution sums up to Cpk1−p/2 as soon as p < 2. The far-field
contribution is bounded by

Cpk−p/2

[ ∑
j≤ 1

3 log2 k

2j (3−p) + k
∑

j> 1
3 log2 k

2−jp

]

≤ Cpk−p/2k1−p/3 ≤ Cpk1−p/2.

With the choice Mp ≥ 5, the contribution of “small scales” is negligible in con-
trast to the first two terms. O(k1−p/2) is the desired growth rate in k, compatible
with (19). This concludes the part of the proof related to non-diagonal squares.

2.6 Diagonal Kernel Fragments: Decay of Individual Coefficients

It is now assumed that the dyadic square Q overlaps with the diagonal strip S =
{(s, t) : d(s, t) � 1/k}. Because of the singularity of the kernel at s = t , the integra-
tions by parts cannot proceed as before. Inside S, the smoothness of the kernel is
governed by the case kx � 1 in Lemma 1.

Further complications arise, depending on the value of the scale j .

• At scales j ≤ log2 k + C, a square Q intersecting with S is not entirely contained
in S; in fact, a large portion of it lies in the non-diagonal portion d(s, t) � 1/k. We
call this portion (two triangles) the off-strip contribution. There are O(2j ) such
triangles.

• At scales j ≥ log2 k + C, some squares may be contained inside the strip S with-
out intersecting the diagonal s = t . These squares make up the regular on-strip
contribution; there are O(22j k−1) such squares.

• The remaining O(2j ) squares or portions thereof, overlapping with the diagonal
s = t , make up the singular on-strip contribution.

In order to smoothly cut off the strip S from dyadic squares, introduce σ = s − t

(defined modulo 1 in [0,1]) and τ = s + t . By symmetry of the problem, one can
consider the triangle {(s, t) ∈ Q : s ≥ t} and still call it Q, without loss of generality.
We can therefore focus on σ > 0. If we properly select the coset relative to the modulo
operation, we can also take (σ, τ ) to smoothly parametrize the triangle Q. With these
choices, the diagonal strip is S = {(σ, τ ) : σ � 1/k}. Consider now a smooth indicator
ρ(kσ ) where ρ is a C∞ positive function obeying

ρ(x) =
{

1 if 0 ≤ x ≤ 1;
0 if x ≥ 2.

Multiplying the integrand in (41) by ρ(kσ ) gives the on-strip contribution (regular
and singular); multiplying it by 1 − ρ(kσ ) gives the off-strip contribution. These
cases are treated separately.

• Off-strip contribution. Over the off-strip region we have kσ � 1 hence kφ(s, t) � 1
by (9), so that the case kx � 1 of Lemma 1 applies there. The analysis of the
coefficient decay in n is the same as in the previous section, so we omit it here.
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As far as analysis of the decay in m, we are back in the setting of the analysis
of Sect. 2.4, except for the factor 1 − ρ(kσ ) that prevents the same scheme of in-
tegrations by parts in σ . Each derivative of ρ(kσ ) would produce an unacceptably
large factor k. The smoothness in τ is however unaffected, which permits to carry
over the analysis of Sect. 2.4 with integrations by parts in τ only. The direction of
increasing τ in the m plane is eτ = (1,1), to which corresponds the decomposition
2m · (s, t) = (m1 +m2)τ + (m1 −m2)σ . Since ∇φ(0) ≡ limσ→0+ ∇φ points in the
direction of σ , we have eτ · ∇φ(0) = 0. Repeated integrations by parts should now
be carried out, in the fashion of Sect. 2.4, but with a different differential operator
than L:

L0 = I − β ∂2

∂τ 2 − iβk(
∂2φ

∂τ 2 )

1 + β22j (m1+m2
2 )2

,

where β is the same as previously. Notice that the amplitude is uniformly bounded,
since kx � 1 in the off-strip region. The result is a bound that involves m1 + m2

only. With the contribution of the decay in n, the off-strip coefficient estimate is

∣∣〈KQ,
(
1 − ρ(kσ )

)
ϕj,m,n

〉∣∣≤ CM2−j
(
1 + β22j (m1 + m2)

2)−M(
1 + ‖n‖)−M

,

(35)
for all M > 0, and only for scales obeying 22j � k.

• On-strip contribution: amplitude estimate. We now take kσ � 1. The case kx � 1
of Lemma 1 allows to write

K(s, t) = eikφ(s,t)a
(
kφ(s, t), s, t

)
,

where now the amplitude’s smoothness is

∣∣∣∣ d
na

dφn
(kφ, s, t)

∣∣∣∣≤ Cnφ
−n, φ � 1. (36)

The partial derivatives of a with respect to the arguments s and t are O(1) and well
within the above bound as long as φ(s, t) � 1. To compute the total derivatives
with respect to s and t , however, it is necessary to contrast smoothness along and
across the oscillations, by means of the coordinates σ and τ . The value of φ(s, t)

is comparable to the circle distance d(σ,0), namely

Dd(σ,0) ≤ φ

(
σ + τ

2
,
τ − σ

2

)
≤ D̃d(σ,0),

for some fixed D and D̃. The first inequality is exactly (9), the last inequality
follows from a Taylor expansion. Since we only consider σ > 0, we write this
property as φ � σ . A careful analysis of Taylor remainders shows that the same
estimate is true for the τ derivatives,

∣∣∣∣d
nφ

dτn

(
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cnσ, σ �= 0, (37)
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while the σ derivatives do not yield any gain:
∣∣∣∣d

nφ

dσn

(
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cn, σ �= 0. (38)

The action of the successive τ derivatives on a through its φ dependence can be
understood from the higher-order analog of the chain rule, known as the combina-
torial Faà di Bruno formula:

(
d

dτ

)n

a

(
kφ

(
σ + τ

2
,
τ − σ

2

)
, s0, t0

)
=
∑
π∈Π

(
d|π |a
dφ|π |

)
·
∏
B∈π

k
d|B|φ
dτ |B| .

In this formula, Π is the set of all partitions π of {1, . . . , n}; |π | denotes the number
of blocks in the partition π ; these blocks are indexed as B ∈ π ; and |B| denotes the
size of the block B . Since there are |π | factors in the product over B , (37) reveals
that the derivatives of φ yield a factor Cnσ

|π |. On the other hand, by (36), each
φ-differentiation of a introduces an inverse power of σ . The order of the derivative
is |π |, for a contribution of σ−|π | that exactly cancels the σ |π | coming from the
derivatives of φ.

This analysis only concerns the dependence of a on τ via φ. It is easy to apply
the multivariable chain rule to see that the dependence of a on τ via its second and
third arguments (s and t) does not change the conclusion that any number n of τ

derivatives, n ≥ 1, keep the amplitude bounded, with bound independent of j and
k (but not n, of course):

∣∣∣∣d
na

dτn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cn, n ≥ 1, σ �= 0. (39)

There are no factors to gain in the σ derivatives of the phase, hence the same
analysis yields
∣∣∣∣ d

na

dσn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cnφ
−n, φ � 1, n ≥ 1, σ �= 0.

(40)
We are now equipped to study the coefficient

〈KQ,ϕj,m,n〉 =
∫

3Q

w
(
2j s,2j t

)
eikφ(s,t)a

(
kφ(s, t), s, t

)
e−i2j m·(s,t)

× 2j ϕ(j,m)

(
2j s − n1,2j t − n2

)
ds dt. (41)

• Regular on-strip contribution
For regular on-strip squares, i.e., those squares at very small scales j ≥ log2 k +

C that intersect with the strip S but not with the diagonal s = t , the decay in m
and n is obtained by a simple argument of integration by parts. In contrast to the
operators L and L0 used earlier, we should now introduce copies of

L1 = I − 2−2jΔ(σ,τ)

1 + ‖m‖2
,
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and integrate by parts in (41). Each derivative in σ acting on the amplitude
a(kφ, s, t) produces a factor φ−1 � σ−1. Since Q does not intersect with the di-
agonal, σ � 2−j hence σ−1 � 2j . This factor is balanced by the choice of scaling
in the expression of L2. A fortiori, the derivatives in τ are governed by a stronger
estimate and are therefore under control. The derivative in τ or σ acting on ϕ(j,m,n)

do not compromise its super-algebraic decay, hence we gather the same decay in n
as previously. One complication is however the possible logarithmic growth near
σ = 0 of the amplitude a when it is not differentiated. Consider the intermediate
bound

∣∣〈KQ,ρ(kσ )ϕj,m,n
〉∣∣

≤ CM2j
(
1 + ‖m‖2)−M(1 + ‖n‖)−M

∫
3Q

∣∣a(kφ(s, t), s, t
)∣∣ds dt,

for all M > 0. If the amplitude were bounded, then the integral would produce a
factor 2−2j as in the non-diagonal case. Instead, we claim that the integral factor
is bounded by 2−j k−1. In order to see this, consider the bound

∣∣a(kφ, s, t)
∣∣≤ C

(
1 + ∣∣log

(
kφ(s, t)

)∣∣),
from Lemma 1. Since log is increasing and φ � σ , there exist C1,C2 > 0 such that

log(C1kσ ) ≤ log
(
kφ(s, t)

)≤ log(C2kσ ),

hence ∣∣log
(
kφ(s, t)

)∣∣≤ C + ∣∣log(kσ )
∣∣, for some C > 0.

This bound does not depend on τ , and since (s, t) ∈ 3Q, τ ranges over a set of
length O(2−j ). We therefore obtain the bound

∫
3Q

∣∣a(kφ(s, t), s, t
)∣∣ds dt ≤ C2−j ×

∫ 1
Ck

0

(
C + ∣∣log(kσ )

∣∣)dσ ≤ C2−j k−1.

The final estimate for the regular on-strip contribution is

∣∣〈KQ,ρ(kσ )ϕj,m,n
〉∣∣≤ CMk−1(1 + ‖m‖2)−M(1 + ‖n‖)−M (regular on-strip).

(42)
• Singular on-strip contribution

Let us now consider a dyadic square Q that intersects with the diagonal s = t .
In the language of microlocal analysis, s = t is the singular support of the kernel,
and we expect the corresponding wavefront set {(s, s, ξ,−ξ)} to play a role in the
analysis. Accordingly, we show in this section that large wave atom coefficients
cluster around the wavefront set. In particular, we cannot expect that the decay
length scale of the wave atom coefficients be independent of j in all directions in
m: because Q overlaps with, or is close to the diagonal, the decay in the direction
m1 −m2 (perpendicular to the diagonal) is much slower than the decay in the direc-
tion m1 + m2 (parallel to the diagonal). However, the number of diagonal squares
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is small enough to restore the overall balance at the level of the �p summability
criterion.

To quantify the decay in the m1 + m2 direction, introduce the self-adjoint oper-
ator

L2 = I − 2−2j ∂2

∂τ 2

1 + (m1+m2
2 )2

.

It leaves the exponential e−i2j (m1s+m2t) invariant. After integrating by parts, the

action of I − 2−2j ∂2

∂τ 2 leaves the bound on the rest of the integrand unchanged,
because

(i) w(2j s,2j t) and ϕ(j,m)(2j s − n1,2j t − n2) produce a factor 2j when differ-
entiated.

(ii) Differentiating ϕ(j,m)(2j s − n1,2j t − n2) does not compromise its decay in
n.

(iii) a(kφ, s, t) has a logarithmic singularity, and otherwise becomes uniformly
bounded when differentiated in τ , as we have seen. (The presence of the scal-
ing 2−2j in L1 is not even needed here.)

The integral
∫

3Q
|a(kφ(s, t), s, t)|ds dt for the amplitude can be bounded by

C2−j max(2−j , k−1) as we argued for the regular on-strip squares (here 3Q is not
necessarily contained in S). The result is a bound

∣∣〈KQ,ρ(kσ )ϕj,m,n
〉∣∣

≤ CM max
(
2−j , k−1)(1 + (m1 + m2)

2)−M(1 + ‖n‖)−M

(singular on-strip) (43)

for all M > 0.
Finally, the decay in m1 −m2 for those (singular, on-strip) squares that intersect

the diagonal cannot proceed as previously. An analysis of coefficients taken indi-
vidually would be far from sharp, e.g., would not even reproduce �2 summability.
The proper reasoning involves a collective bound on the �2 norm of all the wave
atom coefficients at a given scale j > 0, which correspond to squares Q that inter-
sect with the diagonal. This reasoning is explained in the next section, and gives
the bound ∑

m,n

∣∣〈KQ,ρ(kσ )ϕj,m,n
〉∣∣2 ≤ Cj22−3j ,

Q ∈ Qj and Q intersects the diagonal. (44)

The study of �p summability from all these estimates is then treated in Sect. 2.8.

2.7 Diagonal Kernel Fragments: Collective Decay Properties

The strategy for obtaining (44) is to compare wave atom coefficients to wavelet co-
efficients, scale by scale. Estimating individual wavelet coefficients is a much tighter
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way to capture the sparsity of a log singularity than directly through wave atoms.
(Wavelets however are not well-adapted for the overwhelming majority of dyadic
squares that correspond to C∞ oscillations.)

Consider two-dimensional compactly supported Daubechies wavelets with one di-
lation index j , built on the principle of multiresolution analysis [19]. They are de-
noted as

ψε
j ′,n(s, t) = 2j ′

ψε
(
2j ′

s − n1,2j ′
t − n2

)
,

where ε = 1,2,3 indexes the type of the wavelet (HH, HL or LL). The easiest way to
define Meyer wavelets in a square is to periodize them at the edges.

Fix j ≥ 0, consider a function f (s, t) defined in [0,1]2, and consider its wave
atom coefficients at a scale j . By Plancherel for wave atoms, there exists an annulus
Aj = {(ξ1, ξ2) : C122j ≤ ‖ξ‖∞ ≤ C222j } such that

∑
m,n

∣∣〈f,ϕj,m,n〉∣∣2 ≤
∫

Aj

∣∣f̂ (ξ)
∣∣2 dξ.

By Plancherel for wavelets and the properties of Daubechies wavelets [19], there
exists j0 such that this L2 energy is for the most part accounted for by the wavelet
coefficients at scales 2j − j0 ≤ j ′ ≤ 2j + j0, i.e.,

1

2

∫
Aj

∣∣f̂ (ξ)
∣∣2 dξ ≤

∑
j ′∈[2j−j0,2j+j0]

∑
ε,n

∣∣〈f,ψε
j ′,n
〉∣∣2. (45)

The last two equations show that, collectively in an �2 sense, wave atom coefficients
at scale j can be controlled by wavelet coefficients at scales neighboring 2j .

The relevant range of scales for this analysis is j ≥ 1
2 log2 k. The on-strip region

has length O(2−j ) and width O(min(k−1,2−j )). Since each wavelet is supported in
a square of size ∼2−2j -by-2−2j , the number of wavelets that intersect the strip is
O(2j × 22j min(k−1,2−j )) = O(min(23j k−1,2j )). Among those, only O(2j ) cor-
respond to wavelets intersecting with the diagonal s = t . The bound on wavelet coef-
ficient depends on their location with respect to the diagonal:

• Non-diagonal wavelets. The wavelet’s wave number is ∼ 2j ′ ∼ 22j and soon be-
comes much larger than the local wave number ∼k of the oscillations of the kernel,
hence a fast decay in j ′ → ∞. More precisely, fix Q ∈ Qj ; the coefficient of inter-
est is

〈
KQρ(kσ),ψε

j ′,n
〉 =
∫

suppψε
j ′,n

a
(
kφ(s, t), s, t

)
eikφ(s,t)w

(
2j s,2j t

)
2j ′

× ψε
(
2j ′

s − n1,2j ′
t − n2

)
ds dt.

Because the wavelet has at least one vanishing moment, one may write it either as

ψε
(
2j ′

s − n1,2j ′
t − n2

)= 2−j ′ dψ̃ε

ds

(
2j ′

s − n1,2j ′
t − n2

)
, ε = HL or HH,
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or as

ψε
(
2j ′

s − n1,2j ′
t − n2

)= 2−j ′ dψ̃ε

dt

(
2j ′

s − n1,2j ′
t − n2

)
, ε = LH,

where ψ̃ε has the same support as ψε . After integrating by parts in s or t , we can
– use the bounds (39) and (40) on the amplitude
– use the bound ∇(s,t)eikφ = O(k)

– use ∇(s,t)w(2j s,2j t) = O(2j )

– use | suppψε
j ′,n| � 2−2j ′

to conclude that the coefficient obeys
∣∣〈KQρ(kσ),ψε

j ′,n
〉∣∣≤ CM2−j ′

2−j ′(
max

(
k,2j

)+ φ−1
)
,

where φ−1 is a notation for the supremum of φ−1 over the support of the wavelet.
If we index by the integer q ≥ 1 the distance between the center of the support
of the wavelet to the diagonal, as

√
2q2−j ′

, then φ−1 � q−12j ′
. The bound above

becomes CM2−j ′
(q−1 + 2−j ′

max(k,2j )).
The sum in the right-hand side of (45) is then estimated as follows. As we saw

earlier the length of the strip S ∩ Q is O(2−j ), and its width is min(1/k,2−j ).
Since the translation step of wavelets is 2−j ′ ∼ 2−2j , the translation index n takes
on 2j × 22j min(1/k,2−j ) values. Hence

∑
j ′∈[2j−j0,2j+j0]

∑
ε,n

∣∣〈KQρ(kσ),ψε
j ′,n
〉∣∣2 ≤ C

∑
n

∣∣2−2j
(
q−1 + 2−2j k

)∣∣2

≤ C2j
∑
q≥1

(
2−4j q−2)+ 23j min

(
1

k
,2−j

)

× 2−4j
(
2−2j max

(
k,2j

))2

≤ C2−3j

(
because j ≥ 1

2
log2 k + C

)
.

• Diagonal wavelets. For wavelets intersecting the diagonal, it will not be necessary
to quantify cancellations. By Lemma 1,∣∣〈KQρ(kσ),ψε

j ′,n
〉∣∣

≤ C

∫
suppψε

j ′,n

(
1 + ∣∣log(kσ )

∣∣)2j ′ ∣∣ψε
(
2j ′

s − n1,2j ′
t − n2

)∣∣ds dt. (46)

Without loss of generality we can consider kσ < 1/2 and write
∣∣log2(kσ )

∣∣= − log2(kσ ) = − log2

(
2j ′

σ
)− log2 k + j ′ ≤ − log2

(
2j ′

σ
)+ j ′.

Since log is integrable near the origin, and |supp ψε
j ′,n| � 2−2j ′

, the contribution

due to − log2(2
j ′

σ) is O(2−j ′
). The contribution of the lone j ′, on the other hand,

is O(j ′2−j ′
).
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There are O(2j ) diagonal wavelets, each with coefficients O(j ′2−j ′
) =

O(j2−2j ), hence the sum of their squares in the range 2j − j0 ≤ j ′ ≤ 2j + j0
is O(2j × (j2−2j )2) = O(j22−3j ).

As j → ∞, the contribution of diagonal wavelets manifestly dominates that of
non-diagonal wavelets, and we have shown that the resulting estimate is (44).

2.8 Diagonal Kernel Fragments: �p Summation

Let us conclude by calculating the growth of
∑

j

∑
Q∈Qj

∑
m,n |〈KQ,ϕj,m,n〉|p in

the parameter k, for those dyadic squares that intersect the strip kσ � 1. We start by
letting p ≤ 1.

Consider each contribution separately.

• Off-strip contribution. Recall that j ≤ 1
2 log2 k + C in this case. The reasoning en-

tirely parallels that of the previous section and we encourage the reader to focus on
the discrepancies. First, the sum over n yields a harmless constant factor. Second,
use (35) and drag the factor 2−jp out of the sums over m and Q; the former sum
is then comparable to the integral

I =
∫

Cj

(
1 + ∣∣β1/22j (x1 + x2)

∣∣2)−Mp dx1 dx2,

with Cj an annulus of inner and outer radii proportional to 2j . Over this domain,
the integrand concentrates near the union of two “ridges” of length ∼2j and width
∼β−1/22−j , oriented along the anti-diagonal x1 = −x2. Note that β = 22j k−2. The
integral I is therefore bounded by a constant times 2j ×(β−1/22−j ) = 2−j k. Third,
the sum over Q ∈ Qj that intersect with the strip yields a factor 2j , proportional to
the number of diagonal dyadic squares at scale j . The remaining sum is bounded
by

Cp

∑
j≤ 1

2 log2 k+C

2j
(
2−j k

)
2−jp ≤ Cpk1−p/2.

This is the desired growth rate in k.
• Regular on-strip contribution. Here, j ≥ 1

2 log2 k + C, therefore ‖m‖∞ ≥ C2j ≥
C

√
k. The factor (1 + ‖m‖∞)−M in (42) therefore yields a negative power k−M/2

for all M > 0, i.e., what we denoted earlier as k−∞. This is negligible in compari-
son with k1−p/2.

• Singular on-strip contribution. As previously, two scale regimes should be consid-
ered. When j ≤ 1

2 log2 k, we can use the bound (43). The sum over n is harmless;
the sum over m produces a factor 2j since there are significant O(2j ) values of m
on the ridge |m1 + m2| ≤ C at scale j ; the sum over Q produces another factor 2j

since there are O(2j ) diagonal dyadic squares at scale j . The resulting sum over j

is then bounded by

Cp

∑
j≤ 1

2 log2 k

22j 2−jp ≤ Cpk1−p/2,

which is again the desired growth rate.
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If now j ≥ 1
2 log2 k, we need to invoke the collective decay estimate (44). Fix

j and Q ∈ Qj a singular dyadic square. By (43), values of m1 + m2 significantly
different from zero will give rise to negligible coefficients that sum up to o(k).
More precisely, let δ > 0 be arbitrarily small. Then the wave atom coefficients in
the region |m1 +m2| ≥ C2δj decay sufficiently fast (take M � 1/δ) that their total
contribution is O(k−∞) in �p . The significant coefficients at scale j are, again, on
a ridge of length O(2j ) and width O(2δj ), for a combined total of N = O(2j (1+δ))

significant coefficients.
We can now relate the �2 norm estimate (44) to an �p estimate, 0 < p < 2, by

means of the Hölder inequality

(∑
m,n

∣∣〈KQρ(kσ),ϕj,m,n
〉∣∣p
)1/p

≤
(∑

m,n

∣∣〈KQρ(kσ),ϕj,m,n
〉∣∣2
)1/2

× N
1
p

− 1
2 ,

(47)
where N = O(2j (1+δ)). After simplification, the right-hand side is bounded by
Cδ,pj2j (−2+1/p+δ′) where δ′ is another arbitrarily small number, namely δ′ =
δ( 1

p
− 1

2 ). This quantity still needs to be summed over Q—there are O(2j ) such
squares—and then over j ; but the summation method will depend how p compares
to 1, and accordingly, which of (24) or (25) should be used.

If p ≤ 1, then (24) should be used, and we obtain

‖Kμ‖p

�p(F ) ≤ Cδ,p

∑
j≥ 1

2 log2 k

2j
(
j2j (−2+ 1

p
+δ′))p = Cδ,p

∑
j≥ 1

2 log2 k

jp2j (2−2p+δ′p),

which always diverges. However if p ≥ 1, then (25) implies

‖Kμ‖�p(F ) ≤ Cδ,p

∑
j≥ 1

2 log2 k

2j
(
j2j (−2+ 1

p
+δ′))

.

For any 1 < p < 2, the above series is convergent if for instance we choose δ′ =
1
2 (1 − 1

p
), and the result is O(1), independent of k. This part of the singular on-

strip contribution falls into the second category identified at the beginning of the
proof, namely (20). This concludes the proof in the case when K is the single-layer
potential G0.

2.9 Analysis of the Double-Layer Potential

The proof of the sparsity result for the double-layer kernel G1 defined in (11) is a
simple modification of that for the single-layer kernel G0.

• Non-diagonal part. The smoothness bound for Hankel functions in Lemma 1 ex-
hibits the same rate for all n ≥ 0 in the case when x � 1/k. The other factors,
functions of s and t which accompany the Hankel factor in formula (11), have no
bearing on the sparsity analysis since they are smooth and do not depend on k but
for the leading factor ik/4. As a consequence, G1 can still be written as a product

G1(s, t) = a
(
kφ(s, t), s, t

)
eikφ(s,t)

(
non-diagonal part, |s − t | � 1/k

)
,
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where the amplitude obeys the same estimate as previously, but for a factor k:∣∣∣∣ dn

dφn
a
(
kφ(s, t), s, t

)∣∣∣∣≤ Cnk
1√

kφ(s, t)
φ(s, t)−n.

With a number of non-standard wave atom coefficients |Λ| = O(kε−1/∞), one
could form an approximation of the non-diagonal part of G0 with error ε. In the
case of G1, the same number of terms results in an error that we can only bound
by kε. Thus, to make the error less than a specified ε̃, the number of terms needs
to be O(k1+1/∞ε̃−1/∞). This justifies the form of the first term in (14).

• Diagonal part. For x � 1/k the smoothness estimate in Lemma 1 is worse for H
(1)
1

than for H
(1)
0 , but as is well-known, the dot product

x(s) − x(t)

‖x(s) − x(t)‖ · nx(t)

∥∥ẋ(t)
∥∥

is small near the diagonal and more than compensates for the growth of H
(1)
1 there.

The precise version of this heuristic is a decomposition

G1(s, t) = a
(
kφ(s, t), s, t

)
eikφ(s,t)

(
diagonal strip, |s − t | � 1/k

)
,

where we claim that the amplitude obeys the same estimates as those for G0 in
variables σ = s − t , τ = s + t , namely∣∣∣∣d

na

dτn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cn, (48)

∣∣∣∣ d
na

dσn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)∣∣∣∣≤ Cnφ
−n, φ � 1, (49)

for σ � 1/k, and this time for every n ≥ 0 including zero. (Total derivatives in σ

are defined by keeping τ fixed, and vice-versa.)
Let us prove (48). As previously, put r = x(s)−x(t)

‖x(s)−x(t)‖ . Observe that nx(t)‖ẋ(t)‖ =
(ẋ(t))⊥ · r . Derivatives of (ẋ(t))⊥ · r in σ and τ are treated by the following lemma,
proved in the Appendix.

Lemma 6 For all n ≥ 0, ∣∣∣∣ dn

dτn

[(
ẋ(t)
)⊥ · r]

∣∣∣∣≤ Cnσ, (50)

∣∣∣∣ dn

dσn

[(
ẋ(t)
)⊥ · r]

∣∣∣∣≤ Cnσ
1−n. (51)

The chain rule and Faà di Bruno formula can then be invoked as previously,
with the combined knowledge of (50), (51), the growth of H

(1)
1 from Lemma 1,

i.e., ∣∣∣∣ dm

dφm

[
H

(1)
1

(
kφ(s, t)

)
e−ikφ(s,t)

]∣∣∣∣≤ Cm

1

kσ
σ−m,
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as well as (37) and (38) on the growth of the derivatives of φ. It is straightforward
to see that (48) is satisfied; for instance, the factor σ from (ẋ(t))⊥ ·r and the leading
k in the expression of G1 cancel out the 1/(kσ ) in the formula for the derivatives
of H

(1)
1 . The rest of the argument involving the Faà di Bruno formula is the same

as previously. Equation (49) follows from the same reasoning, and the observation
that no σ factor is gained upon differentiating φ in σ.

Since (48) and (49) are at least as good as what they were in the case of G0,
the rest of the argument can proceed as previously with the same results; the “off-
strip” and “regular on-strip” contributions, for instance, are unchanged from the G0
scenario. The “singular on-strip” contribution however, corresponding to dyadic
squares that intersect the diagonal, ought to be revisited since G1 has a much
milder singularity than G0 near the diagonal.

The estimate of fast decay in |m1 + m2| and ‖n‖, namely (43), is a fortiori still
valid. It appears, however, that the collective bound (44) at scale j can be improved
to ∑

m,n

∣∣〈Kχ
diag
j ρ(kσ ),ϕj,m,n

〉∣∣2 ≤ C2−6j k2, (52)

where χ
diag
j (s, t) refers to the

∑
Q wQ(s, t) over the squares Q ∈ Qj at scale j for

which the support of wQ intersects the diagonal. The presence of an aggregation

of windows χ
diag
j (s, t) is important here, as the study of coefficients corresponding

to individual windows wQ would not give a sharp bound. Whether χ
diag
j (s, t) or

ρ(kσ ) effectively determines the cutoff depends on the relative values of j and
log2 k.

Again, via a Plancherel argument, the scale-by-scale bound (52) can be proved
by passing to a system of Daubechies wavelets. We have

〈
Kχ

diag
j ρ(kσ ),ψε

j ′,n
〉 =
∫

suppψε
j ′,n

χ
diag
j (s, t)ρ(kσ )

ik

4
H

(1)
1

(
kφ(s, t)

)(
ẋ(t)
)⊥ · r

× 2j ′
ψε
(
2j ′

s − n1,2j ′
t − n2

)
ds dt, (53)

where the scale of the wavelet relates to that of the window w as 2j − j0 ≤ j ′ ≤
2j + j0.

As previously we will use the vanishing moments of the wavelet to bring out a
few 2−j ′

factors. This time we will need up to three vanishing moments, i.e., we
write the wavelet as

ψε
(
2j ′

s−n1,2j ′
t −n2

)=
(

2−j ′ d

ds

)M

ψ̃ε
(
2j ′

s−n1,2j ′
t −n2

)
, ε = HL or HH,

or as

ψε
(
2j ′

s − n1,2j ′
t − n2

)=
(

2−j ′ d

dt

)M

ψ̃ε
(
2j ′

s − n1,2j ′
t − n2

)
, ε = LH,

where M ≤ 3, and ψ̃ε has the same support as ψε . Before we let these derivatives
act on the rest of the integrand, multiply and divide by φ(s, t) = ‖x(t) − x(s)‖ to
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get

kH
(1)
1

(
kφ(s, t)

)(
ẋ(t)
)⊥ · r = [kφ(s, t)H

(1)
1

(
kφ(s, t)

)](
ẋ(t)
)⊥ · x(t) − x(s)

‖x(t) − x(s)‖2
.

We will then need the following lemma, which refines the results of (37), (38), and
Lemma 6. It is proved in the Appendix.

Lemma 7 Let φ(s, t) = ‖x(s)−x(t)‖. For every integer m ≥ 0 there exists Cm > 0
such that, as long as s �= t ,

∣∣∣∣
(

d

ds

)m

φ(s, t)

∣∣∣∣≤ Cm, (54)

∣∣∣∣
(

d

ds

)m[(
ẋ(t)
)⊥ · x(t) − x(s)

‖x(t) − x(s)‖2

]∣∣∣∣≤ Cm. (55)

The same inequalities hold with d/dt derivatives in place of d/ds derivatives.

Let us first consider the wavelets whose support intersects the diagonal. There,
the support of the wavelet is sufficiently small that χ

diag
j (s, t) = ρ(kσ ) = 1. One

may integrate by parts only once in (53), because

∇(s,t)φ(s, t) = (ẋ(s) · r,−ẋ(t) · r)
is discontinuous, since the unit chord r = (x(s) − x(t))/‖x(s) − x(t)‖ changes
sign across the diagonal and ẋ(t) �= 0 there. The action of either d/ds or d/dt on
the integrand after integration by parts gives:
– An O(1) contribution for d

dx
(xH

(1)
1 (x)), by Lemma 2.

– By the chain rule, an O(k) contribution for d
ds

(kφ) and d
dt

(kφ), because of
Lemma 7.

– An O(1) contribution for derivatives of (ẋ(t))⊥ · r/φ, by Lemma 7.
The size of the support is 2−2j ′

, the wavelet comes with an L2 normalization 2j ′
,

one factor 2−j ′
comes out of the vanishing moment, and |j ′ − 2j | ≤ const.; hence

diagonal wavelet coefficients obey the bound

∣∣〈Kχ
diag
j ρ(kσ ),ψε

j ′,n
〉∣∣≤ 2−4j k (diagonal wavelets).

There are O(2j ′
) = O(22j ) such diagonal wavelets overall, hence the sum of

squares of these coefficients is bounded by 2−6j k2, in accordance with (52).
Let us now treat the wavelets that do not intersect the diagonal s = t , and show

that the same bound is valid. One will now need to integrate by parts three times in
s or t to get three 2−j ′

factors out, and gather the action of the derivatives on the
rest of the integrand as follows.
– The factors ρ(kσ )χ

diag
j (s, t) are essentially multiplied by max(2j , k) for each

derivative.
– By Lemma 2, the combination xH

(1)
1 (x) becomes 1/x when differentiated three

times in x. This is 1/kφ when x = kφ.
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– Derivatives of φ in s and t remain O(1) by Lemma 7, hence each derivative of
kφ yields a factor k.

– By Lemma 7, all derivatives of (ẋ(t))⊥ · x(t)−x(s)

‖x(t)−x(s)‖2 remain bounded uniformly
in s and t .
The product rule yields many terms but the overall sum is controlled by the

behavior of the “extreme” terms identified above, hence a factor max(23j , k3) +
k3/kφ under the integral sign. Since the wavelet has support well away from the
diagonal, we can proceed as previously and bound φ−1(s, t) by q−12j ′

where q is
an integer indexing the distance between the diagonal and the center of the wavelet.
Again, the support of the wavelet has area O(2−2j ′

) and j ′ is comparable to 2j ,
hence we get a bound

∣∣〈Kχ
diag
j ρ(kσ ),ψε

j ′,n
〉∣∣≤ 2−8j

[
max

(
23j , k3)+ k2q−122j

]
(non-diagonal wavelets).

As seen previously, the number of wavelet coefficients is O(min(22j /k,2j ))

across the diagonal (indexed by q), times O(22j ) along the diagonal, for a total of
O(min(24j /k,23j )). Hence we have

∑
j ′∈[2j−j0,2j+j0]

∑
ε,n

∣∣〈KQρ(kσ),ψε
j ′,n
〉∣∣2

�
[

min

(
24j

k
,23j

)
× 2−16j max

(
26j , k6)]+

[
22j
∑
q

2−16j k4q−224j

]

�
[
2−12j k5 + 2−7j

]+ [2−10j k4]

� 2−6j k2 since j ≥ 1

2
log2 k + C.

This is the desired decay rate, compatible with (52).
We are now left with the task of verifying that (52) implies the correct decay

of the �p norm, as in (21). Let p < 1. Start by using Hölder’s inequality (47) with
N = O(2j (2+δ))—there are O(2j (1 + δ)) wave atoms per square Q, and O(2j )

squares along the diagonal. We get

∑
m,n

∣∣〈Kχ
diag
j ρ(kσ ),ϕj,m,n

〉∣∣p ≤ C
[(

2−3j k
)
2j (2+δ)(1/p−1/2)

]p = Ckp2(2−4p+δ′p)j ,

where δ′ = δ( 1
p

− 1
2 ). Finally, the p-triangle inequality asks to sum this bound over

j ≥ 1
2 log2 k. The sum is convergent provided p > 1/2 and δ′ is taken sufficiently

small. The result is

‖Kμ‖p

�p(F ) ≤ Cpkpk
1
2 (2−4p+δ′p) = Cpk1−p+δ′′

, ∀δ′′ > 0

After taking the 1/p-th power, we fall exactly into scenario 3 for the �p summation,
i.e., (21). The proof is complete.
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2.10 Proof of Corollary 2

Passing to relative error estimates requires scaling ε by 1/
√

k and
√

k respectively.
Recall k ≥ 1.

– If we invoke Theorem 1 for G0, with an absolute error ε/
√

k in place of ε, then
the number of terms |Λ0| becomes O((kε−2)1+1/∞). Hence if we can show that
1/

√
k ≤ C‖K0‖2, then (15) follows.

– If we invoke Theorem 1 for G1, with an absolute error ε
√

k in place of ε, then the
number of terms |Λ1| becomes O(k1+1/∞ε−1/∞ + (kε−2)1/3+1/∞). Hence if we
can show that

√
k ≤ C‖K1‖2, then (16) follows.

– The combination of the above two error bounds would show (17), provided we can
show that

√
k ≤ C‖K1 − iηK0‖2 when η � k.

Therefore, it suffices to establish the lower bounds on ‖K0‖2,‖K1‖2, and
‖K(0,1)‖2. By the tight-frame property of wave atoms, the claim for K0 is ex-
actly

∫
[0,1]2 |G0(s, t)|2 ds dt ≥ C/k. Set φ(s, t) = ‖x(s) − x(t)‖. As kφ(s, t) > c0,

Lemma 3 implies that |G0(s, t)| ≤ C(kφ)−1/2. If k is sufficiently large, we can re-
strict the integration domain to the nonempty set kφ(s, t) > c0, and directly conclude.
If k is not large enough for this step, the integral is still a uniformly continuous and
positive function of k, hence uniformly bounded away from zero.

The claim for K1 is
∫
[0,1]2 |G1(s, t)|2 ds dt ≥ k. The non-Hankel factors in the

expression of G1 play a minor role in evaluating this lower bound; we can consider
them bounded away from zero on a large set S1 to which the integral is restricted.
Lemma 3 then implies that for kφ(s, t) > c1 and (s, t) ∈ S1, we have |G1(s, t)| ≥
k(kφ)−1/2. By the same reasoning as previously, this leads to the lower bound.

The claim for K(0,1) is
∫
[0,1]2 |G1(s, t) − iηG0(s, t)|2 ds dt ≥ k, with η � k. The

reasoning is here a little more complicated since G1 and kG0 are on the same order of
magnitude. The presence of −i, however, prevents major cancellations—and is in fact
chosen for that very reason. The asymptotic decay of G1 − iηG0 for large φ(s, t) can
be studied from the integral formulation of the Hankel function used throughout the
appendix for proving the three lemmas in Sect. 2.1. Without entering into details, we
remark that the integral factor in (56) is for z large very near real-valued, with positive
real part. The exponential factor e−inπ/2 shows that H1 is then almost aligned with
−iH0. The particular combination G1 − iηG0 with η > 0 respects this quadrature
property of Hankel functions, and produces no cancellation at all in the limit z → ∞.
So for kφ large enough, the claim follows; and if kφ is not large enough, we fall back
on an argument of uniform continuity as previously.

3 Numerical Experiments

In this section, we provide several numerical examples to support the sparsity results
of the previous section. The three geometric objects used in this section are displayed
in Fig. 1. For each object, the boundary curve is represented using a small number
of Fourier coefficients. The last two examples have non-convex shapes that typically
result in multiple scattering effects. We report the numerical results for the single-
layer kernel G0(s, t) in Sect. 3.1 and the results for the double-layer kernel G1(s, t)



604 Found Comput Math (2010) 10: 569–613

Fig. 1 The geometric objects used in the test examples. a An ellipse. b A kite-shaped object.
c A star-shaped object

in Sect. 3.2. We omit the results of the combined kernel G1(s, t) − iηG0(s, t) as they
are almost the same as the single-layer case.

3.1 Single-Layer Potential

We first study the single-layer potential

k · G0(s, t) = k · i

4
H

(1)
0

(
k
∥∥x(s) − x(t)

∥∥)∥∥ẋ(t)
∥∥.

Notice that we use k · G0(s, t) instead of G0(s, t), because the coupling constant η

in the integral equation (1) is of order k. Therefore, k · G0(s, t) is more informative
when we report the value at which coefficients are thresholded, and the number of
non-negligible coefficients.

For each fixed k, we construct the discrete version of the operator k · G0(s, t)

by sampling the boundary curve with N = 8k quadrature points; this corresponds
to about eight points per wavelength (2π/k) in these examples. Next, we scale the
values at these quadrature points with the high-order corrected trapezoidal quadra-
ture rule from [17] in order to integrate the logarithmic singularity accurately. This
quadrature rule has the appealing feature of changing the weights only locally close
to the singularity. We then apply the two-dimensional wave atom transform to com-
pute the coefficients K0

μ := 〈kG0, ϕμ〉. For a fixed accuracy ε, we obtain the sparsest

approximant K̃0
μ that satisfies

∥∥K0 − K̃0
∥∥

�2(μ)
≤ ε
∥∥K0

∥∥
�2(μ)

by choosing the largest possible threshold value δ and setting the coefficients less
than δ in modulus to zero. Equation (15) predicts that, as a function of k, the number
of wave atom coefficients defining K̃0 should grow like k1+1/∞.

For each example in Fig. 1, we perform the test for different combinations of (k, ε)

with k = 32,64, . . . ,1024 and ε = 10−1,10−1.5, and 10−2. The numerical results for
the three examples are summarized in Tables 1, 2, and 3, respectively. In each table,
we have the following.



Found Comput Math (2010) 10: 569–613 605

Table 1 Single-layer potential for the ellipse. Top left: the real part of the operator for k = 128. Top right:
the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2. Each black
pixel stands for a non-negligible coefficient. Bottom: for different combinations of k and ε, the maximum
number of non-negligible entries per row |Δ0|/N , the threshold value δ, and the estimated L2 operator
norm ε

L2 (from left to right)

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 11/3.26e–2/9.53e–2 18/9.09e–3/2.88e–2 27/2.60e–3/7.93e–3

k = 64 9/3.37e–2/1.07e–1 16/9.20e–3/3.39e–2 28/2.39e–3/1.01e–2

k = 128 10/3.33e–2/9.80e–2 20/8.46e–3/3.29e–2 32/2.45e–3/1.04e–2

k = 256 9/3.63e–2/9.79e–2 18/9.33e–3/2.99e–2 30/2.46e–3/9.66e–3

k = 512 11/3.61e–2/9.79e–2 20/9.39e–3/3.07e–2 33/2.55e–3/9.86e–3

k = 1024 9/4.00e–2/9.78e–2 17/1.01e–2/3.12e–2 29/2.72e–3/9.81e–3

• The top left plot is the real part of the single-layer potential in the case of k = 128.
This plot displays coherent oscillatory patterns for which the wave atom frame is
well suited.

• The top right plot is the sparsity pattern of the operator under the wave atom basis
for k = 128 and ε = 10−2. Each black pixel stands for a non-negligible coefficient.
The coefficients are organized in a way similar to the usual ordering of 2D wave
atom coefficients: each block contains the wave atom coefficients of a fixed fre-
quency index (j,m), and the blocks are ordered such that the lowest frequency is
located at the top left corner while the highest frequency at the bottom right corner.
Within a block, the wave atom coefficients of frequency index (j,m) are ordered
according to their spatial locations. The multiscale nature of the wave atom frame
can be clearly seen from this plot.

• The table at the bottom gives, for different combinations of k and ε, the number
of non-negligible coefficients per row |Δ0|/N , the threshold value δ (coefficients
below this value in modulus are put to zero) and the L2-to-L2 norm operator error
εL2 estimated using random test functions.

In these tables, the number of significant coefficients per row Δ0/N grows very
slowly as k doubles and reaches a constant level for large values of k. This matches
well with the theoretical analysis in Sect. 2. The threshold value δ remains roughly at
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Table 2 Single-layer potential for the kite-shaped object. Top left: the real part of the operator for k = 128.
Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2. Bottom:
for different combinations of k and ε, |Δ0|/N , δ, and ε

L2

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 14/2.92e–2/9.50e–2 25/8.35e–3/3.07e–2 37/2.69e–3/8.79e–3

k = 64 15/2.70e–2/9.77e–2 30/7.66e–3/3.45e–2 46/2.41e–3/9.98e–3

k = 128 17/2.68e–2/1.04e–1 34/7.49e–3/3.35e–2 53/2.26e–3/1.04e–2

k = 256 17/2.70e–2/1.06e–1 35/7.27e–3/3.36e–2 58/2.07e–3/1.05e–2

k = 512 17/2.85e–2/1.11e–1 35/7.58e–3/3.43e–2 58/2.09e–3/1.07e–2

k = 1024 17/2.89e–2/1.03e–1 35/7.75e–3/3.33e–2 60/2.07e–3/1.07e–2

a constant level as k grows, which is quite different from the results obtained using
wavelet packet bases [11, 12, 15, 16] where the threshold value in general decreases
as k grows. The estimated L2-to-L2 operator error εL2 is very close to the prescribed
accuracy ε in all cases. This indicates that, in order to get an approximation within
accuracy ε in operator norm, one can simply truncate the non-standard form of the
operator in the wave atom frame with the same accuracy.

3.2 Double-Layer Potential

We now consider the double-layer potential

G1(s, t) = ik

4
H

(1)
1

(
k
∥∥x(s) − x(t)

∥∥) x(s) − x(t)

‖x(s) − x(t)‖ · nx(t)

∥∥ẋ(t)
∥∥.

For each fixed k, the discrete version of G1(s, t) is constructed by sampling at N =
8k points and using trapezoidal quadrature rule. The coefficients K1

μ := 〈G1, ϕμ〉 are

calculated using the two-dimensional wave atom transform and the approximant K̃1
μ

is constructed in the same way as the single-layer potential case.
The results of the double-layer potentials for the three examples are summarized

in Tables 4, 5, and 6, respectively. These results are qualitatively similar to the ones of
the singular layer potential. However, the coefficients of the double-layer potential ex-
hibit better sparsity pattern for the simple reason that the double-layer potential oper-
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Table 3 Single-layer potential for the star-shaped object. Top left: the real part of the operator for k = 128.
Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2. Bottom:
for different combinations of k and ε, |Δ0|/N , δ, and ε

L2

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 14/2.76e–2/1.00e–1 23/8.74e–3/3.14e–2 32/2.50e–3/9.72e–3

k = 64 14/2.55e–2/8.97e–2 25/7.68e–3/2.83e–2 38/2.39e–3/8.28e–3

k = 128 18/2.39e–2/8.36e–2 33/7.01e–3/2.64e–2 49/2.19e–3/8.06e–3

k = 256 18/2.32e–2/9.48e–2 35/6.66e–3/2.90e–2 56/1.98e–3/9.33e–3

k = 512 19/2.34e–2/9.30e–2 40/6.19e–3/2.94e–2 66/1.84e–3/9.30e–3

k = 1024 18/2.42e–2/9.50e–2 38/6.41e–3/3.01e–2 66/1.77e–3/9.41e–3

ator has a singularity much weaker than logarithmic along the diagonal (where s = t)
for objects with smooth boundary. Therefore, for a fixed accuracy ε, the number of
wave atoms required along the diagonal for the double-layer potential is smaller than
the number for the singular layer potential. This is clearly shown in the sparsity pat-
tern plots in Tables 4, 5, and 6.
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Appendix: Additional Proofs

Proof of Lemma 1 Following Watson’s treatise [24], the Hankel function can be ex-
pressed by complex contour integration as

H(1)
n (z) =

(
2

πz

)1/2 exp i(z − nπ
2 − π

4 )

Γ (n − 1
2 )

∫ ∞eiβ

0
e−uun−1/2

(
1 + iu

2z

)n−1/2

du, (56)

where −π/2 < β < π/2. For us, z is real and positive, and we take β = 0 for sim-
plicity.
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Table 4 Double-layer potential for the ellipse. Top left: the real part of the operator for k = 128. Top
right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2. Bottom:
for different combinations of k and ε, |Δ1|/N , δ, and ε

L2

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 10/1.39e–2/1.29e–1 16/4.61e–3/3.65e–2 21/1.57e–3/1.19e–2

k = 64 9/1.40e–2/1.00e–1 15/4.41e–3/3.23e–2 21/1.34e–3/1.01e–2

k = 128 11/1.21e–2/9.50e–2 20/3.74e–3/3.00e–2 28/1.12e–3/9.94e–3

k = 256 10/1.28e–2/9.80e–2 18/3.70e–3/3.28e–2 28/1.07e–3/1.02e–2

k = 512 13/1.16e–2/1.00e–1 22/3.42e–3/3.24e–2 33/9.77e–4/1.00e–2

k = 1024 11/1.21e–2/9.98e–2 20/3.52e–3/3.29e–2 30/9.83e–4/1.01e–2

Let us first treat the case m = 0 (no differentiations) and n > 0. We can use the
simple bound

∣∣∣∣1 + iu

2z

∣∣∣∣
n− 1

2 ≤ Cn

(
1 +

∣∣∣∣uz
∣∣∣∣
n− 1

2
)

to see that the integral, in absolute value, is majorized by Cn(1 + z−n+1/2). Hence
the Hankel function itself is bounded by Cn(z

−1/2 + z−n). This establishes the first
two expressions in (22) in the case m = 0.

The case m = n = 0 is treated a little differently because the integrand in (56)
develops a 1/u singularity near the origin as z → 0. We have

∣∣∣∣1 + iu

2z

∣∣∣∣
− 1

2 =
(

1 +
(

u

2z

)2)−1/4

≤ C min

(
1,

(
u

z

)−1/2)
, (57)

hence the integral in (56) is bounded in modulus by a constant times

∫ z

0
e−uu−1/2 du + z1/2

∫ ∞

z

e−uu−1 du ≤ C
(
z1/2 + z1/2| log z|).
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Table 5 Double-layer potential for the kite-shaped object. Top left: the real part of the operator for k =
128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2.
Bottom: for different combinations of k and ε, |Δ1|/N , δ, and ε

L2

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 12/1.64e–2/9.16e–2 19/5.16e–3/2.82e–2 27/1.64e–3/8.71e–3

k = 64 13/1.40e–2/1.02e–1 23/4.37e–3/3.18e–2 34/1.31e–3/1.10e–2

k = 128 16/1.27e–2/9.11e–2 29/3.82e–3/2.80e–2 43/1.18e–3/9.27e–3

k = 256 16/1.22e–2/9.56e–2 31/3.46e–3/3.23e–2 49/1.02e–3/1.01e–2

k = 512 18/1.20e–2/9.98e–2 33/3.42e–3/3.09e–2 52/9.71e–4/9.81e–3

k = 1024 18/1.17e–2/9.57e–2 35/3.26e–3/3.02e–2 55/9.07e–4/1.03e–2

With the z−1/2 factor from (56), the resulting bound is C(1+| log z|) as desired (third
equation). When z > 1, we can improve this to C(1 + z1/2e−z) ≤ C, which gives the
first equation when m = n = 0.

For the case m > 0, it suffices to apply Leibniz’s rule inductively and observe that
each derivative produces a factor x−1 without changing the power of k. In particular,
we have the following.

• With α �= 0,
d

dx

[
(kx)−α

]= −α(kx)−α 1

x
,

hence the power of k is preserved and one negative power of x is created.
• Derivatives acting on isolated negative powers of x also produce an x−1 factor

without affecting the dependence on k.
• As for the x dependence under the integral sign, with α �= 0, we arrange the factors

as
d

dx

((
1 + iu

2kx

)−α)
= α

[
iu

2kx

(
1 + iu

2kx

)−1](
1 + iu

2kx

)−α 1

x
.

The factor in square brackets is bounded by 1 in modulus, hence the dependence
on k is unchanged. The factor 1/x is the only modification in the dependence on x.
Subsequent differentiations will only act on factors that we have already treated
above: powers of kx, powers of x, and powers of 1 + iu

2kx
. This finishes the proof.
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Table 6 Double-layer potential for the star-shaped object. Top left: the real part of the operator for k =
128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2.
Bottom: for different combinations of k and ε, |Δ1|/N , δ, and ε

L2

ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 13/1.43e–2/1.20e–1 20/5.15e–3/3.31e–2 25/1.62e–3/1.15e–2

k = 64 14/1.25e–2/9.20e–2 23/4.23e–3/2.80e–2 31/1.43e–3/9.03e–3

k = 128 19/1.08e–2/1.08e–1 32/3.42e–3/3.27e–2 44/1.19e–3/1.10e–2

k = 256 20/1.00e–2/1.02e–1 36/3.08e–3/3.13e–2 52/9.77e–4/1.07e–2

k = 512 23/8.99e–3/1.01e–1 44/2.66e–3/3.24e–2 66/8.22e–4/1.01e–2

k = 1024 22/9.06e–3/1.04e–1 43/2.54e–3/3.21e–2 69/7.46e–4/9.46e–3

Proof of Lemma 2 As previously, we use the integral formulation to get

xH
(1)
1 (x) = f (x)

∫ ∞

0
e−uu1/2

(
x + i

u

2

)1/2

du,

where f (x) is the exponential factor, and already obeys |f (n)(x)| ≤ C for all n ≥ 0.
We denote the integral factor by I (x); its derivatives are

I (n)(x) = Cn

∫ ∞

0
e−uu1/2

(
x + i

u

2

) 1
2 −n

du,

where Cn is a numerical constant. In a manner analogous to the proof of Lemma 1,
we can bound

∣∣∣∣x + i
u

2

∣∣∣∣
1
2 −n

=
(

x2 + u2

4

) 1
4 − n

2 ≤ Cn

(
max(x,u)

) 1
2 −n

.

It follows that

|I (n)(x)| ≤ Cn

[∫ x

0
e−uu1/2x1/2−n du +

∫ ∞

x

e−uu1−n du

]
.



Found Comput Math (2010) 10: 569–613 611

In the first term we can use e−u ≤ 1 and bound the integral by a constant times x2−n.
The integrand of the second term has a singularity near u = 0 that becomes more
severe as n increases; this term is bounded by O(1) if n = 0 or 1, by O(1 +| log(x)|)
if n = 2, and by O(x2−n) if n > 2.

Proof of Lemma 3 Consider (56) again, and take z real. For large values of z, the
factor (1 + iu/2z)n−1/2 is close to one; more precisely, it is easy to show that for
each n ≥ 0, there exists cn > 0, dn > 0 for which

∣∣∣∣
(

1 + iu

2z

)n−1/2

− 1

∣∣∣∣≤ dn

u

z
, if u ≤ cnz.

We can insert this estimate in (56) and split the integral into two parts to obtain

∣∣H(1)
n (z)

∣∣Γ (n − 1/2)

(
πz

2

)1/2

−
∣∣∣∣
∫ cnz

0
e−uu−1/2 du

∣∣∣∣
≥ −dn

∫ zcn

0
e−uu−1/2 u

z
du − C

∫ ∞

zcn

e−uu−1/2 du.

The constant C in the last term comes from (57). The first term in the right-hand
side is O(z−1), and the second term is O(e−z). At the expense of possibly choosing
increasing the value of cn, the second term in the left-hand side can manifestly be
made to dominate the contribution of the right-hand side, proving the lemma.

Proof of Lemma 6 We start by writing

(
ẋ(t)
)⊥ · r = (ẋ(t)

)⊥ · x(t) + σ ẋ(t) − x(s)

‖x(t) − x(s)‖ .

By Taylor’s theorem, |x(t) + σ ẋ(t) − x(s)| ≤ Cσ 2, hence |(ẋ(t))⊥ · r| ≤ Cσ . Deriv-
atives are then treated by induction; recall that d

dτ
= d

ds
+ d

dt
and d

dσ
= d

ds
− d

dt
;

• Any number of τ or σ derivatives acting on (ẋ(t))⊥ leave it O(1).
• τ derivatives acting on x(t) + σ ẋ(t) − x(s) leave it O(σ 2) while each σ derivative

removes an order of σ .
• τ derivatives acting on ‖x(t)−x(s)‖−m leave it O(σ−m) (m is generic) while each

σ derivative removes an order of σ .

This shows (50) and (51).

Proof of Lemma 7 Some cancellations will need to be quantified in this proof that
were not a concern in the justification of previous coarser estimates like Lemma 6.

Without loss of generality, assume that x(t) = (0,0), nx(t) = (0,1), and that we
have performed a change of variables such that the curve is parametrized as the graph
x(s) = (s, f (s)) of some function f ∈ C∞ obeying |f (s)| ≤ Cs2. This latter change
of variables would contribute a bounded multiplicative factor that would not compro-
mise the overall estimate.
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By symmetry, if (54) is true for d/ds derivatives, then it will be true for d/dt

derivatives as well. Without loss of generality let s > 0. Then we have

φ(s, t) = ∥∥x(s) − x(t)
∥∥=

√
s2 + f 2(s) = s

√
1 + f 2(s)

s2
.

Since |f (s)| ≤ Cs2 and C∞, the ratio f 2(s)/s2 is also bounded for s � 1, and of
class C∞. Being a composition of C∞ functions, the whole factor

√
1 + f 2/s2 is

therefore also of class C∞, which proves (54).
As for (55) with d/ds derivatives, we can write (ẋ(t))⊥ = (0,1) and

(
ẋ(t)
)⊥ · x(t) − x(s)

‖x(t) − x(s)‖2
= −f (s)

s2 + f 2(s)
= −

(
f (s)

s2

)
1

1 + f 2(s)

s2

.

(The 1/‖ẋ(t)‖ does not pose a problem since it is C∞.) Again, since |f (s)| ≤ Cs2,
both ratios f (s)/s2 and f 2(s)/s2 are themselves bounded and of class C∞. The
factor 1

1+ f 2(s)

s2

is the composition of two C∞ functions, hence also of class C∞.

The symmetry argument is not entirely straightforward for justifying (55) with
d/dt derivatives. Symmetry s ↔ t only allows us to conclude that

∣∣∣∣
(

d

dt

)m[(
ẋ(s)

)⊥ · x(t) − x(s)

‖x(t) − x(s)‖2

]∣∣∣∣≤ Cm,

where (ẋ(s))⊥ appears in place of the desired (ẋ(t))⊥. Hence it suffices to show that
the d/dt , or equivalently the d/ds derivatives of

[(
ẋ(t)
)⊥ − (ẋ(s)

)⊥] · x(t) − x(s)

‖x(t) − x(s)‖2

stay bounded. Using our frame in which the curve is a graph, we find

(
ẋ(t)
)⊥ − (ẋ(s)

)⊥ = (0,1) − (−f ′(s),1
)= (f ′(s),0

)
.

As a result,

[(
ẋ(t)
)⊥ − (ẋ(s)

)⊥] · x(t) − x(s)

‖x(t) − x(s)‖2
= −sf ′(s)

s2 + f 2(s)
= −

(
f ′(s)

s

)
1

1 + f 2(s)

s2

.

Since |f ′(s)| ≤ s, we are again in presence of a combination of C∞ functions that
stays infinitely differentiable.
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