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SUMMARY. This paper is largely expository. A framework is presented for charac-
terizing mixtures of processes in terms of their symmetry properties and sufficient statietics. As
an application, mixtures of the following kinds of processes are characterized : coin-tossing pro-
cesses (de Finetti); sequences of independent identically distributed normals ; sequences of in-
dependent, identically distributed integer-valued generalized exponential variables.

1. INTRODUCTION

Let X, X, ..., be a sequence of zero-one valued random variables. They
are exchangeable if their joint distribution is invariant under finite permuta-
tions of the indices. An equivalent formulation: let 8, = X,+...+X,;
given §, = {, conditionally the sequence X,, ..., X, is uniformly distributed

over the ( 7: > sequences having ¢ one’s and n—¢ zero’s. So the X-process is
exchangeable if the partial sums are sufficient, with the specified conditional
distribution for X,, ..., X, given §,.

A famous theorem of de Finetti’s (1931; also see 1937 or 1972) shows
that X,, X,, ..., are exchangeable iff this process is a mixture of coin-tossing
processes, that is, for all », and all strings z,, ..., z, of 0’s and 1’s.

PX;, ==, ..., X, ==,) = [ p1—p)*tu(dp)
for ¢t = 2,4...+z,. Here, 4 is a probability on [0, 1], uniquely determined
by P.
This theorem has been generalized in several directions. One is to allow

more complex state spaces : on this score, see Hewitt-Savage (1955), Diaconis-
Freedman (1980), Dubins-Freedman (1979). Another is allow more complex
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notions of symmetry; these are termed, collectively, “partially exchangesa-
bility”. See de Finetti (1938; 1972, Sec. 9.6.2), Freedman (1962a,b),
Diaconis-Freedman (1980b). Precise definitions are given below. As the
discussion of the coin-tossing example hints, the statistical idea of sufficiency
is relevant.

The connection between sufficiency and partial exchangeability has been
explored by the Scandinavian school : see, for example, Martin-Lof (1970)
and (1974), or Lauritzen (1982). The same ideas are relevant in statistical-
mechanical studies of “Gibbs states’ : see Lanford and Ruelle (1969), Ruelle
(1978), Preston (1976) or Georgii (1979).

The key mathematical techniques involve martingales and the machinery
of regular conditional distributions. Most of the technique appears in early
papers by Oxtoby (1952) on the Kryloff-Bogoliouboff theory, or Hunt (1960)
on the Martin boundary for Markov chains. Recently, these ideas have been
put into abstract and systematic form by Lauritzen (1976) which makes the
connection with the theory of the Martin boundary, and Dynkin (1978). The
object of the present paper is to review the theory in a statistical context
(Sections 1 and 2), and present some examples (Section 3). The material on
discrete exponential families in Section 3 and some of the details in Section 4
may be new. However, this paper is largely, expository.

In the balance of this section, a general theorem on sufficiency and partial
exchangeability will be presented; a slightly more general version will be
stated and proved in Section 4. The object of interest is a sequence of raridom
variables, taking values in Polish spaces. These range spaces may differ
from variable to variable. For the i-th variable, let £ be a Polish space,
that is, a Borel subset of & compact metric space. Equip ; with its Borel
ofield ;. Let Q= I Qand &= IT &. Leb X, be the i-th coordinate

1=l im]

function on Q. It is helpful to work with this concrete realization of the
process. Often, X; will be written for the i-th coordinate function on ﬁ Q.

i-1
n
The “sufficient statistic”” T', is a Borel mapping from IT Q; to a Polish
imi

space W,; write &, for the Borel o-field in W,. In principle, T, does not

act on Q; but 7T,(X,, ..., X,) does have domain Q, because the coordinate

fanctions X are defined on Q. For each n and ¢t e W, let @, be a proba-

bility on ﬁ Fi in ﬁ Q. It is assumed that ¢t — Q, :is Borel. Define M,
f=1 teel

the partially exchangeable probabilities with respect to Q, and T,, as the class
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of probabilities on &Fin Q such that : for each n, given T,(X,, ..., X,} = ¢,
a regular conditional distribution for X, ..., X, is @n; Informally, Q,, is
the distribution of the data given that the sufficient statistic takes the value ¢.
This does not depend on the parameters, i.e., it is the same for all P ¢ M.
More exactly, M is the class of P for which this statement is true.

An example of this set-up is provided by coin-tossing. Then Q; = {0, 1},
& is the discrete o-field, T',(%y, ..., %,) = 21 +...42, W,o={0, 1,..., 2},
&, is the discrete o-field in W,. The relevant @, assigns equal probability
1/(1; ) to each of the ( :L) sequences in ﬁ Q with 7', =t Then My is

i=1

precisely the class of exchangeable processes. De Finetti’s theorem identifies
the extreme points of Mg, and states that any element of Mg is a unique
average of such extreme points. So de Finetti’s theorem can be (with some
effort) seen as a special case of Choquet’s theorem. On this score, see Kendall
(1963) or Phelps (1966). The object is to generalize these considerations.

It will be necessary to assume that the @, , fit together, as follows :

@n{Th =1t} = 1. ASRLTT 13 §)
Tz, ..., 2,) =Tz, ..., z,), then
Tois(@yy coir @y y) = T y(Tp, sz, ) forally e Q. ... (1.2)

For each se¢ W, and ¢t ¢ W, relative to @, 1
the kernel @, s is a regular conditional distribution
for (X, ..., X,) given T (X, ..., X,) =sand X . ... (1.3)

Related definitions have been given by Freedman (1962) and Bahadur ( 1954).
For a discussion of such ideas, see Lauritzen (1974a). In the coin-tossing
example, condition (1) is trivial; (2) is easy,

Tn+1(x1’ ceey Ty y) = Tn(xl’ teey xn)+y'

Property (3) is almost as easy. For one thing, s and ¢ determine X, ,; = t—s
=0 or 1. So it is vacuous to condition on X, ;. Now put a string of n+1
symbols down in random order, where ¢ are 1 and n—¢ are 0. Given that
among the first n exactly s are 1, the first n are still in random order. Thait is
all (3) says.

Going back to the general case, it is easy to check that My is convex.
Theorem 1.1 below will characterize the extreme points of Mg, and show that
P ¢ Mg is a unique average of extreme points. The theorem is a bit abstract,
so the characterization is indirect; in any concrete problem, some effort may
be needed to identify the extreme points : see Sections 2 and 3. The extreme



208 P. DIACONIS AND D. FREEDMAN

points are closely related to a certain o-field S, which will be called the partially
exchangeable o-field. Namely,

2 - ﬁ i(n)
n=1
where Ztn) is generated by T (X4, .o, X,y Xorss Xnsgr oo- -

In the coin-tossing example, £tm i the o-field of measurable sets which are

invariant under permutations of the first 7 coordinates. So % is the o-field
of measurable sets which are invariant under any finite permutation of coordi-
nates. This is often called the exchangeable o-field.

Theorem 1.1: Assume condition (1.1-3). There is a set Ee¢ S with
PE)Y=1 for all PeMy; for each we E, the sequence of probabilities
Qn 1, (Xy(@ - Xniay CONVETgES weak-star to a probability Qw,-)e Uq.
This Q(w,*) 18 0—1 on 2 45w ranges over E, the probabilities Q(w, ) range
over the extreme points of Mo. For any P € M, the kernel Q(w, 4) i3 a regular

conditional P-distribution given %, and

P = [ Qw, )Pdw)
E

where P is the restriction of PtoS. This representation is unique. In particular,
P e My is extreme iff P is 0—1 on 3; equivalently, iff
Plw:Qw,?)=P}=1

In the coin-tossing example, ¥ is the set of » for which
%1— [Xyw)+...4+X (w)] converges as n — 0.

Call the limit A{w). Then @(w,-) makes the coordinates independent, each
taking the value of 1 with probability A(w) and 0 with probability 1—A(w).
In short, Qw, ) is coin-tossing, with a A(w)-coin. The proof of the theorem
is deferred to Section 4.

2. EXAMPLES AND REMARKS

The first example is de Finetti’s theorem for random variables with values
in a Polish space (S, ¥): an exchangeable sequence is a mixture of ii.d.
variables.
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Ezample 2.1: Let Q; =8 and & = Afor all 7. Let T,(zy, ..., 2,)
1 »
= = 4., where §, is point mass at z : so T, is the empirical distribution.
il 1
Let @n . be uniform over the collection of all finite sequences z,, ..., z, having
the empirical distribution ¢t. Typically, @,, will have n ! atoms, but it may
have fewer, if there are repeats. Conditions (1.1-2-3) are easy to check,
and it can be verified that Mg consists of the exchangeable P, i.e., those
invariant under permutations of finitely many coordinates. Let A be a
typical probability on (S, ). Let P, on (Q,&) make the coordinates inde-
pendent, with common distribution A. If ¢, - A weak-star, then ¢ mty ™ P,

weak-star. If ¢, fails to converge, so does @, 6 indeed, the @, t”-distribution

of X, is just ¢,. Let Alw) = lim, 7', [X(w), ..., X, (w)] on the set L where
the limit exists. If P e Mg, then P(L) = 1, and for w e L the limit Q(w, )
is Py, Since P{A = A} =1, it follows that P,(, is the typical extreme
point. So E = L and

P = P, Plduw).

This is de Finet*i’s theorem, in some disguise.

The next example characterizes mixtures of i.i.d. normal variables with
mean 0 and variance o2 (N(0, 02)). The result dates back at least to Schoen-
berg (1938), who needed it to characterize metric spaces that can be iso-
metrically imbedded into Banach spaces. It has been proved in Bayesian
language by Freedman (1962b), and in the theory of Radon measures :
Chapter 9 of Choquet (1969). For recent variants and a bibliography, see
Eaton (1981) or Letac (1981). A generalization to covariance mixtures of
normal vectors is given by Dawid (1977). For a generalization to I? spaces,
see Bretagnolle, et al. (1966) or Berman (1980). The result is often stated
as follows : a sequence is a mixture of i.i.d. N(0, g% variables iff for each n
the distribution of the first » variables is invariant under rotations. To put
the result into the present framework, observe that the condition of rotational
invariance is equivalent to the condition that given (X}+4-XZ+...4+ X3t =¢,
say, the conditional distribution of (X,, ..., X,) should be uniform on the
(n—1)-sphere of radius ¢ in R#. Denote this uniform distribution by @, .

Ezample 2.2: Let Q, be the line, with the Borel o-field &;. Let
T2y ovny @) = (234...+22)t. Let 0 < 0 < <0, and let the probability P, on
(Q, &) make the coordinates independent. with common N(0, %) distribution.
If ¢,/]/ — o, then an,.—’ P, weak-star. This fact can be traced back to
Maxwell, see page 134 of Everitt (1974). It has been rediscovered many

=27
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times since. It follows that if ¢,/4/7 fails to converge, so does @, ' For
example, suppose f,/v/7% —c0. The @,,-law of X, coincides with the

Qn .7-law of X, -t [+/7%, and the mass drifts off to +co.

Let A(w) = lim %—[Xl( w)i+... 4+ X (w)?}, on the set L where the limit
om0

exists. Again, EC L so P(L) =1 for Pe My For we L, the limit Qw, )
is P,(,). Again, P,{A =0} =1, s0 E = L; the extreme P ¢ }/g are precisely
the P,’s, and for any Pe Mo,

P=] P‘\(w)f’(dw)-

Example 2.3 : When is X, X,, ..., & mixture of sequences of independent
identically distributed normal variables, with common mean x and variance
o2 ? Both x and o? vary in the mixture. The necessary and sufficient
condition is that given

U,=X,+..+X,
and Vo= (Xi+...+ X3,

the conditional distribution of X, ..., X, is uniform over the relevant (n—2)-
sphere in R#. The argument is as in the previous example. Alternatively,
such mixtures may be characterized as the set of processes invariant under
the group of orthogonal transformations of R® that preserve the line
2y = Ly = ... = T,; see Smith (1981) for further discussion.

Ezample 2.4 : When is X;, X,, ..., a mixture of independent identically
distributed rormal variables with common mean # and known variance o2 ?
Only g varies in the mixture. The necessary and sufficient condition is that
X is exchangeable and that given X,+...+X, = ¢, the joint distribution of
X, ..., X, is normal, with B(X,) = t/n, var(X;) = 0%, cov(X,, X3) = —o?¥n—1.
Thus the law of X;, ..., X, is normal on the hyperplane X;+...4+-X, =t¢.
The argument is essentially the same as the argument for example 2.2.

Example 2.5: When is X, X,, ..., a mixture over & of sequences of
independent uniform variables with range {0,4] * The necessary and suffi-
cient condition is that given M, = max(X, ..., X,), the X/’s are independent
and uniform over [0, M ,], for ¢ = 1, ...,n. The idea is that M, T 8, so the
conditional law of X, ..., X, given M, tends to the right limit.

Example 2.6 : Fix a sequence of positive constants c¢; with Zc¢; = <o.
Let A be a nonnegative parameter. Let X,, X, ..., be independent, X; being
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Poisson with parameter Ac;, Write P, for the law of X;, X,,.... To charac-
terize mixtures of P,’s let

T, = X,+..+X,.

These will be the sufficient statistics. I.et W, consist of the nonnegative
integers, and for te W, let @, , be multinomial, with ¢ trials and n cells, the

n
i-th one having probability ¢;/ % ¢;. Then the mixtures coincide with the
il

class Mg, and the P, are the extreme points. The argument is that @, t
converges iff ¢,/c,+...+c, converges to a finite limit, say A; and then the
limit is P,. If {,/c;+...+c,— o0, the Qn't"-law of X, is binomial, with
suceess probability ¢,/c;+...+c¢,, and number of trials ¢{,, so the mass drifts
off to cc. Now one proceeds as usual, with A(w) =n1i1)n‘r T (w)e;+...+c¢,

on the set L where the limit exists.

Example 2.7: This is like example 2.6, but Xc; < 0. The sufficient
statistics are still 7', with the same @, ;’'s. The twist is that the P,’s above
are no longer extreme in Mo. Instead, the extreme points are the multi-
nomials, with ¢ balls being dropped into a countably infinite number of boxes;
the balls are independent, and each ball drops into box i with probability
¢i/Zci; let @, be the distribution of the box counts; then @, is a typical extreme
point. The idea is that @, , converges iff ¢, converges to a finite limit, and

this will be ¢.

Remark 2.1 : Mixtures of Markov chains can be characterized by using
the transition counts as sufficient statistics as in Freedman (1962a), Diaconis
and Freedman (1980a). These results can also be derived as a special case of
Theorem 1.1.

Remark 2.2 : We have not treated a host of more or less ob ious conse-
quences of the representation. These include genera'izations of the Hewitt-
Savage zero-one law and theorems involving limiting theory of partially
exchangeable variables. The bibliography lists a number of papers which
give detailed discussion of special cases.

Remark 2.3 : In principle, the same kind of reasoning applies to charac-
terize mixtures of P,, where relative to P,, the X, are independent generalized
exponentials

P X = j} = ofi, A)e/DID py{j}.
Applications include the binomial and negative binomial. See Freedman
(1962a) for details,
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In recent work, Berg and Ressel (1978) and Ressel (1983) treat examples
where the sufficient statistics are “sums” with values in a semigroup. For
many cases, they can identify the extreme points with characters in the dual
semigroup.

The examples suggest a simple scheme for generating others. Take any
standard parametric family P,; let Xy X,, ... be iid. P,. Consider the
usual sufficient statistic for A. T(X, ...X,). Let @n,: be the conditional
distribution of X;, X,, ..., X, given T,=t TheT,and Q,, define a convex
set Mg asin Theorem 1. Sometimes the extreme points of J g are precisely
the family P,. Examples (3.5-3.7) show that this scheme can fail. A positive
result for integer valued exponential families with T,=X;+...+-X, 18
given in Section 3. We do not know a version for continuous exponential
families.

Remark 2.4 : Invariance and partial exchangeability. Consider again
de Finetti’s theorem for exchangeable random variables. The generalizations
discussed here depend on the formulation in terms of the conditional distribu-
tion given a statistic. Another way to generalize is to consider processes
invariant under groups other than the permutation group. There is a widely
known representation theory for invariant measures. Roughly, every in-
variant probability is a unique mixture of extreme invariant probabilities :
the extreme points are characterized as ergodic. zero-one on the o-field of
invariant sets. Details may be found in Farrell (1962). Varadarajan (1963),
Phelps (1966), or Maitra (1977).

There does not seem to be any theory that says when the extreme points
may be regarded as a family of measures smoothly parametrized by a low
dimensional manifold. Consider examples 2.1-2.3 from the invariant point
of view :

In Example 2.1 (de Finetti’s theorem for Polish space valued variables)
the set 2/, is the set of all probabilities invariant under the permutation
group. Here if Q; is infinite, the extreme points are infinite dimensional:
while if the basic space Q, is finite, the extreme points are finite dimensional.
Thus “finite dimensional extreme points” are not simply a property of the
group involved. Examples 2.2 and 2.3 (mixtures of normals) can he character-
ized by invariance under the orthogonal group and a subgroup of the orthogonal
group. We do not know a group theoretic characterization for location
mixtures of normals with known scale.

A further example is provided by a theorem of David Aldous (1981b).
Aldous considered the problem of an array .X; with joint distributions invariant
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under permuting rows and columns. He determined the extreme points and
a representation theorem. Hoover (198la) contains further specification of
the extreme points. Diaconis and Freedman (1981) contains an application
to a psychology problem. Here, even if the X;; only take values zero and
one, the extreme points are infinite dimensional. This problem can be thought
of as a sequence of random variables invariant under a subgroup of the in-
finite permutation group.

Remark 2.5 : Finite versions of the theorem. Theorem 1.1 characterizes
the extreme points of infinite partially exchangeable sequefces. For exchange-
able sequences. there have been a number of results that imply that a finite
exchangeable sequence is almost a mixture of coin-tossing. For details and
references to the work of de Finetti, Kendall, and others on this problem,
see Diaconis and Freedman (1980c). In Diaconis and Freedman (1983)
we prove that if X,,.... X, is orthogonally invariant then, for k < =, the
law of X,, ..., X\ is almost a scale mixture of iid. N(0,0? variables in
variation distance with error smaller than 2k/n. Similar results hold for
mixtures of geometric, Poisson. and exponential variables. A general theory
is lacking. Recently there has been interesting work showing that finite
exchangeable sequences can be characterized as mixtures of coin-tossing with
a possibly negative mixing measure being allowed. A result of P. A. Meyer
is given in Delacherie-Meyer (1975, p. 48-53). See also Jaynes (1982).

Zaman (1981) considers zero-one valued processes and T',(z;, %y, ..., Z,)
= (t;y) where t;; is the number of i to j transitions n (2, ..., 2,), 4,7 =0, L
The Qn,; measures are taken as uniform over all binary sequences of length n
with T, = ¢. Zaman shows that if X, X,, ..., X, is a stationary partially
exchangeable sequence of length n which can be extended to a partially
exchangeable sequence of length n+% then, in variation distance, X;, X,, ..., X,
is almost a mixture of stationary Markov chains, the error tending to zero
like (log k)/k.

3. INTEGER-VALUED PROCESSES WITH SUMS AS SUFFICIENT STATISTICS

This section characterizes integer-valued processes X, X,, ..., with the
partial sums 7, = X,+...+ X, as sufficient statistics. The extreme points
turn out to be sequences of independent random variables with common
generalized exponential distribution. We will write g, ; for a proposed condi-
tional distribution of (X, ..., X,) given X,+...+X, = k; let M, be the set
of processes X,, X,, ..., such that g, ; is in fact the conditional distribution
of X;, ..., X, given X;+... X, =},
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Some three examples will give the flavor of the theory to be developed
here.

Exzample 3.1: Let ¢, x be the uniform distribution over all nonnegative
n-tuples of integers whose sum is k. Then the extreme points of J, are the
sequences of independent random variables with common geometric dis-
tribution.

Ezxample 3.2: Let gn; be the multinomial distribution on n-tuples of
nonnegative integer whose sum is k, with uniform success probabilities
(1/n, ..., 1/n). Then the extreme points of M, are the sequence of independent
random variables with common Poisson distribution.

The geometric distribution and the Poisson are exponential. The next
example patches the two previous examples together.

Example 3.3: If k> 0, let qn,x be the multinomial distribution on
n-tuples of integers whose sum is k. If & < 0, let ga x be the uniform distribu-
tion over all n-tuples of nonpositive integers whose sum is k. If £ = 0, by
either definition, g,  sits on the single n-tuple (0, ..., 0). Then there are two
kinds of extreme points of M, :

- Sequences of independent nonnegative random variables all with
common Poisson distribution.

- Sequences of independent non-positive random variables which
have, when their sign is reversed, a common geometric distribution.

In the general case, the situation may be described as follows : ¢ deter-
mines a partition of the integers into intervals I;, disjoint except for endpoints,
and reference measures u; supported by I;, An extreme point of M, is a
sequence of independent random variables, with common distribution an
exponential, through some u;.

Implicit in the proof is a version of the Koopman-Pitman-Darmois
theorem for integer valued random variables. Our results have some overlap
with results of Lauritzen (1975), (1982; Chapter 3) who develops, i a different
language, a theory of ‘“‘generalized exponential families” on a discrete set
using the language of semi-groups.

Let I be a set of integers of the form I={ne Z :a< n < b} where a and b
are allowed to be infinite. Let x4 be a nonnegative measure on I. A proba-
bility p on I is expo “ential through u if there is a real number A and a constant ¢
such that

p(n) = ce*ru(n) for nel.
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Of course, if I is all the integers, and x grows rapidly at —oo, there may be
no exponentials at all through u. Also by definition, an ‘“exponential -
sequence” is a sequence of independent random variables, with a common
distribution which is exponential through u.

For each =, let D, be a subset of the integers, and for te¢ D, let ¢, be a
probability on =-tuples of integers. Suppose ¢,.: is exchangeable, so all
permutations of any given n-tuple will have the same ¢, -probability. It
will always be assumed that the D’s and ¢’s are consistent, in the following
sense : if ¢,., €D, and Qns1y, (Ty, +ves Ty Tpyy) > 0, then

Tyt Tt Ty = b
z+...+x, =t,eD,
Furthermore,

PPN COUREE z T+, =t,) = q”"”(xl, ooy Tp)e

Trivially, ¢, and ¢, determine z, ., = {,,;—*,, so there is no need to condition
on x,,,: compare (1.3). The D, and g, Will be considered as given.

A, sequence of integer-valued random variables X;, X,, ..., will be called
“g-able” provided that for all =,

P(S, =1t) > 0implieste D,
nd PX, =2y ..., X, =2,18, =¢t) = ¢, 2y, -... %)

where §, = X,+...+X,. Informally, the partial sums are sufficient
statistics; at stage n, given S, = ¢, the conditional distribution for the data
is q,.,- Write M, for the class of g-able measures.

It will be clear that an exponential-u sequence is g-able, with ¢ depending
on x. Taking a mixture of such sequences over varicus parameters A, pre-
serves the g-able structure, and even ¢ itself provided u is held constant. It
is even possible to mix over s, to a certain extent : the intervals of support
for the various #’s must be disjoint except for endpoints. The next theorems
establish the converse : a g-able sequence must be a mixture of exponential-u
sequences, where it is feasible to mix over x itself to the extent indicated
above.

Suppose now D and g are given and consistent. Consider a g-able process.
Theorem 1.1 can be used, for the g-able process has law P e M,. Consider
the extreme points @(«w, ') for w ¢ E. On the one hand, Q(w, ‘) € M, by the
theorem. On the other, @(w, -) makes the coordinate variables independent
and identically distributed. This is de Finetti's theorem, for Hw, 4) is a
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regular conditional distribution given E. A g-able process with law P is

then a mixture | Q(w, )P(dw) of sequences of i.i.d. variables which are g-able.
Such sequences are exponential u-sequences for certain u, as the next theorem
shows.

Theorem 3.1 : (iven D and q consistent, there is determined o finite or
countable collection @ of intervals (I, J, ...}, pairwise disjoint except for end-
points, and for each I € @ a finite or infinite measure pur concentrating on I,
with the following property. If X, X,, ..., are ii.d. and g-able, then for some
I ¢ @, the common law of the X, is exponential through u;.

The following points may be noted :

(i) mr need not assign positive mass to all the elements of 1.

(ii) If I is infinite in both directions, then @ = {I}; there need not be
any exponential law through s, in which case there are no g-able
X’s.
The theorem is an immediate consequence of the following proposition. As
discussed at the end of this section, the proposition is a version of the Pitman-
Koopman-Darmois theorem for discrete variables.

Proposition 3.1 : Suppose the random variables X, are i.i.d. and g-able
and likewise for X,.
(a) There are only three possibililies :
- either ess.sup. X, < essanf. X,
or ess.sup. X, < essanf. X,
- or the laws of X, and X, have the same support,

(b) In the last case, the law of X, is exponential through the law of X .
The proof of Proposition 3.1 depends on the following lemmas.
Lemma 3.1: Let i <j < k be integers. Then there are positive iniegers
a, b, ¢ such that
ar-ck = b
a+c¢ = b.

Proof : Choose a and ¢ so that
ck—j) = a(j—1),
For example, ¢ = (j—i) and a = (k—j). Then set b =a-+c. O

Lemma 3.2: Let p' and p be two probabilities on the integers. with the
same support S. Suppose that for all distinct i,j, ke S

M= A=A

k—3 i

, e (3.1)
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where Ay = log p;[p;.

Then p' is exponential through p. Conversely, if p' is exponeniial through p,
then (3.1) holds.

Proof : The ratios (A;—A¢)/{(j—1i) all have a common value, call it A.
Then fixing i€ S,
Ay = Agy—Aig+Aj
o py = Cebip;
with C = exp[A, o —Mo)-
The converse is clear. [}

Lemma 3.3: Lef © <j <<k be integers, let Ay, Agy Ap be real numbers.
Suppose that for integer «, f3, y, conditions (3.2-3) imply (3.4) :

a+p+y =0 - (3.2)
at+Bi+vyk =0 ... (3.3)
d/\g-{-ﬂ/\]-*-‘}’/\k = 0, .. (3.4)

Then eguation (3.1) holds.

Note : In the application, the A’s will be as in Lemma 3.2, but this is
irrelevant here.

Proof : As in Lemma 3.1, select £ and y to be relatively prime integers
satisfying
BGi—i)+y(k—3) = 0. e (3.5)
Set &« = —(f-+7y). Clearly, (3.2) and (3.3) hold, so (3.4) holds. Substitute
= —(f+y) in (3.4):
BA—A)+y—A) = 0. e (3.6)
But (3.5) entails
B = —yl—i)[(j—1)
and in particular, ¥ 5= 0. Substitute into (3.6) and cancel y to get (3.1). [J
Lemma 3.4: Let 1 <j <k be integers; let Ay, Ay, Ax be real numbers.

Let a,b,¢,a',b', ¢’ be nonnegative integers. Suppose conditions (3.7-8) imply
(3.9) :

a+b+c =a'--b'+c .. (8.7
ai+bjck = a'i-+b'j+c'k .. (3.8)
a/\i+b/11+61\k = a’/\t—f—b’/\,-{-c'/\k. .. (3.9)

Then equation (3.1) must hold.
5-28
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Proof : The idea is to use Lemma 3.3. with % = a—a’, etc. More
specifically. let x. 3. y be a triple of signed integers satisfying (3.2) and (3.3).
Construct « and o’ as follows :

ife> O0Othene ==xzanda' =0

ifx<Othena =0and o = —a.

Likewise for b, b’ and ¢, ¢’. Then (3.7) and (3.8) hold. So (3.9) holds, and
this is (3.4). So (3.1) holds. J

Proof of Proposition 3.1 : Let

S,=X,+...+X,, S, =X|+...+X,
= PX, =), p. = PX' =i).
Part (a). Let i <j < k. Suppose p., p;, and pp are all positive. It

is claimed that p;, p;, and p, are positive too. See Table 1.

TABLE L. ENTRIES MARKED “?” ARE
TO BE PROVED POSITIVE

P o’
D) + ?
j ? —_—
Tk + 9

To prove the claim, apply Lemma 3.1 to i,j, k&. Let ¢ = bj and n = b; now
n—a = b—~a = ¢. Since ¢ = at-+ck,

P(S,, =1 > P(X1 =..= Xa =ia,nan+1 =, = Xn = ]c) =p“‘p‘i>0’
clearly, P(S,::t)) P(X1=.=Xn=j)=p?>0,
Especially, ¢¢ D,. Since X and X’ are g-able,

p?/P(Sn =) = 'Iru(j: 1])
= pl|P(S, =t) >0
$0 ps > 0 as claimed. Likewise,
P pLIP(S, = ) = pipi/P(S, = ) > 0,

$0 p; >0 and p; > 0, as claimed. Part (a) of the proposition now follows,
as a moment’s thought will show.
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Part (b). The idea is to apply Lemma 3.2; equation (3.1) holds by Lemma
3.4, More specifically, let i < j < k be in the common support of the law
of X, and X,. Let a,b, ¢, a’,b’,c’ be nonnegative integers such that (3.7)

and (38.8) hold :
at+b+c = a'+b'+c¢ = nsay

ai+bj+ck = a'i4-b'j4-c'k = ¢ say.
Then PS,=1t>pp}pi>0
P8, =1t >pi®p’m* >0
so teD, Because X and X' are both g-able.
2% 2% pf/P(S, = t) = p p* pif|P(80 = 0).
Define A; as in Lemma 3.2 and take logs :
aA+bAy+ed; = log P(S, = t)—log P(S, = ¢).

Likewise for a’, b', ¢/, proving (3.9). Then (3.1) holds, and Lemma 3.2 proves
claim (b).

Remark : These results seem to extend to the case where the sufficient
statistics are f: h(X;), with h an integer-valued function. The relevant

=1
“exponential”’ distributions are of the form
¢(A) ermD pfa}.

They may also extend to the case of vectors of integers, but the relationship
among the cases (Proposition 3.1a) is not clear; also, Proposition 3.1b needs
attention in the vector case. Both Martin-Lof (1974) and Lauritzen (1982)
have some results for the vector case.

Given D, and ¢y consistent, when does there exist a g-able i.i.d. sequence ¢
We do not have a neat answer. and the question is nontrivial, as the following
examples show.

Ezample 3.4 : There are D and ¢ consistent, but no g-able processes :
Let Xuy...., Xyn have values N—1 and one value —(N—1)?, placed in random
order. Let Syn = Xyy+...+Xnp for n=1,..,N. Let

Dyp={t: P(Snn=1t) > 0}

and for teDyy, let gy o, be the conditional distribution of Xy, ..., Xyn

given Syp = t. Fix n. The Dy, are pairwise disjoint, for N = n,n+1, ...

Indeed, D,, = {0} and for N larger. Dyy contains the two values

(N—1m, —(N—1)N—n)}. Let D,= \) Dy if teD,, then t¢ Dy for
N

-
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a unique N; let ¢n: = qyn. These D’s and ¢’s are consistent. Indeed, fix
teDy ny; with N > n+1. Suppose gy, ne1,c 8SSIGNS positive mass to
Ty +.es Ty, Tnyy. Then there must be positive probability that

Xy =2y, .o, Xyp = Tpy XN, ne1 = Tpyy.

There are only three possible cases :

Case1: £, =..=2,=m,,,=N~1
Case2: z=..=x,=N~1 and z,,, = —(N—1)2
Case3: =z = ..=ux,= N—1, except for one i with

zy = —(N--1)%; and z,,, = N—1.

In all three cases, s = z;+...+2, € Dyy; and the gy nt1,: -distribution of
Xy ooy X, given X+ + X, =58 gy o4

However, there is no g-able process. For if there were, for some sequence £,
with ¢, ¢ D,, the 9, ,-law of X; would have to converge, by Theorem 1.1.

However, all the mass escapes to -oo. Indeed, suppose ¢, € Dy, with N = n.
Then the only ¢, ,”-possible values for X, are N—1 and —(N—1)2.

Theorem 3.1 and Proposition 3.1 are discrete versions of the Koopman-
Pitman-Darmois theorem. The usual version of this theorem says that if a
suitably smooth family P,(dz) admits the sum as a sufficient statistic, then
the family is an exponential family. A clean version of this theorem is in
Hipp (1974), which also has useful references to previous work.

Proposition 3.1 implies that if a family of probabilities P 4 on the integers
have common support, and if for each » the sum is s sufficient statistic, then
the family is exponential. Anderson (1970) has this result and results for
some sufficient statistics other than sums. The followng example shows

that if kb is a real valued function and 3 k(X;) is sufficient the family may
i=1

not be exponential.
Example 3.5: Let A be the family of all probabilities whose support
is the integers. Let 7',(X,, ..., X,) = Z": MX;), where & is the exponential

=]
function. Then T, is sufficient for A, Indeed, e is transcendental. There-
fore, knowing 7', is the same as knowing the order statistics, and these are
sufficient.

The usual versions of the Koopman-Pitman-Darmois Theorem imply
that if the sum is sufficient for samples of size n = 2, then the family is exponen-
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tial. The discrete version given here requires a condition on samples of every
size. The following example shows that no fixed, finite value of = will do
in the discrete case.

Ezxample 3.6 : Let N be a positive integer. Let 4y be the family of
all probabilities supported on the powers of N, namely {1, N, N2, N3, b
For n < N, the sum of the observations from a sample of size n are sufficient
for Ay since the order statistics sre recoverable from the sum.

The final example shows what happens if integer valued statistics more
general than sums are admitted. The example is a naturally occurring
complete exponential family with the product of the observations as sufficient
statistics. The family is one-dimensional, but the associated extreme points
are infinite dimensional.

Example 3.7 : The zeta density. For 1 < A < oo, let

1
p)\(n)= m}., n=1,2,...,

where {(A) = Z 1/n* 1s Riemann’s zeta function. The sufficient statistic
for A based on a sample of size n is the product 7', of the observations. The
conditional distribution ¢, ; is uniform over all positive integer n-tuples with
product equal to k.

Let M be the family of all processes X,, X,, .... such that ¢, is the
conditional distribution of X, ..., X, given T,. We now describe the general
extreme point of M,. For prime p, let ¢(p) be an arbitrary function with
0 <¢(p) <1 and Zy¢(p) < 0. Extend ¢ to a multiplicative function on
the positive integers as follows

$(1) =1, ¢(n) = Hp|n (p).
The product is over all prime divisors of 7, so ¢(12) = ¢(2)¢(2)$(3). Expand-
ing formally, using unique factorization,

Z.¢(n) = Tp(1—d(p));
the product converges because the sum of ¢(p) is finite. Thus ¢ can be
normalized to a probability ¢ on {1.2, 3, ...}.

It will now be shown that the extreme points of M, are the sequence
of iid. random variables with common distribution §. To begin with, if
X,, Xy, ... ore i.id. according to ¢, then the process {Xi} € M, because ¢ is
multiplicative. The ii.d. process is extreme in M, because it is extreme in
the larger class of all exchangeable probabilities.
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To show that all the extreme points of M, arise in this way, observe
first that de Finetti’s theoremr implies that any extreme point consists of a
sequence of independent random variables with common distributions ¢;
the argument is completed by showing that ¢ = $ for some ¢. Consider
X, and X, independent with common distribution . Consider pairs of
integers (¢,j) and (i’,4') with 4 = ¢j’ = 1 -k say. Because the product is
sufficient,  YG)W(G) = YEWG) = Y(UPk). So  Y(1) #0.  Define
$(5) = Y(1)~1Y(s) and observe ¢(i-j) = («)p(j) s0 $(n) = Iy G(p). 1t follows
that ¢ is between 0 and 1 and that ¢(p) sums as required.

Remurks : The zeta distribution is useful in probebilistic number theory
because, for m and n relatively prime, P,(m and n divide X) = P (m divider X)
py(n divides X). Diaconis (1980) gives applications.

In the continuous version of this example one considers the family with
density p,(dx) = (7\—_?11—)1,7 dz on [1, c0) with 1 < A < cv. Taking the products

as sufficient statistics 7', and the conditional distribution given T, =1 as
Qn.i, the family M, can be shown to have only ii.d. sequences with law p,(dz)
as extreme points. i

4  MATHEMATICAL APPENDIX

Consider a sequence of Polish spaces @7, with their Borel o-fields %,
Let p, be a Borel in mapping of &, onto &,;, for n > 2. In Theorem 1.1,

n n
Oo=0Q and 4,=1I1 &

=1 i=1
pn(zl’ ey Tuyy 27”) = (xl’ ey xn—l)‘
Let W, be a Polish space with Borel o-field .@,; let T, be a Borel mapping

from g, into W,. For each = and ¢ suppose @,; is a probability on
(> ). With ¢ > @, Borel. Suppose

QT =1t =1 o (1)

For each n and te W, relative to ,,,, a regular

conditional distribution for p,.; given T, 0p,,, =s

is Qn s . (42)
This condition is slightly weaker than (1.3), and the definition of the partially
exchangeable o-field will have to be revised slightly, in consequence.

Consider now the projective limit < of &,, namely, all infinite sequences
(%, @y, ...) With z, € 30, and p,(2,) =z, ;. This is a Borel subset of the
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product space ﬁ S0:. Equip &p with the Borel o-field _4. Let £, be the
feml
n-th coordinate function on 2 so p,.(¢,) = £,_;,. In Theorem 1.1, 2= Q
and 4 = &, but
£, =Xy o X

Introduce Mq. the class of partially exchangeable probabilities, as follows :
P e M iff for all n, relative to P. the kernel @, is a regular conditional dis-
tribution for £, given 7,(£,) =t.

The partially exchangeable o-field is now defined as follows :

Y = ﬁ T (a)
nwl
where X is generated by T,(£,), T hetl€nis)s oor -

In short, ¥ is the tail o-field of the T,(£,)’s. Set-theoretically, ¥ is usually

smaller than the 3 of Theorem 1.1. In the presence of condition (1.3),
however, the two o-fields are measure-theoretically the same. This will be
proved as Lemma 4 below.

Theorem 4.1 : Assume conditions (4.1-2). There ts a set Vg e X with
P(app) =1 for all PeMg; for each xe¢ &0, the sequence of probabilities

Q, Ttz COmverges weak-star to a probability Q(z, ) e Mq. This Qz, ) is

0—1 on Z. As x ranges over E, the probabilities Q(z, -) range over the e:treme
poinds of Mqg. For any Pe My, the kernel Qz, 4) is a regular conditional
distribution for P given X%, and

P= [ Q@ )dP
e

where P is the restriction of P to 5. This representation is unique. In particular,
P € Mg is extreme iff P is 0—1 on X; equivalently, +ff
Pz : Q(x,") = P} = 1.

The proof of the theorem is presented as a series of lemmas. First, some
general facts about conditioning will be developed; routine proofs are omitted.
Let X and Y be measurable mappings from (Q,&,P)to (Qx, Fx) and (Qy, Fy)
respectively; so PY ! is the distribution of Y, and is a probability on (Qy, F¥).
As usual, Q,(4) is a regular conditional distribution (r.c.d.) for X given ¥ =y
iff :

- for each y € Qy, @Qy(-) is a probability on (Qx, Fx);
- for each 4 ¢ xz, y— Qyd) is Fy-measurable;
- Qy(d4) is a version of P(X e 4| Y).
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In the first lemma, let f be a measurable mapping from (Qx, Fy) to
(Q, F).

Lemma .1 : If @y is an rcd. for X given ¥ =y, then Qyuf~'is an r.cd.
Jor f(X) qiven ¥ = y.

Lemma 4.2: Suppose Qy is an rcd. for X given ¥ =y. Let Fbe a
nonnegative Fx X -Fy-measurable function on Qxx Qy. Then

E{F(X, Y)} = J 1 F@ yQdx)PYdy).
v “x

The next lemma may be intuitively obvious, but the proof is somewhat
technical. The mapping Y and its range Qy do not appear in the statement;
y is used as the typical value of a function g.

Lemma 4.3 : Let f, g, and h be measurable mappings from (Qx, $x) to
(Qr, F1) (Qg, Fg), and (Qp, Fn) respectively. Let  be an r.cd. for X given
9(X) =y. Thus, ye Qg and Qy is a probability on (Qx, Fx). For each ye Q,
let Qyz be an r.c.d. for f qiven h =z, relative to Q,. Suppose (y,z) — Qys(4) 18
measurable for each 4 e Fy. Then @, is an r.cd. for f(X) given g(X) =y
and W(X) =z.

In other words : conditioning first that g(X) = y and second that A(X) =z
is the same as conditioning simultaneously that ¢g(X) = y and AX) = z.

Proof : Let 4e &y, Be &y, and C e &;. What must be shown is that

P{f(X)ed and ¢(X) e B and KIX)e C} = [ 15[g(X)]1c[MX)]1Qgz)nx)(4)dP.
(4.3)
The left side of (4.3) is

P{X e(f'd N2 1C) and ¢(X) e B} = [ Qu(f~1d (N 2A1C)15(y)Pg(X)}dy).
Now bring in Q,;; for y ¢ Q4 and z € Q, this is a probability on Qy, and
Q(fA N A0 = nj Qu(4)1c(z)Qy 2Y(dz).
h
So the left side of (4.3) equals
nf n{ Qua(A)18(y)1c(2)@y A~1(d2)Pg(X)~Y(dy).
g

The “change of variables” formula can be used to express the inner integral as
an integral with respect to Q,(dz) over x ¢ Qx. So the left side of (4.3) equals

I I Quaa(d)1ay)1c[A()]Qy(d) Py(X)~Ydy).
g, ay
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To evaluate this last expression. use lemma 4.2 with g(X) for ¥ and

F(z. y) = Quaa(4)1s(y)1[Mz)].
The left side of (4.3) is then equal to the right side. J
Return now to the setting of Theorem 4.1. It will be useful to define
for m > n a Borel mapping pm n of & onto XLy, as follows :
Pmn = Pni1°Pnt2 © -+ © Dmi-

By convention, pp.y,m = pm and pm,m is the identity. The next lemma is
somewhat technical, but it is one of the key steps in the proof.

Lemma 4.4: Let m>mn, and te W, Relative to Qm,, an rcd. for
Dm,n given
Tm—-1(Pm,m-1) = tm—l: Tu+1(?ﬂl,n+1) = tn+1) Tn(Pm,'n) = tn

is Q.

Proof : The plan is to fix n and do an induction on m. The case
m = n-+1 is just assumption (4.2). Suppose the result for some m > n-+1.
To proceed inductively, it is necessary to compute, relative to Qm.y: an
r.c.d. for pm,y n given

Tm(Pm+1,m) = {1, Tm-1(Pm-.-1,m—1) =lm_g; -+ Tn(Pm+1,n) =t, ... (4.4)

The idea is to use Lemma 4.3, and condition on Tm(pm.y,m) first. Pubt pm.y
for X, so Qx = Xp,. Also put pp,, s for f, and Ty, for g. For &, put the vector

Tm-.]. (Pm,m-].), ceey Tn(Pm,n)-

The composition A(X) is easily computed because

Pmir,m =DPmi1; Pm,m-1 ° Pmi1 =Pmi1,m-1 -+ Pm,n © Pmy1 = Pmaa,ne - (4.5)

Relative to @miy4, an r.ed. for X given ¢(X) =&y, is just Qm,tm’ by
assumption (4.2). The next step is to compute, relative to Qm'tm, an r.c.d.
for f given k. By the inductive assumption, however, this is just Qn’ 8y which

is certainly a measurable function of (t,, ¢, ..., tm). By Lemma 4.3 and
the identity (4.5), relative to @n_, s, an r.c.d. for pm., » given the equalities

(4.4) is Qn,t,,' ]

This lemma must now be translated into a statement about the partially
exchangeable probability P on (22, _A4).

s-~29
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Lemma 4.5: Let PeMqg and m > n. Relative to P, an r.c.d. Jor &,
qiven

Tn°fn =tlny o0y T o fm=¢m
18 just @, ‘n

Proof : Again, Lemma 4.3 can be used. Put &, for X, Pm,a for f, Ty,
for g, and for % the vector

T, Pm,ns oor Tipey o Pm, m—3.

Of course, f(X) = D n o &m = £,. The requisite r.c.d. for f(X) can be com-
puted by conditioning first on g(X), then on A(X). By the definition of My,
the first conditioning gives @, ¢, Lhe second gives @, t, 0¥ Lemma +4. [7]

An immediate consequence is the following :
Lemma 4.6 : Let PeMy. Relative to P, a rc.d. Jor &y given Itm s
Qn, Taldp)”

The next lemma establishes the convergence of Q"‘ ¢, along almost all
subsequences.

Lemma 4.7: Let S0p be the set of ze 0 such that for each k, as n — oo,
Q"' Tolen(@)] Dl converges weak-star to a limiting probability on (3, /4x); denote

this limit by Q(k, z, -). Then ¢ T and P(Ly) = 1 forall Pe Mq. Further-
more, x—> Q(k, z, 4) i3 T-measurable fo'r each A € Ay, and a version of P{f ¢ 4|X}
Jor any P e Mq.

As a matter of notation, Q(k, z, -) is to be distinguished from @, ;. The
latter is the distribution of & given Ti(£;). The former is the distribution
of £ given the tail o-fleld of {7",(¢,)}. Note that Q(k, x, ) does not depend
on P; this is important.

Proof : It is at this point that the Polishness of T is used. Embed
i as a Borel subset of the compact metric space O Let C(i’k) denote the
space of continuous functions on &0; if [ is a function on &, its restriction
to QL will still be written as /. Let 00(52’;,) be a countable dense subset of
0(.@’,;), in the sup norm.

Let = denote a typical point in &, and yx a typical point in . For
any bounded measurable function f on <2,

2= | fUR)@y 1,2,z PrildYr) e (4.8)
4%

is a version of Be{fée) | T )y Toeslénri)s -}
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by Lemma 4.6; indeed, & = p, x(£,). The function (4.6) must converge P-
almost surely to Ep{f(¢x) | Z}, by the backwards martingale convergence theorem.
This will now be restated as follows. Let Ggs be the set of z's where the func-
tion in (4.6) converges to a limit as n — o0; call the limit A(k, z,f). Then
GrreZ and P(Gyy) = 1. Also, A(k.-,[) is Z-measurable, and a version of
Ep{f(¢x)|Z}. Note that Gy and A(k, z, f) do not depend on P.

Let Gy be the intersection of Gis over fe Oo(.‘f:’k). Again G e.E; and
P(Gx) =1 for all Pe My Fix ze¢ Gy, abbreviate g, for the probability
QT,,[:,.(x)] Pip on (L, F). Consider now u, as a probability on ﬁf’b Then
 the sequence {u,} is pre-compact in the weak-star topology, and

[ fdu, = Ak, z, f) for every fe Co(@k). The conclusion is that M, converges

weak-star to Q(k, z, -}, a probability on :f;’,c; furthermore,
z— [ flyr)Qk, z, dy) . (47)
Ly
is Z-measurable, and a version of Ep{f(£x)|Z} for all fe Co(.ﬁ}k).
Does Q(k, x, L&) =1 ! By a standard argument, for any bounded Borel

function on .Ef’g, the function in (4.7) is Z-measurable, and for any SeZ,

[ [ fyr)Qk, 2, dyp)Pdz) = [ fléx)dP. e (4.8)
&nS xNSs
Lk
Putting f =1 G and § = & proves that

Hy={r:2eG and Qk, z, L) = 1}eX

has P-measure 1 for all Pe My Now
&’L = D Hk.

For z ¢ &, view Q(k, z, ') as a probability on (X%, &). As a function of z,
this is Z-measurable, and an r.c.d. for & given X by (4.8). [

Lemma 4.8 : Let L be the set of x e Ly, such that for all k,
Q(ky z, ')Pg—l = Q(k_li z, ')'
Then LceX and P(Lc) = 1 for all Pe M.

Proof : That LceZX is clear. For fe 00(.%3,,_1), as defined in the proof
of the previous lemma,

z— J. f(yk—l)Q(k— 1: z, dyk—l) ces (4.83:)

k=3
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is & version of Ep{f(ér_1)| Z}. Now f(py) is a bounded measurable function on
. So

= | florye)Qk, . dys) (4.8b)

~CE
is a version of Ep{floe(ér)] | Z} = Ep{f(fk_,)| T}, because Prlér) = €x_;. Let
Hyy be the set of 2’s for which (4.8a) and (4.8b) agree. Then HiseT and
P(His) = 1. Now

Le = () Hyy,
1%

where f runs over C’o(ﬁg). O

For each ze¢ &, the probabilities @k, , ) are consistent as % varies.
So there is a unique countably additive probability Q(z, -) on (&, %) such
that for any k£ and 4 ¢ _%,,

@, {§x € 4}) = Qk, z, 4).
Again, the Polishness of the 2 is used.
Lemma 4.9: Fizx Ae A, The Junction x — Q(x, A) on L¢ is S-measur-
able, and & version of P(4|5) Jor any Pe M,.
Lemma 4.10: Let g be the set of x€ XL¢ such that Qxz, ) e Mg, Then
.Q:’Qez and P(wq) = lfor all PGMQ.

Proof : Recall that 7', is a measurable map from &, into W, where
2, is equipped with the Borel o-field %5, and W, with the Borel o-field 3,.
Write y for a typical point in &2, Now z in L is also in Ly iff

e ,{(y)IEB Qn.’-"nﬂnly)l (4)Q(z, dy) = Q(x, {T.é,)cBand ¢, ¢ 4} o (4.9)

foralln,all Be &, and 4 ¢ «¥,. Here, 4 and B can be restricted to countable
generating algebras for their respective o-fields ; and both sides of (4.9) are
Z-measurable functions of z : so Ly e =. )

To show that P(y) =1, it is enough to show that both sides of (4.9)

have the same P-integral over arbitrary sets G¢Z. Now the P-integral of
the right side over @ is

P{Gand T (£,)eB and ¢, ¢ 4},

by virtue of Lemma 4.9, with {7'(¢,) ¢ B and §,e4d} for 4. Likewise, the
P-integral of the left side over @ is

Br{lo 16T A(£,)] * Q1 e ().
But GeZm, as is {T,(¢,) € B}, so the last display equals

P{Gand T (¢,)eBand ¢, ¢ 4},
by Lemma 4.6. (]
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We have now reached the point where Dynkin’s theorem (1978) can be
applied. For ease of reference, the argument will be sketched.

Lemma 4.11: Let So be the o-field of subsets of g gemerated by
x— Qx, A) as A ranges over _4. Then g is countably generaled.

Proof : A countable generating class of sets is {z : 7 ¢ L and Q(z, 4) > 7}
where 4 runs over a countable field generating g and r runs over the
rationals. J

Lemma 4.12: For AeX, let A* be the set of x € Lo with Pz, 4) = 1.
Then A®€Zg, and P(A A A% =0 for all PeM,.

Proof : The function z — Q(z, 4) is a version of P(4|Z) by Lemma 4.9,
and P(4|Z) = 1, with P-probability 1. J

The inseparable o-field £ is therefore the same (up to null sets) as the
separable sub-c-field Sq¢. In some applications, it is important that 4* does
not depend on P.

Lemma 4.13 : For z e @, let Sq(x) be the Sq-atom containing z, namely
{y 1y € g and Q. ) = Q. *)}-
Let «rg be the set of x e 90g such that Qz, To(z)) = 1. Then Lge g and
P(xce) =1 for all PeM,.
Proof : Let A run through a countable field generating Zg. Then
Lk 18
Nalz : z € g and Qx, 4) = 14(2)i.
The proof is completed by appealing to Lemma 4.9, as before. []
It may be useful to observe that for z e g,
x € Qg iff Qx, A) = 14(z) for all 4 € Zq. e (410)
In general, the Q(z, -)-measure of the Z-atom through z is 0, for the measure

may be continuous and the atom is countable. By contrast, the Zg-atom
will usually be much larger, having the power of the continuum.

Lemma 4.14 : If z € O, then Q(x,-) is 0—1 on Z. )

Proof : If ze g0, then Qz,-) is 0—1 on Zo. But Qz,-) € Mq; see
Lemma 4.10. So Q(z.°) is 0—1 on £ by Lemma 4.12. ]

Lemma 4.15: Let Sp = Qg (D¢, viz., the o-field of subsets of g of
the form @0 (| A with A € Tq. For P € Mg, there is one and only one probability
measure P on (E, Zg) such. that

P= [ Q, )Pdx); . (4.11)
L
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namely, P is the restriction of P to Zg. In particular, if P and P’ in Mg agree
on Zg, then P = P,
Proof : If P is the restriction of P to Zpg, then (4.11) holds by Lemma

4.9. Conversely, suppose (4.11) holds for some probability P on (s, Ze).
Then for 4 ¢ g,

P4) = | Q, 4)P(dx) Pd) = | 1s@)Pdx)
QE wE’
= [ ls@)P(dz) = [ Qz, 4)P(dz) by (4.10)
fo4 Lg
= B4), = P(d) by (4.11). [

Remark : Suppose &, is compact and non-empty, p, and T, continuous,
and @, ¢ is a weak-star continuous function of £, Then My is a non-empty
compact convex set, and Choquet’s theorem applies, see Lemma 4.16 below
for the identification of the extreme points. Under these conditions,
QL = Lo = Qc. Apparently, @y may be smaller thanre , but we do
not have an example. Without compactness and continuity conditions, Mg
can be empty : see example 3.4.

Lemma 4.16. The probability Pe Mg is extreme iff it is 0—1 on I;

alternatively, P is extreme iff

Plx:z e Qor and Q(z, ') = P} = 1. v (4.12)
In particular, as x runs over g, the probability Q(z, ) runs over the extreme
PinM Q-

Proof : TFirst, P is 0—1 on Z iff it is 0—1 on =z, by Lemmas 4.11-12.
Next, P is 0—1 on Zg iff it concentrates on an atom, namely, a set of the
form

{x:2e gr and Qz, ") = P;
then P’ = P by (4.11) : that is, P is 0—1 on Iz iff (4.12) holds.

If P is extreme, then P must be 0—1 on Zg; if not, let 4 ¢ Xy with
0 < P(4) < 1. Then
P = aP;+(1—a)P,, .. (4.13)
where

a=P(d), Py=a | Q@ )P(da), Py=(1—a) [ Qa,)P(dw).
A jz’e—d
Of course, Py(d) =1 and Pyd) =0 by (4.10); so P, ¥ P, and P is not
extreme. This contradiction proves that P is 0—1 on Zj.
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Conversely, if P is 0—1 on Zg, then P is extreme; if not, (4.13) holds
for some a with 0 < ¢ < 1 and some pair P, = P, in Mg Clearly, P, << P
on Zg. So, P, and P, and P all concentrate on the same Zg-atom, i.e.,
P, =P, =P on I, and hence on ¥ by Lemma 4.15. This contradiction
shows that P is extreme.

If z € SCg, then Q(z, -) is extreme, by (4.12) and the definition of &g in
Lemma 4.13. Conversely, if P is extreme, then P is 0—1 on Xg and
Plz:Qx,-)=P}=1 by (4.12). O

This completes the proof of Thevrem 4.1. Now Theorem 1.1 can be

derived as a special case. Let &, = ﬁ Q;and A, = ﬁ Fi, SO0 L = ﬁ Q

le=l f=1 fm=1

and A= I & and £, = (X, ..., X,). With these identificatoins, the two

fm]

definitions of Mg coincide. Theorem 1.1 involves the o-field 2= ﬁ S,

nwl

where B = T Xy, oy Xy Xprs -}

Theorem 4.1 involves the o-fleld) Z = ﬁ Zm) where
n=l

2(1” = O'{T"(Xla veey Xﬂ)’ Tu+1(X17 L] Xﬂ-!-l)’ "'}'

It will be shown that S is smaller than 3, but equivalent up to null sets for
any Pe My This will prove Theorem 1.1, with 2 for E.

Lemma 4.17: Assume condifion (1.1-3). Then Z® C Sn) for all n,
and = C 2.

Proof : Tm C ™ for all n, because e.g, To(X, ..., X,,) can be
computed from T ,(X,, ..., X,) and X,,, by condition (1.2). To make this

rigorous, use Blackwell’s (1954) theorem on saturation. This will show that
for any m > n,

S.in,m) C 2(n,m)’
where
Sm = T (Xq, oo o)y TocrXps oo Xns)s ooor T Xy oves X)),

Stem = o{T (X, ooy X0)y Xnags o0 X e (4.14)
Indeed, both o-fields are Borel, and the atoms of Stnm) are smaller. O

Lemma 4.18: Assume condition (1.1-3). Fiz PeMy  Then
Qn,T, (X;,...Xa) 88 an r.cd. for (X, ..., X,) given Sm,
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Proof : It will be shown first that @n,7,x,,...X,) is an r.cd. for

(X, ..., X,) given Stm) as defined in (4.14); then m can be senb to co. The
argument will only be sketched, it is similar to the one in Lemmas +4.4-3.

First, the o-field S»m ¢ incides with the apparently larger o-field spanned
by
TuXy o0 X)), Toid Xy s Xt oo Tl Xy oo, X)) gy ovny Xime

An r.ed. for (X, ..., X,) given this menu of variables can be computed by
using Lemma 4.3, conditioning first that 7,,(X,, ..., Xn) = tn ; the definition
of Mg is used to accomplish this first conditioning. The problem is reduced

to computing, relative ¢ an r.c.d. for (X,, ..., X,) given

2
m,tm

/A0, ST ¢ N/ LSUST0: CTPIIND: GRIF) REVORS/ L NN 0: CTINID. €1 I\ CTPTINIRER SHISAD. ¢

Lemma 1.3 can be used again : condition first on Tpm_(X,, ..., Xp_y) = tm_;
and Xy, using assumption (1.3). The problem is reduced to computing,

relative to Qm—l,tm_l’ an r.c.d. for (X,, ..., X,) given

ToXp oo Xy T Xis ooor Xned)s ooor T Xy oor Xim)
X‘IH"I’ csny Xm_z, Xm_l.
Proceeding in this way, one verifies the claim. []

Proposition 4.1 : Assume conditions (1.1-3). For Ae3, let A be the

set of x € g such that Q(x, 4) = 1. Then de Z, and P4 -_\Z) =0 for all
Pe MQ.

Proof : As noted in Lemma 4.17, Z(» C 3w, And since Qﬂ,TMZx,---,Xn)

is Z®-measurable, it is an r.c.d. for (X, ... X,) given Z‘», as well as an r.c.d.

for (X, ... X,) given £(» : see Lemma +.18 or Lemma 4.6.

Turn now to Lemma 4.7 : one verifies that for x ¢ L, Qk, z,) is an
r.cd. for (X, ..., X) either given X or given 2. Likewise, in Lemma 4.9,
Q(z, ) is an r.c.d. either given ¥ or given £. For 4 ¢ 3, then Qz, 4) = 14=)
a.e. [

Technical note : In connection with example 2.1, it is pointed out that
L = Ly = &L = &, and Zg is spanned by A. Also,

B = T (X, oy Xy Xonss o)

while B0 = (T Xy s Xl Tridl Xy over Xpat)s ool
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A moment’s thought shows that 7,,,(X;, ..., X,4,) and T (X, ...; X,) deter-
mine X1, 50 In fact W = S this is the o-field of measura.ble sets in-

variant under permutations of the-first n-coordinates. In pa.rtlcula.r T=3
is the o-field of exchangeable events.
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