A GEOMETRIC INTERPRETATION
OF THE METROPOLIS-HASTINGS ALGORITHM
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ABSTRACT. The Metropolis-Hastings algorithm transforms a given stochastic
matrix into a reversible stochastic matrix with a prescribed stationary distri-
bution. We show that this transformation gives the minimum distance solution
in an L! metric.

1. INTRODUCTION

Let X be a finite set and suppose that 7(z) > 0, ¥n(z) = 1 is a probabil-
ity distribution on X from which we wish to draw samples. The Metropolis (or
Metropolis-Hastings) algorithm is a widely used procedure for drawing approxi-
mate samples from 7, which works by finding a Markov chain on X with 7 as
stationary distribution, and using the well-known fact that after running the chain
for a long time it is approximately distributed as 7.

An important feature of the Metropolis-Hastings algorithm is that it can be
applied when 7 is known only through ratios w(z)/7(y). This allows the algorithm
to be used without knowing the normalizing constant: for example, if 7 is specified
as m(x) o e PH() which is in practice impossible to sum if X is very large as
happens in many problems in statistical physics, or 7(z) o< P(6)L(z,0) as happens
in Bayesian posterior distributions, when P is a prior and L is a likelihood.

The algorithm is widely used for simulations in physics, chemistry, biology, and
statistics. It appears as the first entry of a recent list of great algorithms of 20th
century scientific computing [4]. Yet for many people (including present authors)
the Metropolis-Hastings algorithm seems like a magic trick. It is hard to see where
it comes from or why it works. In this paper we give a development which explains
at least some of the properties of the algorithm and we also show how there is a
natural class of related algorithms, amongst which it is optimal.

The mechanics of the algorithm are simple to explain. The Metropolis-Hastings
algorithm takes a base chain given by an absolutely arbitrary stochastic matrix
K (z,y) and transforms this into a stochastic matrix M (z,y) that is reversible with
respect to 7, that is, one such that

(L.1) m(2)M(z,y) = w(y) M (y, z).

This implies that 7 is a stationary distribution for M, and so we have found the
required Markov chain.
The transformation is easy to implement. If
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then

K(z,y)min(1,R(z,y)) if z#y

(1.3) M(z,y) = {K(m,y) + 3, K(z,2)(1 —min(1, R(y, z)) else.

The transformation (1.3) has a simple probabilistic interpretation: From z, choose
y with probability K (x,y). With probability min(1, R(z,y)) accept this choice and
move to y. Failing to accept, stay at z. It is easy to check directly that M (z,y)
satisfies the reversibility condition (1.1). If the base chain K is irreducible then M
is irreducible.

The Metropolis algorithm was introduced in 1953 by Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller [10]. In the original version K was taken as symmetric,
so K(z,y) = K(y,z) cancels out of (1.2), which makes the rejection step easier to
understand: the chain moves to higher m-density regions automatically but only
with appropriate probabilities to lower regions. The extension to more general non-
symmetric chains appears in Hastings [7]. Textbook descriptions are in Hammersley
and Handscomb [6], Fishman [5] and Liu [8]. Peskun [11] shows that the Metropolis-
Hastings algorithm leads to estimates with smallest asymptotic variance in a class
of variants. Some approaches to convergence rates are summarized in [3]. Further
recent references are [9], [12].

In this paper we show that the Metropolis-Hastings algorithm can be charac-
terized geometrically as a projection in a particular L' norm onto R(w), the set
of m—reversible Markov chains as in (1.1). Because projections minimize distances,
this shows that M is in this sense the closest reversible kernel to the original ker-
nel, and hence it is a natural way in which to construct a good chain with 7 as its
limiting distribution.

As an example, consider the 2 x 2 case. Then a stochastic matrix

1—a a

may be represented as a point (a,b) in the unit square. The space R(w) of 7—
reversible matrices is given by the intersection of a line 7(1)b — 7(0)a = 0 with the
unit square. If 7(1) > 7(0) the picture is illustrated in Figure 1.
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Figure 1. The Metropolis map in the 2 x 2 case.

The Metropolis-Hastings algorithm moves a point (a,b) to the line by projecting
vertically for the top region and horizontally for the bottom region, as in the dia-
gram.

In the general case, the space of stochastic matrices is partitioned into chambers
(i.e., connected components of the complement of a finite union of hyperplanes in
Euclidean space) and the Metropolis-Hastings algorithm is seen as piecewise linear
over this partition, that is, a linear projection on each piece. Details are in §2,
which also illustrates the difficulty of replacing L' projections by L? projections.
Section 3 gives a motivated development of the recipe (1.3). Section 4 gives an
extension of our main result to general spaces.

2. THE METROPOLIS MAP

Let X be a finite set. Let S(X) be the set of stochastic matrices indexed by X.
Thus K € S(X) has K(z,y) > 0 and }° K(z,y) = 1 for each z € X. Note that
S(X) is a convex set of dimension |X|(|X| — 1). Fixing a stationary distribution
m(x) > 0, >, 7(x) = 1, let R(m) be the subset of S(X) consisting of m-reversible
Markov chains as in (1.1). Note that R(w) is a convex set of dimension |X|(|X]| —
1)/2. The Metropolis-Hastings algorithm gives a map M from S(X) onto R(7):

™
(21) M) (a,y) = nin (Ka,0), 0 K0.9)),
for  # y. Observe that for z # y, M is coordinatewise decreasing. In particular,
K(z,y) = 0 implies M (K)(z,y) = 0. Thus M (weakly) increases the set of off
diagonal zeros.

Introduce a metric on S(X) via

(2.2) A, K') =) Y w(2) |K(z,y) - K'(z,y).

T y#z
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This is a metric on §(X): If d(K, K') = 0 then K(z,y) = K'(z,y) for z # y and
by row stochasticity K (z,z) = K'(z, ).
The main result of this paper follows.

Theorem 1. The Metropolis map M of (2.1) minimizes the distance (2.2) from K
to R(m). In fact, M (K) is the unique closest element of R(r) that is coordinatewise
smaller than K on its off-diagonal entries.

Remark 2.1. In R¥**X | consider the hyperplanes

Hyy = {K:m(z) K(z,y) =7(y) K(y,z)}
and their corresponding half spaces

H;, = {K:n(z)K(z,y) <n(y) K(y,z)}

Hf, = {K:n(z)K(z,y) > 7(y) K(y,z)}.

These divide matrix space into chambers. Further (NyyHzy) N S(X) = R(w).
From (2.1) the map M is a diagonal linear map on each chamber of this hyperplane
arrangement.

Remark 2.2. A related natural metric is d'(K, K') = }°, , ()| K(z,y) — K'(z,y)|.
This is the total variation distance between the rows of K and K' weighted by the
stationary distribution. The following example shows that the Metropolis chain

does not minimize d’. The example has three states and n(z) = $ for all z. With
111 5 1 1 103 1
P P 1
1 9 I L 7 1 9 I
8 8 8 8 8 8

we have d'(K,M(K)) = & and d'(K,N) = L. Note that for the metric d of
(2.2), d(K, M(K)) = d(K,N) = 2. This does not violate the claimed uniqueness
in Theorem 1; the matrix N is not coordinatewise smaller than K in the (1,2)
entry. The following proof shows that M (K) minimizes d’ among elements of R(r)

coordinatewise less than K on off-diagonal entries.

Remark 2.3. Tt is natural to seek an L? minimizer. A glance at Figure 1 shows the
problem. Near the point (1, 1) the unconstrained L? minimizer falls outside the box;
it increases a and causes the diagonal entry in its row to become negative. Thus
to implement an L? minimizing projection, one would have to take into account all
the entries in a row in order to limit the amount an entry might be increased. This
would require a complete knowledge of all previous moves in the algorithm.

Remark 2.4. The distance between K € S(X) and R(w) has a simple interpretation.
Let 7K (z,y) = n(z)K(z,y), nK(z,y) = n(y)K(y,z). Both are probabilities on
X x X and K is m—reversible if and only if 7K = 7K. With this notation, an easy
computation shows

d(K,R(n)) = |7 K — 7K ||Tv.
Proof of Theorem 1: We first argue that d(K,R(w)) = d(K,M(K)) by showing
that d(K, N) > d(K, M(K)) for every N in R(r). For this, note that

dEN) > Y (7@ |[K(@y) - N@y)| + =) |K@2) - Ny,2)|).
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Since N is in R(r), if N(2,y) = K(2,y) +¢0y> N(y,2) = Z(K (,y) +&4y). Thus

w(y)
AKN) > Y ) lenl+ 10 [K(02) - T (K(z0) + 22|
zy:KeHF,
= Y @l +|(r@ K@ y) - T0)K . 2)) — (@) 22
zy:KeHF,

Using |a — b| > |a| — |b] gives

dE,N)> Y |r@)K(z,y) —7y)K(y,2)| = d(K, M(K)).
z,y:KEH;"y
When N is coordinatewise less than or equal to K on the off-diagonal entries, we

have all €5, < 0. If any one is negative, we can conclude d(K, N) > d(K, M(K)),
proving uniqueness. ([l

3. DEVELOPING THE ALGORITHM

The following development makes the Metropolis-Hastings algorithm seem rather
natural and, in a sense, gives all possible variations.

Let K(z,y) be a Markov chain on a finite state space X. The goal is to change
K to a chain with stationary distribution m(z). The change must occur as follows:
From z, choose y from K (x,y) and decide to accept x or stay at y; this last choice
may be stochastic with acceptance probability F(z,y), 0 < F(z,y) < 1. This gives
a new chain with transition probabilities

(3.1) K(z,y)F(z,y) =x#vy.

The diagonal entries are changed so that each row sums to one.
The easiest way to get m—stationary is to insist on m—reversibility:

m(z)K (z,y)F(z,y) = n(y)K(y, ) F(y, ).
Set R(z,y) = n(y)K (y,z)/m(x)K (z,y). The reversibility constraint becomes

(3-2) F(z,y) = R(z,y)F(y,z) 0< F(z,y) <1
Since F(y,z) = wF(m,y) < 1 we must also have F(z,y) < R(z,y) and so
(33) 0 < Fla,y) < min(1, R(z.y))

The point now is that F'(x,y) may be chosen arbitrarily to satisfy (3.3) for some fixed
orientation of pairs and then F(y,z) is forced by (3.2). This gives all modifications.
We summarize.

Proposition 3.1. Let K(z,y) be a Markov chain on a finite state space X. For
each pair {x,y} choose an ordering (x,y). Choose

0< Flo,y) < min(l, Rle)), Rloy) = 7
and set F(y,z) = mF(a@,y). Then the Markov chain

K(z,y)F(z,y) z#y

My = {K(w,w) + Xy K(2,9)(1 = F2,9))
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satisfies w(x) M (x,y) = 7w(y)M(y,x) for all x,y. Further, this construction gives
all possible functions F such that (3.1) is w—reversible.

Remark 3.1. The classic Metropolis choice is F(z,y) = min(1, R(z,y)). This max-
imizes the chance of moving from z. Suppose M and M' are m-reversible Markov
chains on X with eigenvalues 1 = Ao > A1 > --- > A xj—y and 1 = X\j > ] >
S > /\TXI—I and also M'(z,y) < M(z,y) for all z # y. Then the minimax char-
acterization of eigenvalues shows A\; < A} for all . Thus among reversible chains of
form (3.1), the Metropolis algorithm has the largest spectral gap 1— A;. Moreover,
Peskun’s theorem [11] shows this gives the chain of form (3.1) with the minimum
asymptotic variance for additive functionals (the usual form of statistical estimators
as sums of a function evaluated along the chain). For contrast, chemists sometimes
use “Barker dynamics”, which amounts to the choice

_ 7(y) K (y,x) _ R
B ) = Ry + 1K) I+ R

Hastings [7] introduced the equivalent form

_ S(=z,y)
F(z,y) = m

for S(z,y) a symmetric function satisfying S(x,y) < min (1 + R(z,y),1+ m)

Remark 3.2. It is natural to consider possible choices of F' which are only functions
of R: F(z,y) = g(R(z,y)). Then g must satisfy
1
g(z) = mg(;) for z € [0, 00).
Such g may be chosen arbitrarily on [0, 1] subject to
0<g(z) <= 0<z<L

Then the functional equation specifies g on [1,00). This gives Hastings’ class of
algorithms [7]. The original Metropolis algorithm corresponds to g(z) = z, 0 <
z <1

Remark 3.3. Of course, ergodicity of M (z,y) must be checked; K (z,z) = 1 for all
x is a m-reversible chain!

Remark 3.4. There are still mysterious features about the Metropolis-Hastings al-
gorithm; when applied to natural generating sets of finite reflection groups, chang-
ing the stationary distribution proportional to length, the Metropolis-Hastings al-
gorithm deforms the multiplication in the group algebra to multiplication in the
Hecke algebra. See [1] and [2] for this.

4. MORE GENERAL SPACES

It is possible to extend Theorem 1 to general spaces. Let X be a complete
separable metric space. Let pu be a o-finite measure on X and = (z) a strictly
positive probability density with respect to pu. Let S be the set of Markov kernels
K(z,dy) on X x X having measurable densities k(z,y) with respect to u, with a
possible atom at z allowed. The Metropolis-Hastings algorithm maps K (z,dy) to
M (z,dy) with

M(z,dy) = k(z,y) min (1, R(z,y)) p(dy) + a(z) 55 (dy),
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m(y)k(y,z)

where R(z,y) = i,y and

aa) = M, (o)) + [ (1= Ro.) b, y)n(dy).

This maps K to the w-reversible Markov kernels on X. Define a metric on S by

d(K,K') = /X (@) k(@) = ¥ (2. nldou(dy),

with A the diagonal in X x X. Then Theorem 1 holds as stated for this situation.
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