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Abstract

A principal needs to make a decision, and hires an expert, who can exert costly

effort to supply useful information. The principal can incentivize effort by paying a

reward based on the expert’s reported information and on the true state of nature,

which is revealed ex post. We assume risk-neutrality and limited liability. The

principal is uncertain about the expert’s information acquisition technology: she

knows some actions (experiments) that he can take to obtain information, but there

may also be other experiments available. The principal seeks robustness to this

uncertainty, and so evaluates any incentive contract using a worst-case criterion.

Under quite general conditions, we show that the optimal contract is a restricted

investment contract, in which the expert chooses from a subset of the decisions

available to the principal, and is then rewarded proportionally to the value of his

designated decision in the realized state.

Keywords: information acquisition; principal-expert problem; restricted invest-

ment contract; robustness; scoring rules; worst case
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1 Introduction

How should one pay for information that requires effort to produce? An extensive the-

oretical literature on proper scoring rules (e.g. [18, 12]) studies how one can incentivize

agents to truthfully report pre-existing knowledge, such as beliefs about the probability

of some event. By contrast, the question of how best to give incentives to discover this

information has been much less systematically studied. Yet there are plenty of situations

where people are employed precisely to produce information: market researchers trying

to forecast demand for new products; stock analysts, meteorologists, policy advisors, and

so forth. We examine here the question of what shape and size of incentives are best for

generating information, trading off the benefits of inducing effort against the fact that

providing strong incentives can be expensive.

We adopt an agency model. A principal needs to make a decision that depends on an

unknown state of nature, and so hires an expert, who can privately obtain information

about the state by exerting effort. The expert has no intrinsic preferences over the decision

being made, but the principal can incentivize him to exert effort by making his payment

depend on how well the information he reports corresponds to the true state, which is

publicly revealed ex post. We assume both parties are risk-neutral, and we impose limited

liability — payments to the expert can never be less than zero.

We build on the recent work of Zermeño [20, 21], who gave an extremely general

formulation of the principal-expert problem. However, we depart from that work, and

from most of the existing agency literature, by assuming that the expert’s technology for

acquiring information is not common knowledge. Instead, as in this author’s previous

work [4], we take a robust-contracting approach: The principal knows some actions (here

termed experiments) that the expert can perform to acquire information, but there may be

other, unknown experiments available. The principal does not have a probabilistic belief

about which experiments are and are not available. Rather, she wishes for a contract that

can assure her a high expected net payoff without requiring any further knowledge about

the available experiments. Accordingly, she evaluates incentive contracts based on their

worst-case performance over all possible experiments the expert may have access to.

The above-mentioned previous work [4] took this worst-case approach to a standard

moral hazard problem, in which an agent’s action directly produces output for the princi-

pal, and the agent can be paid based on the observed output. In that simpler setting, the

concern for robustness results in linear contracts — in which the agent is paid a constant

share of output — being optimal. Briefly, the intuition is as follows: the principal eval-
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uates contracts based on the worst-case guarantee they provide on her expected payoff,

and her limited knowledge provides only a worst-case guarantee on the agent’s expected

payoff (via the actions she knows he has available); linearity provides a tight connection

between these two.

In the present problem, a linear contract could be defined as follows: the expert

recommends a decision, and is rewarded with some fixed fraction of the resulting payoff.

The same forces leading to linearity in the simpler model apply here too. But the problem

here is more complex, and it turns out the optimal contract is a variant which we call a

restricted investment contract. Roughly, instead of paying the expert a constant share of

the principal’s own realized payoff, she pays him proportionally to the payoff that would

have accrued (in the realized state) if she had been restricted to a certain subset of her

possible decisions. By excluding extreme decisions, the principal can make the limited

liability constraint slack and thus pay the expert less while maintaining incentives.

This paper aims to make two main points. One is literal: we give a recipe that can

be used to write contracts in a particular agency setting, and the resulting contracts

are optimally robust in a precise sense. From this point of view, the principal-expert

application is one where our assumption of extreme ignorance by the principal seems

particularly natural. It is inherent in the nature of expertise that the principal who hires

an expert does not fully understand how he does his job.

The other, broader point is methodological: we show how using a maxmin objective

leads to a tidy and tractable model. By contrast, a traditional Bayesian approach, where

the principal knows the expert’s information acquisition technology (or has a probabilistic

prior about it), is unlikely to be tractable without much more specific functional form

assumptions. (For example, Zermeño [20] gives an explicit solution in the special case

when there are two states, effort is one-dimensional, and the first-order approach is valid.)

Here, we can give results on the shape of the optimal contract that are quite general, with

essentially no structural assumptions needed on the set of known experiments.

Beyond the worst-case criterion, our other key assumption is that the state is fully

revealed ex post. This means that the principal finds out not only her actual payoff, but

also what the payoff from any other decision would have been. This assumption is not

always realistic, but it is reasonable in some applications. For example, the principal may

be a financial investor, seeking advice as to how to divide her wealth among several assets;

ex post, she can observe the realized returns on all assets (including the ones that she

didn’t invest in). For another application, the principal may be a firm deciding how to

price a new product, and the uncertainty may be about some additive demand shifter; ex

3



post, the value of the shifter can be inferred from the quantity sold at the chosen price.

Or the principal may be a firm deciding which of several investments to undertake, and

the profitability of each investment depends on various news events that may or may not

occur and that the expert is supposed to help predict. If these events are reported in

public media, then this application fits with our assumption that the state is revealed.

The full revelation assumption allows us to separate the problem of choosing the

decision from that of providing incentives to the expert. This distinguishes our work from

some prior literature on incentives for experts, including [20] as well as the computer

science literature on decision markets [16, 7], in which optimal provision of incentives

involves distorting decisions so as to reveal more information about the state. In the

model here, the principal’s decision plays no role in the incentives faced by the expert.

Nonetheless, we need to model the decision problem explicitly in order to describe how

information is valued.

In the next section, we present the formal model. We then give a more detailed

discussion of the intuition behind restricted investment contracts, before proceeding to

the formal analysis showing that such contracts are optimal. The main proof is essentially

an application of the same linear separation techniques used in [4]. In Section 3, we discuss

a number of extensions and variations. In particular, we discuss when an unrestricted

investment contract — which, up to a normalization, is just a linear contract — is or is

not optimal; this generally can happen when the principal’s optimal decision is not too

sensitive to the posterior, and in particular always holds if the decision problem is binary.

There is some previous work on agency problems that considered incentives to acquire

information. Besides the work of Zermeño [20, 21] cited above, other examples include

Demski and Sappington [9] (who introduced the term “expert”) and Malcolmson [14].

However these models assumed that the decision is delegated to the expert, and that only

the realized payoff is observed, not the entire state. Osband [15] considered a model more

similar to the present paper in these respects, but focused on optimal screening with a

prior belief over the expert’s technology, with specific functional form assumptions. The

scoring rules literature has also recognized at least informally that higher stakes give more

incentives to acquire information (e.g. [13]), but without actually formulating the optimal

contracting problem.

In addition to these strands of literature, the present paper also contributes to the

growing literature on mechanism design using a maxmin objective in uncertain environ-

ments, e.g. [1, 3, 8, 10, 11]. The earlier paper [4] contains more discussion of this literature,

and of the interpretation of the worst-case objective.
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2 Model and results

2.1 Notation

For X ⊆ R
k, ∆(X) is the space of Borel probability distributions on X, with the weak

topology. For x ∈ X, we write δx for the degenerate distribution putting probability 1 on

x. R+ is the set of nonnegative real numbers.

2.2 The setup

As already indicated, the model is based on that of [20], with the main difference being

the principal’s non-quantifiable uncertainty about the expert’s information acquisition

technology.

The principal needs to choose a decision from some compact space D. The payoff

to each decision depends on a state of nature, which will be realized in the future. We

assume the set Ω of possible states is finite. Payoffs are represented by a continuous

function u : D × Ω → R. We may refer to the triple (D,Ω, u) as the principal’s decision

problem. The principal also has a prior belief about the state, p0 ∈ ∆(Ω), with p0(ω) > 0

for each ω ∈ Ω.

Before the principal makes her decision, she can hire the expert to obtain information

about the state. The expert initially shares the prior p0, but can obtain more information

by performing an experiment. One can think of an experiment as producing a signal,

observed by the expert; signals and states can follow any joint distribution such that the

marginal distribution over states is p0. However, the signal will matter only through the

expert’s resulting posterior belief about the state, so we take the notational shortcut of

representing experiments directly in terms of posteriors. Thus, we define an experiment

to be a pair (F, c) ∈ ∆(∆(Ω))×R
+, such that F has mean p0. The interpretation is that

the expert can, at a cost of c, perform the experiment, and obtain a posterior (an element

of ∆(Ω)) drawn from distribution F . The requirement that F should have mean p0 is

simply the law of iterated expectations — the posterior should, in expectation, be equal

to the prior. We will typically use the variable p for a posterior.

We give ∆(∆(Ω)) × R
+ the natural product topology, and define an information ac-

quisition technology (IAT) to be a nonempty, compact subset of ∆(∆(Ω)) × R
+, with

every element (F, c) satisfying EF [p] = p0. An IAT then describes the set of experiments

available to the expert. There is some exogenously given IAT, I0, consisting of the ex-

periments which are mutually known to be available. From the principal’s point of view,
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the true set of experiments (known only to the expert) may potentially be any IAT I

such that I0 ⊆ I. We will sometimes be specifically interested in I0 that satisfy the

following full-support condition: for every (F, c) ∈ I0, the support of F is all of ∆(Ω), or

else F = δp0 .

After the contract is chosen, the expert can acquire information, and make a report

to the principal, who then chooses a decision d ∈ D. After the decision is made, the

true state is revealed, and payments can be made contingent on all relevant observable

information (the report and the realized state). Limited liability means that payments

can never be negative. Thus, a contract is a pair (M,w), consisting of a message space

M , some nonempty compact space; and a payment function w : M × Ω → R
+, which

must be continuous. (The topological assumptions ensure that the expert’s behavior is

well-defined.)

We could potentially apply the revelation principle and assume that the expert’s mes-

sage is simply his posterior belief (this approach is used in [20, 21], and is also in keeping

with the proper scoring rules literature). However, we will not do so, because we will be

interested in contracts that are naturally described as indirect mechanisms.

On the other hand, we can safely assume that the principal learns the expert’s posterior

when he makes his report. This assumption requires a bit of justification. It is not

necessarily true given the way we have modeled contracts thus far; if the message space

M is small, then the expert may choose the same message m at many posteriors p and,

more germanely, the message may not be informative enough for the principal to infer

what her optimal decision given p is. But any such “pooling” contract can be (weakly)

improved upon as follows: expand the message space by having the expert also report

his posterior p, in addition to the original message m; but for purposes of calculating

payment, the posterior report is ignored. Then the expert’s incentives for information

acquisition, and the for m component of his report, are exactly the same as in the original

contract; and he is indifferent about the p component of his report, so he is willing to to

report the true posterior, which clearly allows the principal to choose the best possible

decision d. Because we are concerned specifically with optimal contracts for the principal,

we may as well assume she uses this modified contract.

This argument is more fully formalized in Appendix A. For the rest of the main paper,

we just assume without further comment that the expert reports both the explicitly-

modeled m ∈M and his posterior p, so that the principal can make the optimal decision

given p.

We can now summarize the timing of the game:
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1. the principal offers a contract (M,w);

2. the expert, knowing I, chooses experiment (F, c) ∈ I;

3. a posterior p ∼ F is realized, and privately observed by the expert;

4. the expert chooses a message m ∈M to send (along with his posterior p);

5. the principal chooses decision d;

6. the state ω is revealed;

7. payoffs are received: u(d, ω)−w(m,ω) for the principal; w(m,ω)− c for the expert.

It remains only to describe behavior. We give a brief summary here, and will introduce

formal notation shortly. The expert knows I, and he chooses (F, c) and then m to

maximize his expected payoff. If the expert is indifferent between several choices, then we

assume he acts so as to maximize the principal’s expected payoff. The above behavior by

the expert gives rise to an expected payoff for the principal for each possible IAT I; we will

notate this expected utility by VP (M,w|I). The principal evaluates each contract (M,w)

in terms of the guarantee it can provide on VP , across all possible IAT’s I, knowing only

that I0 ⊆ I. Finally, the question is how to design a contract to maximize this worst-case

value.

Before developing the formal notation, we introduce some other useful objects. Sup-

pose that the principal learns the expert’s posterior is p ∈ ∆(Ω). Then, clearly, she will

choose d to maximize Ep[u(d, ω)]. We denote this decision and the expected payoff by

d(p) = argmax
d∈D

Ep[u(d, ω)]; U(p) = max
d∈D

Ep[u(d, ω)].

(If there are several maximizers then d(p) can be chosen arbitrarily among them.) Note

that U is a convex function on the simplex ∆(Ω), since it is the maximum of the affine

functions p 7→ Ep[u(d, ω)].

Similarly, when the expert has posterior p, he will choose message m so as to maximize

Ep[w(m,ω)]. We denote

W (p) = max
m∈M

Ep[w(m,ω)],

and call this function W : ∆(Ω) → R
+ the reduced form of the given contract (M,w). W

is likewise convex in p; it is the upper envelope of the nonnegative-valued affine functions
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given by p 7→ Ep[w(m,ω)], for each m ∈ M . As we shall see, the expert’s incentives to

acquire information depend only on the reduced form of the contract.

Now we can describe behavior formally. The expert, given posterior p, chooses message

m as above, leading to expected paymentW (p). At the earlier, experiment-choosing stage,

he knows the IAT I and so chooses (F, c) ∈ I to maximize expected payoff EF [W (p)]− c.

We will write the value of the contract (M,w) to the expert as

VE(M,w|I) = max
(F,c)∈I

(EF [W (p)]− c)

and the expert’s choice set as

I∗(M,w|I) = arg max
(F,c)∈I

(EF [W (p)]− c) .

When the principal learns the posterior p, she will make decision d(p), gaining expected

gross payoff U(p). Thus, her expected net payoff from the contract under IAT I is

VP (M,w|I) = max
(F,c)∈I∗(M,w|I)

(EF [U(p)−W (p)]) .

(The maximization reflects the fact that the expert may be indifferent between several

optimal experiments; we assume he then chooses the one that is best for the principal.

Alternative tie-breaking assumptions would give substantively similar results, but would

add some inconvenient technical details.) The principal evaluates each possible contract

ex ante by its worst-case guarantee on her expected payoff, over all IAT’s I:

VP (M,w) = inf
I⊇I0

VP (M,w|I).

The principal’s problem, which we analyze, is then how to choose the contract (M,w)

to maximize VP .

From here on, we will maintain the non-triviality assumption that there exists some

contract (M,w) with VP (M,w) > U(p0). That is, the principal benefits from hiring the

expert. We shall shortly see conditions on primitives that ensure that this assumption is

satisfied. (This assumption is not formally needed for our results. But if it is not satisfied,

the problem is uninteresting — the optimal contract is clearly always to pay zero.)
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2.3 Intuitions

How can the principal write a contract to guarantee herself a reasonably high expected

payoff? A natural first try would be to use a linear contract: The expert recommends a

decision, and the principal follows the recommendation and then pays the expert some

fixed fraction α ∈ (0, 1] of her gross payoff. We could compute a payoff guarantee from

such a contract exactly as in [4] (see also [6]): The principal pays fraction α of her gross

payoff to the expert, and keeps the remaining 1 − α for herself, so her net payoff is at

least (1−α)/α times the expert’s. (This relation need not be an equality, since the expert

also suffers the disutility of effort.) A lower bound on the expert’s expected payoff can

be obtained, by taking the best among the experiments that are known to be available;

the expert would only use an unknown experiment if it was even better for him. Then,

multiplying by (1− α)/α gives a lower bound on the principal’s expected payoff.

Actually, this is not quite the way to define linear contracts in our setting: Since

the principal’s gross payoffs u(m,ω) may be negative (in which case the contract above

violates limited liability) or may all be very high (in which case limited liability is slack),

we should first add some constant adjustment β ∈ R. Thus, the proper definition of linear

contracts in our formalism is given by

M = D, w(m,ω) = α(u(m,ω) + β). (2.1)

When the expert has posterior p, she sends a message describing her recommended deci-

sion, m = d(p). The resulting reduced form of the contract is

W (p) = α(U(p) + β).

(Explicitly, the optimal choice of β in such a contract would be such that limited liability

just binds: β = −mind,ω u(d, ω).)

It is easy to incorporate this β adjustment into our calculation of the guarantee from

such a contract. Let us write out the algebra explicitly.

If the expert chooses experiment (F, c), his expected payoff will be EF [W (p)] − c =

α(EF [U(p)] + β)− c. Hence we have

α(EF [U(p)] + β) ≥ α(EF [U(p)] + β)− c = VE(M,w|I) ≥ VE(M,w|I0).

Here the inequality at the end comes from the fact that I ⊇ I0, so the expert certainly
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does at least as well with I as I0.

Whenever the expert produces a gross payoff of y, he receives α(y + β), and the

principal receives (1− α)y − αβ. Hence, the principal’s expected payoff will be

(1− α)EF [U(p)]− αβ ≥
1− α

α
VE(M,w|I0)− β

=
1− α

α

[
max

(F,c)∈I0
α(EF [U(p)] + β)− c

]
− β

= max
(F,c)∈I0

(
(1− α)EF [U(p)]−

1− α

α
c

)
− αβ. (2.2)

Thus the guarantee from the linear contract, VP (M,w), is at least the right-hand side of

(2.2).

At this point, we can fulfill a promise made earlier: to give a sufficient condition on

primitives to ensure the non-triviality assumption is satisfied. Let F be any distribution

over posteriors such that EF [U(p)] > U(p0) — that is, any distribution that potentially

provides useful information for the decision. One can check that, as long as

c <
(√

EF [U(p)] + β −
√
U(p0) + β

)2

, (2.3)

there exists α such that the right side of (2.2) is greater than U(p0). Hence, if I0 contains

some such (F, c), non-triviality holds.

Now, the logic so far is identical to that of the pure moral hazard setting in [4]. In

that simpler setting, linear contracts were optimal: the only way to turn a guarantee on

the agent’s expected payoff (provided by the known technology) into a guarantee on the

principal’s payoff was to have a linear relationship between the two. Here, however, there

is scope for improving on linear contracts, in two ways.

To illustrate the ideas, we refer to Figure 1, which shows an example. Panel (a) shows

the principal’s decision problem. This represents a situation with two states, ω0 and ω1,

and four decisions d1, d2, d3, d4 with the following payoffs:

ω0 ω1

d1 10 2

d2 8 8

d3 6 10

d4 0 12
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In this case, a posterior p is simply a probability of state ω1, so the space of posteriors is

identified with the unit interval. Each decision is represented as a (thin) line — plotting

the principal’s expected payoff as a function of the posterior. The upper envelope of these

lines is then U(p), as shown.

The linear contract that simply pays the expert 1/2 of the principal’s gross payoff is

shown in panel (b). The four thin lines here correspond to messages the expert can send

in this contract — each line showing the expert’s expected payment from sending the

given message, as a function of his posterior — and their upper envelope is the reduced

form W (p).

One simple way to improve on such a contract is to replace the single constant adjust-

ment β by an adjustment that depends on the state, β(ω). Explicitly, instead of (2.1),

we define the contract by

M = D, w(m,ω) = α(u(m,ω) + β(ω)).

Note that this change can have no effect on the expert’s incentives as to which experiment

to perform, because he has no control over which state arises and so which adjustment

he receives. This generalization gives the principal more degrees of freedom, and she

optimally chooses the state-by-state adjustments so that limited liability binds in each

state separately: β(ω) = −mind∈D u(d, ω). This reduces the amount paid to the expert

without changing his incentives. In our example, this change in the contract is illustrated

in Figure 1(c).

The second reason why linear contracts may not be optimal is more substantive: By

cutting out risky decisions, the principal can relax the limited liability constraint, and

thus further lower β. This is illustrated in Figure 1(d), which differs from (c) in that the

two extreme messages in the contract — corresponding to decisions d1 and d4 — have

been removed. Notice that there is now lots of slack in the limited liability contraint; the

principal can further adjust payments downward by 3 in each state before limited liability

binds, and thereby further save money.

Now, cutting out the extreme decisions makes W less convex, and so may weaken the

expert’s incentives for information acquisition. However, if the known experiments rarely

yield posteriors in the ranges where d1 or d4 are optimal, then this effect on incentives

is small, and the effect of lowering β dominates. Note that under the new contract, the

principal’s decisions would not be restricted — she could still choose d1 or d4 if the expert

happened to report an extreme posterior, but the expert’s payment would be based on d2
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10 p

d
4

d
3

d
2

d
1

U(p)

(a)

10 p

W(p)

(b)

10 p

(c)

10 p

(d)

Figure 1: Intuition for improving on linear contracts. (a) The decision problem. (b) A
linear contract. (c) State-by-state adjustment. (d) Trimming extreme decisions.
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or d3 instead.

This idea leads us to the notion of a restricted investment contract, defined formally

as follows: The message space is some compact subset of decisions, M ⊆ D, and the

payment function is given by

w(m,ω) = α(u(m,ω) + β(ω)) (2.4)

for some α ∈ [0, 1] and some β : Ω → R, such that the resulting payments are always

nonnegative. The name emphasizes that the expert is allowed to “invest” in a restricted

subset of decisions, and once the state is revealed, he is compensated according to the

payoff that his chosen decision would have produced in that state.

What makes our setting different from the pure moral hazard setting, in which linear

contracts are optimal? In that setting, limited liability applies directly to the incentive

instrument. Here, there is a separation between the two: Limited liability applies to

the state-by-state payments w(m,ω), but the expert’s incentives are determined by the

reduced form W (p). In our setting, a departure from pure linearity can relax limited

liability appreciably while having only a small effect on the expert’s incentives.

2.4 Full analysis

So far, the discussion has emphasized restricted investment contracts. However, for

the formal analysis, it will be useful to introduce a closely related class, which we call

transform-bounded contracts. Such a contract is parameterized by a value of α ∈ [0, 1] and

β : Ω → R, and is defined as follows: First, define a transformed version of the principal’s

indirect utility function, Ûα,β : ∆(Ω) → R, by

Ûα,β(p) = α(U(p) + Ep[β(ω)]).

Then, the expert is allowed to choose any nonnegative-valued affine function on the sim-

plex that is bounded above by Ûα,β, and to be rewarded according to the function he

chooses. Formally, the message space M of the transform-bounded contract is the set of

functions m : Ω → R
+ satisfying

Ep[m(ω)] ≤ Ûα,β(p) for all p ∈ ∆(Ω),
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and the payment function is simply

w(m,ω) = m(ω).

As long as the values of β are large enough so that U(p) + Ep[β(ω)] ≥ 0 for all p, the

resulting M is nonempty, and so we do obtain a contract. The concept is illustrated

in Figure 2. Panel (a) shows a possible function U (the medium-gray thick curve), a

corresponding Ûα,β (the lighter curve), and some examples of affine functions bounded

by Ûα,β (the thin lines). Panel (b) further shows, in reduced form, the corresponding

transform-bounded contract, which is the upper envelope of these thin lines.

10 p

U

U
α,β

(a)

10 p

U

W

(b)

10 p

U

U
α,β

(c)

Figure 2: (a), (b) Construction of a transform-bounded contract. (c) The transformed
utility function itself may not be the reduced form of a contract, due to limited liability.

We will say that two contracts are equivalent if they have the same reduced form. No-

tice that the values of VE(M,w|I), I∗(M,w|I), VP (M,w|I), and therefore also VP (M,w)

all depend on the contract (M,w) only through its reduced form; hence, any two equiva-

lent contracts give the same payoff both to the expert and to the principal. Our analysis

will show that transform-bounded contracts are optimal, and then that, under appropri-

ate circumstances, transform-bounded contracts are equivalent to restricted investment

contracts.

Thus, we state the first main step of the analysis:
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Theorem 2.1. There is an optimal contract that is transform-bounded. Moreover, if

the known IAT I0 satisfies the full-support assumption, then every optimal contract is

equivalent to a transform-bounded contract.

For the second portion of the analysis, we will need one more definition. We will say

that the decision problem (D,Ω, u) is convex if, for all d, d′ ∈ D and all λ ∈ [0, 1], there

exists d̂ ∈ D such that

u(d̂, ω) ≥ λu(d, ω) + (1− λ)u(d′, ω)

for all ω.

This is satisfied, for example, whenever D is a convex subset of some vector space and

u(d, ω) is concave in d for each ω. So it holds in the asset allocation application mentioned

in the introduction, if the total return on each asset (conditional on the state) is weakly

concave in the amount invested. It holds in the price selection application if profit is

a concave function of price, for example, in a model with a linear demand curve. Or,

more generally, if we consider any arbitrary decision problem and extend D by explicitly

including randomized decisions, then convexity holds trivially.

Convexity is a richness condition that serves to ensure that the messages used in

a transform-bounded contract correspond to actual decisions available to the principal.

Thus the following, purely technical result, which constitutes the second part of our

analysis:

Proposition 2.2. Suppose the decision problem is convex. Then every transform-bounded

contract is equivalent to a restricted investment contract. In fact, the transform-bounded

contract with parameters α, β is equivalent to the restricted investment contract with the

same parameters, and message space M equal to

DR(β) = {d ∈ D | u(d, ω) + β(ω) ≥ 0 for all ω}, (2.5)

unless α = 0 in which case we can just take M = D.

Combining these two results immediately gives the main result of the paper:

Corollary 2.3. Suppose the decision problem is convex. Then there is some restricted

investment contract that is optimal. If I0 satisfies the full-support assumption, then every

optimal contract is equivalent to a restricted investment contract.
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Now that the results are stated, we begin the proofs. The main steps will be described

here, but a few details will be left to Appendix B.

The proof of Theorem 2.1 closely parallels the analysis in [4]. We take any given

contract, and show that it can be improved to a transform-bounded contract whose worst-

case guarantee for the principal is at least as good.

To be more specific, we use a linear separation argument to show that, for any given

contract, there is some linear relation between the principal’s and expert’s reduced-form

payoffs that drives its worst-case guarantee: there exist parameters α and β such that

W (p) ≤ Ûα,β(p) for all p, with equality on the support of the worst-case F . If we

could replace this contract with another contract satisfying the relation with equality,

W ′(p) = Ûα,β(p), then this new contract would be better for the expert. Then, using the

linear relation between the two parties’ payoffs, and a calculation similar to that used

for (2.2) above, it would follow that the new contract is better for the principal as well.

Unfortunately, Ûα,β may not be the reduced form of any contract: As shown in Figure

2(c), if we try to construct messages whose upper envelope equals Ûα,β, we may end up

violating the limited liability constraint. Fortunately, the same calculation succeeds if we

use the corresponding transform-bounded contract instead.

We begin by characterizing the worst-case payoff for any given contract. We actually

need to deal separately with zero contracts : those whose reduced formW satisfiesW (p) =

0 for all p. We denote the guarantee of a zero contract by VP (0). If there exists some

experiment (F, c) ∈ I0 with c = 0, then for any I, the expert will choose whichever

such experiment maximizes the principal’s expected payoff EF [U(p)]; hence, VP (0) is

simply max(F,0)∈I0 EF [U(p)]. If there is no such experiment in I0, then when the IAT

is I = I0 ∪ {(δp0 , 0)}, the expert will choose the latter experiment, and we see that

VP (0) = U(p0). (The principal will not do worse than this under any other IAT, by

convexity of U .)

For the rest of the analysis, it is useful to define eligible contracts as those satisfying

both VP (M,w) ≥ VP (0) and VP (M,w) > U(p0). We know that some eligible contract

exists — the contract guaranteed by the non-triviality assumption is eligible, unless it is

worse than the zero contract, in which case the zero contract is eligible. Therefore, when

searching for the optimal contract, we can focus our attention on eligible contracts.

Now we can describe the worst-case payoff in general:

Lemma 2.4. Let (M,w) be any eligible contract, different from the zero contract. Let W
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be its reduced form. Then,

VP (M,w) = minEF [U(p)−W (p)] over F ∈ ∆(∆(Ω)) such that (2.6)

EF [p] = p0 and EF [W (p)] ≥ VE(M,w|I0).

Moreover, for any F attaining the minimum, the constraint holds with equality: EF [W (p)] =

VE(M,w|I0).

Intuitively, the principal faces great uncertainty about the experiments available to

the expert, and she knows only two things about the distribution F on posteriors that he

will choose: she knows that EF [p] = p0, and she knows a lower bound on EF [W (p)] due to

the experiments that are known to be available. Lemma 2.4 translates these directly into

the principal’s worst-case guarantee. The actual proof requires a little more work than

this brief explanation, due to subtleties introduced by the assumption of tie-breaking in

favor of the principal. We leave the details to the full proof in Appendix B.

Next, we can give the key step in the proof of Theorem 2.1: a linear inequality relating

the principal’s and expert’s payoffs under the given contract, with equality holding for

the worst case. This follows from Lemma 2.4 by applying a linear separation theorem.

Lemma 2.5. Let (M,w) be any eligible contract, different from the zero contract, and let

W be its reduced form. Then there exist α ∈ (0, 1) and β : Ω → R such that

W (p) ≤ α(U(p) + Ep[β(ω)]) for all p ∈ ∆(Ω); (2.7)

VE(M,w|I0) = α(VP (M,w) + VE(M,w|I0) + Ep0 [β(ω)]). (2.8)

Proof: Consider the following two subsets of ∆(Ω)× R× R:

• S is the convex hull of points (p,W (p), U(p)−W (p));

• T is the set of all points (p0, y, z) such that y ≥ VE(M,w|I0) and z < VP (M,w).

These two sets are disjoint — otherwise there would be some distribution F such that

EF [p] = p0, EF [W (p)] ≥ VE(M,w|I0), and EF [U(p) −W (p)] < VP (M,w), contradicting

Lemma 2.4. Applying a proper separating hyperplane theorem1 to these sets gives us

1E.g. [17, Theorem 11.3]: given two disjoint convex sets in Euclidean space, there exists a hyperplane
that weakly separates them and such that the two sets are not both contained in the hyperplane.
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λ ∈ R
Ω, µ, ν, ξ ∈ R such that

∑

ω

λωp(ω) + µW (p) + ν(U(p)−W (p)) ≤ ξ for all p ∈ ∆(Ω); (2.9)

∑

ω

λωp0(ω) + µVE(M,w|I0) + νVP (M,w) ≥ ξ; (2.10)

µ ≥ 0, ν ≤ 0; and we do not simultaneously have µ = ν = 0 and all the λω equal to each

other.

Moreover, we can let F ∗ be the distribution attaining the minimum in (2.6), and take

the expectation over p ∼ F ∗ in (2.9). Since EF ∗ [W (p)] = VE(M,w|I0) and EF ∗ [U(p) −

W (p)] = VP (M,w), we must have equality in (2.9) for all p in the the support of F ∗, and

also have equality in (2.10).

At least one of the inequalities µ ≥ 0, ν ≤ 0 must hold strictly: otherwise
∑
λωp(ω) ≤

ξ ≤
∑
λωp0(ω) for all p ∈ ∆(Ω), which would only be possible if all λω were equal (because

p0 has full support), but proper separation means this cannot happen. Let’s show that in

fact both inequalities are strict: µ > 0 and ν < 0.

• Suppose ν = 0. Then µ > 0, and (2.9) implies W (p) is bounded above by the affine

function Z(p) = (ξ −
∑

ω λωp(ω))/µ, with equality throughout the support of F ∗.

The last statement of Lemma 2.4 then assures us that VE(M,w|I0) = EF ∗ [W (p)] =

EF ∗ [Z(p)] = Z(p0). On the other hand, if (F, c) is the experiment the expert chooses

under IAT I0, then

VE(M,w|I0) = EF [W (p)]− c ≤ EF [Z(p)]− c = Z(p0)− c,

so it must be that c = 0. Thus, there is an experiment available for free in I0 that

gives the principal VP (M,w|I0) ≥ VP (M,w). But then the principal could have

gotten a strictly higher payoff by using a zero contract, since she would get at least

EF [U(p)] > EF [U(p) − W (p)] ≥ VP (M,w). (The strict inequality holds because

W is nonzero, so the expert can assure himself positive expected payment.) This

contradicts eligibility. Therefore, ν < 0 strictly.

• Suppose µ = 0. Then (2.9) for p0 and the equality in (2.10) imply

U(p0)−W (p0) ≥

∑
ω λωp0(ω)− ξ

−ν
= VP (M,w),

so VP (M,w) ≤ U(p0), again contradicting eligibility. Thus µ > 0 strictly.
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Now we can finish the proof of the lemma. We can rearrange (2.9) to obtain

W (p) ≤
−
∑

ω λωp(ω)− νU(p) + ξ

µ− ν
(2.11)

for all p. Put

α =
−ν

µ− ν
, β(ω) =

−λω + ξ

−ν
for each ω.

Then (2.7) is just (2.11), and (2.8) follows from equality in (2.10). Note also that indeed

α ∈ (0, 1). So the lemma is proven. �

To complete the proof of Theorem 2.1, showing that a transform-bounded contract is

optimal, we first need to know:

Lemma 2.6. An optimal contract exists.

The proof is topological — we show that we can restrict attention to a compact set of

contracts (under an appropriate topology), and that VP is upper semi-continuous on this

set. (It is not continuous in general.) The details are in Appendix B.

Now we can finish the proof of Theorem 2.1. We can start with any given contract,

and use the values of α and β given by Lemma 2.5 to construct a transform-bounded

contract that improves on it. In particular, if we start from an optimal contract, then the

transform-bounded contract we construct must again be optimal.

Proof of Theorem 2.1: By Lemma 2.6, there exists an optimal contract, call it

(M,w); and we know it must be eligible. Write W for the reduced form. We can assume

it is nonzero, since otherwise it is already equivalent to a transform-bounded contract.

Let α, β be the values given by Lemma 2.5. Let (M ′, w′) be the transform-bounded

contract with these parameters, and let W ′ be its reduced form.

Let m be any message in the original contract. Then for all p, we have

Ep[w(m,ω)] ≤ W (p) ≤ α(U(p) + Ep[β(ω)])

where the first inequality is by definition of W (p) and the second is from (2.7). Thus, the

map ω 7→ w(m,ω) is in M ′. In particular, for all p, W ′(p) ≥ Ep[w(m,ω)]. Taking the

maximum over m gives W ′(p) ≥ W (p): the new contract dominates the original one (for

the expert).

On the other hand, we still have

W ′(p) ≤ α(U(p) + Ep[β(ω)]) (2.12)
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by definition of the transform-bounded contract. This can be rearranged to give

U(p)−W ′(p) ≥
1− α

α
W ′(p)− Ep[β(ω)]. (2.13)

The relation W ′(p) ≥ W (p) for all p implies immediately that VE(M
′, w′|I0) ≥

VE(M,w|I0), since any experiment the effort chooses under (M,w) and I0 will pay at least

as much under (M ′, w′). Moreover, under the new contract, for any IAT I, the expert

will choose an experiment (F, c) such that EF [W
′(p)] ≥ EF [W

′(p)]− c = VE(M
′, w′|I) ≥

VE(M
′, w′|I0). And so

EF [U(p)−W ′(p)] ≥ EF

[
1− α

α
W ′(p)− Ep[β(ω)]

]
(by (2.13))

≥
1− α

α
VE(M

′, w′|I0)− Ep0 [β(ω)]

= VP (M,w) +
1− α

α
(VE(M

′, w′|I0)− VE(M,w|I0)) (by (2.8)).

The left-hand side equals VP (M
′, w′|I). Taking the infimum over all I, we have

VP (M
′, w′) ≥ VP (M,w) +

1− α

α
(VE(M

′, w′|I0)− VE(M,w|I0)) ≥ VP (M,w). (2.14)

Since (M,w) was assumed to be an optimal contract, this must be an equality, and the

transform-bounded contract (M ′, w′) is again optimal.

It remains to prove the final statement: we will show that under the full-support

assumption, the initial optimal contract is equivalent to our transform-bounded contract,

that is, W ′ is identically equal to W . Suppose not. Then, we have VE(M
′, w′|I0) >

VE(M,w|I0), since the experiment chosen by the expert under (M,w) and I0 has full

support and so gives the expert strictly higher expected payoff under (M ′, w′). (The

expert’s chosen experiment cannot be distribution δp0 , because then VP (M,w) ≤ U(p0)

contradicting eligibility.) Together with α ∈ (0, 1), this implies that (2.14) is a strict

inequality. But this contradicts the optimality of (M,w). Thus, W ′ must be equal to W

after all, which completes the proof. �

Now, to complete our main analysis (aside from the details that we have left to Ap-

pendix B), it remains only to make the leap from transform-bounded contracts to re-

stricted investment contracts, Proposition 2.2. We need to show that, under convexity,

for any given transform-bounded contract, the message optimally chosen by the expert

at any given posterior p actually represents some decision available in the corresponding
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restricted decision space.

Proof of Proposition 2.2: Suppose that the decision problem is convex. Let (M,w)

be the transform-bounded contract with parameters α, β, and (M ′, w′) the corresponding

restricted investment contract identified in the proposition statement. Write W,W ′ for

the corresponding reduced forms. We wish to show that W and W ′ are identical. The

α = 0 case is trivial (both W and W ′ are zero), so assume α > 0.

First the easy direction: Every message available in the restricted investment contract

is also available in the transform-bounded contract. More explicitly, take any decision d ∈

M ′, and consider the function md : Ω → R
+ defined by md(ω) = w′(d, ω) = α(u(d, ω) +

β(ω)). This is nonnegative, and its expectation over any posterior p is bounded above

by α(U(p) +Ep[β(ω)]) (by definition of U), so md ∈M . Therefore, for every posterior p,

W (p) ≥ Ep[w
′(d, ω)] for any d ∈M ′. And so W (p) ≥ maxd∈M ′ Ep[w

′(d, ω)] = W ′(p).

Now for the reverse inequality. Consider the following subset S of RΩ: S is the set of

all functions m : Ω → R such that there exists some d ∈ D with α(u(d, ω)+β(ω)) ≥ m(ω)

for all ω. S is closed, and the convexity assumption on the decision problem implies S is

also convex. Now fix any posterior p. By definition of the reduced form W , there is some

m∗ ∈M such that Ep[m
∗(ω)] = W (p).

We will show that m∗ ∈ S. Suppose not. Then we can apply a strict separating

hyperplane theorem to conclude the existence of nonzero λ ∈ R
Ω and ξ such that

∑

ω

λωm(ω) < ξ for all m ∈ S, (2.15)

∑

ω

λωm
∗(ω) > ξ. (2.16)

(2.15) implies that λω ≥ 0 for all ω. Then, we can normalize to assume that
∑

ω λω = 1,

so that λ equals some probability distribution q ∈ ∆(Ω). Consider the decision d = d(q),

and m ∈ S given by m(ω) = α(u(d, ω) + β(ω)); then (2.15) and (2.16) give us

Eq[α(u(d, ω) + β(ω))] < ξ < Eq[m
∗(ω)].

But the definition of the transform-bounded contract requires that

Eq[m
∗(ω)] ≤ α(U(q) + Eq[β(ω)]) = Eq[α(u(d, ω) + β(ω))],

and so we have a contradiction.
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Thus, m∗ ∈ S, which means that there is some d ∈ D satisfying

α(u(d, ω) + β(ω)) ≥ m∗(ω) ≥ 0

for all ω. Dividing through by α > 0, we see that this decision d lies in the restricted

decision spaceM ′ as well. Then the value of the restricted investment contract at posterior

p satisfies

W ′(p) ≥ Ep[α(u(d, ω) + β(ω))] ≥ Ep[m
∗(ω)] = W (p).

Now we have W (p) ≥ W ′(p) and W ′(p) ≥ W (p) for every p, so we are finished. �

Before wrapping up this section, we should comment a bit further on how to identify

the parameters α, β of the optimal (transform-bounded) contract. Although it is not pos-

sible to express all the parameters in closed form, we can give an implicit characterization

that will be useful for further investigation in Subsection 3.6.

Given β : Ω → R, put

M(β) = {m : Ω → R
+ | Ep[m(ω)] ≤ U(p) + Ep[β(ω)] for all p ∈ ∆(Ω)}

and then put

UR(p; β) = max
m∈M(β)

(Ep[m(ω)]− Ep[β(ω)]) .

(If M(β) = ∅ we put UR(p; β) = −∞.) Clearly UR(p; β) ≤ U(p). In the convex case,

we have an especially straightforward interpretation for UR: Proposition 2.2 implies that

UR(p; β) = maxd∈DR(β)Ep[u(d, ω)], where DR(β) is the restricted decision space defined

in (2.5).

Proposition 2.7. The payoff guarantee from the optimal contract is equal to

max
α∈[0,1)
β:Ω→R

(
max

(F,c)∈I0

(
(1− α)EF [UR(p; β)]−

1− α

α
c

)
− α · Ep0 [β(ω)]

)
, (2.17)

where, if α = 0, we interpret the −((1− α)/α)c term as 0 for c = 0 and −∞ otherwise.

(In particular, the maximum in (2.17) exists.)

Moreover, when α, β attain the maximum, the corresponding transform-bounded con-

tract is optimal.

The derivation follows our earlier calculation (2.2) that gave a payoff guarantee for

linear contracts. A very similar calculation applies for any transform-bounded contract,

22



and shows that for any α, β, the corresponding transform-bounded contract guarantees at

least the value in (2.17). In general, this is only a lower bound for the guarantee, but by

retracing the steps of the proof of Theorem 2.1, we can show that it holds with equality

at the maximum. The full proof is in Appendix B.

One extra note on transform-bounded contracts. The discussion so far has focused pri-

marily on restricted investment contracts, treating transform-bounded contracts mainly

as a technical stepping stone along the way. However, the notion of transform-bounded

contracts is also computationally convenient. Indeed, while arbitrary contracts are very

high-dimensional objects, and restricted investment contracts as we have defined them are

still quite complicated (because the restricted decision space M ⊆ D can be anything),

transform-bounded contracts are parameterized by just |Ω| + 1 numbers. Hence, Theo-

rem 2.1 makes the search for the optimal contract potentially computationally tractable.

Moreover, Proposition 2.7 makes a further step in this direction. In particular, if I0 con-

sists of only a small number of experiments, one can try out a grid of values of α and β,

and calculate the value of (2.17) in each case by considering each (F, c) ∈ I0 in turn, and

then pick the best one.

3 Extensions and variations

We now consider extending the model in several directions. These extensions are inde-

pendent of each other; we do not attempt to incorporate them all into a single general

model. Several of these extensions are analogous to extensions of the basic robust moral

hazard model from [4], and the arguments are identical to arguments in that paper. In

these cases, we only describe the ideas briefly; the reader is referred to the earlier paper

for details.

3.1 Participation constraint

The original model assumes that the expert will accept whatever contract is offered. Sup-

pose, instead, that the principal needs to guarantee the expert some minimum expected

payoff UE > 0 in order to hire him. Thus, the principal is restricted to contracts that

satisfy EF [W (p)] − c ≥ UE for some (F, c) ∈ I0. We maintain non-triviality: assume

there exists some such contract (M,w) with VP (M,w) > U(p0).

As in [4], adding a participation constraint does not change our main results. The

compactness argument that ensures existence of an optimal contract still holds when
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we add the participation constraint; and since the main step of the proof of Theorem

2.1 replaced the given contract (M,w) by a transform-bounded contract that is weakly

better for both the expert and the principal, we see that if the original contract satisfies

the participation constraint, so does the new one. Then the main results (Theorem 2.1,

Corollary 2.3) still hold.

3.2 Smaller sets of experiments

We have written the model so that the principal evaluates contracts by their worst case

over all possible IAT’s I ⊇ I0. This is perhaps an unrealistically large class of IAT’s. In

fact, we do not need such drastic uncertainty: As in [4], the results hold as long as every

IAT of the form I0 ∪ {(F, c)}, for some (F, c), is considered possible. Moreover, we can

restrict to distributions F whose support consists of at most 2|Ω| + 2 posteriors. This

holds because the minimum in (2.6) is attained by some distribution whose support has

size at most |Ω| + 2, by Carathéodory’s Theorem (e.g. [17, Theorem 17.1]). The extra

|Ω| support points are needed to construct the auxiliary distributions used in the proof

of Lemma 2.4.

3.3 Screening on technology

In general, the principal’s minmax payoff typically is strictly greater than her maxmin

payoff: that is, there is some payoff V P strictly greater than the guarantee of the maxmin-

optimal contract, such that, if she knew the IAT I with certainty when choosing the

contract, she could achieve an expected payoff at least V P , no matter what I ⊇ I0

she faced. This suggests the possibility of screening experts according to their IATs, by

offering a menu of contracts (M,w), which the expert chooses from before performing

any experiment, so that experts with different IATs may choose different contracts. It is

natural to imagine that this additional tool would be better for the principal than in the

basic model, where she can only offer one contract.

It turns out, however, that the principal cannot actually achieve a better worst-case

guarantee with screening than she can without screening. The argument is exactly the

same as that given in [4]. If the principal can guarantee herself some payoff V ∗
P using

a menu of contracts, we show she can also do so using just the contract (M0, w0) that

the expert with IAT I0 would choose from this menu. If this were not the case, then

there would be some experiment (F ′, c′) such that, under I1 = I0∪{(F ′, c′)} and contract

(M0, w0), the expert strictly prefers to perform experiment (F ′, c′), and the principal’s
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resulting expected payoff is less than V ∗
P . Then, given the choice from the menu, the expert

with IAT I1 might choose a different contract, but he would again perform experiment

(F ′, c′), since we know his payoff under I1 is strictly higher than the best he could do

using experiments in I0. This means the principal’s resulting payoff can only be even

worse than under (F ′, c′) and (M0, w0) (since the principal gets the same distribution over

posteriors but now has to pay the expert more). This means that the menu of contracts

does not guarantee V ∗
P , a contradiction.

3.4 Hard information

Our model has assumed that information acquisition is private: when the expert per-

forms an experiment, only he observes the outcome. What if instead we assume that

the information acquired becomes publicly verifiable, so that the principal updates to the

same posterior p as the expert, and p can be contracted on? What contract provides the

optimal worst-case guarantee in this setting?

In this version of the model, there is no strategic choice of message, so no reason to

have contracts depend on the realized state. Instead, we can have them depend directly

on the posterior: a contract is now any continuous function W : ∆(Ω) → R
+. The model

now looks like the simple robust moral hazard model of [4], since we can treat the expected

gross payoff U(p) as being the observed output variable, and the expert’s experiment (F, c)

directly determines the distribution of output via p ∼ F . This suggests that the optimal

contract should simply be affine in U(p) — that is, of the form W (p) = α(U(p) + β).

This is almost correct, except that the actions potentially available to the expert do

not produce all possible distributions over posteriors, only those distributions with mean

p0. Hence, our observable-posteriors model does not collapse to the main model of [4],

but rather to the extension described in Section 3.1 of that paper, with a lower bound

on costs. Here all of p is observable, and the lower bound on the cost of an experiment

is 0 if it has mean p0 and ∞ otherwise. The results from that model then show that the

optimal contract is of the form W (p) = α(U(p) +Ep[β(ω)]) for some function β : Ω → R.

Since the choice of β can have no effect on incentives (as discussed in Subsection

2.3), its only role can be to relax the limited liability constraint. Therefore the optimal

β is chosen by minimizing Ep0 [β(ω)] subject to U(p) + Ep[β(ω)] ≥ 0 for all p. Clearly,

if we can make equality hold at p0, then this β is optimal; this is achieved by taking

β(ω) = −u(d(p0), ω). The resulting contract has a simple interpretation: The expert

is paid a share α of the principal’s expected gain, conditional on the newly discovered
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information, from choosing the new optimal decision rather than the decision she would

have chosen in his absence.

3.5 Influencing states

What if we adopt the main model, except that we allow the expert’s actions to influence

the distribution of states, in addition to providing information? That is, we drop the

requirement EF [p] = p0 from the definition of an experiment, so an experiment is now

any element of ∆(∆(Ω))×R
+; where we originally imposed a full-support common prior

p0, we now simply require that for each (F, c) ∈ I0, EF [p] should have full support. The

rest of the model is left unchanged. (Zermeño [21] also considers allowing the expert to

influence the distribution. See also [19].)

We can repeat the analysis, and find that there is an optimal contract that is transform-

bounded with the adjustment term β(ω) constant across all states ω. In the convex case,

this means likewise that a restricted investment contract with β constant across all states

is optimal. (For an overview of what changes in the analysis: Lemma 2.4 is the same as

before, except that the constraint EF [p] = p0 is dropped from (2.6). Lemma 2.5 is the

same but with β constant across states. The separation argument used to prove Lemma

2.5 is now simply done in R×R, so that the λω terms in inequalities (2.9) and (2.10) are

absent.)

3.6 Restricted versus unrestricted investment

In this subsection we briefly consider the question of when the optimal contract is an

unrestricted investment contract, with M = D. Such contracts have a natural interpre-

tation, as delegating the decision directly to the expert, who is then paid a fraction α of

the (gross) payoff plus the state-by-state adjustment β. If it also happens that the worst

possible payoff in each state is zero (mind u(d, ω) = 0 for each ω), then the interpreta-

tion is even simpler: the optimum is a linear contract. Identifying situations where these

contracts are optimal helps to bridge the gap between our model and some of the prior

principal-expert literature [9, 14] which assumed that the decision must be delegated to

the expert and compensation could depend only on the realized payoff. These contracts

also seem more in line with reality, where linear incentive contracts based on realized

payoffs are quite widespread (see e.g. the references in [2, pp. 763–4]) whereas our notion

of restricted investment contracts seems less familiar.
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We cannot give a complete characterization of when restriction is or is not optimal, but

we can give some partial results. Roughly, if the principal’s optimal decision is extremely

sensitive to her posterior belief, then unrestricted investment contracts are generally not

optimal: There are some extreme decisions that are very unlikely to come into play, and

trimming them out of the message space is useful in relaxing limited liability. Conversely,

if the optimal decision is not so sensitive, then unrestricted investment contracts may be

optimal. In the special case where the principal’s decision problem is binary, unrestricted

investment contracts are always optimal.

For formal statements, we maintain several assumptions. We assume throughout this

subsection that the zero contract is not optimal. We also assume that in every state, not all

decisions give the same payoff. Furthermore, for Proposition 3.1 below, we assume that the

decision problem is convex; thus Proposition 2.2 applies, and we can describe the optimal

contract either as a transform-bounded contract or as a restricted investment contract

with the same parameters α, β. Finally, we assume that dominated decisions have been

eliminated a priori: For any distinct d, d′ ∈ D, there exists ω such that u(d, ω) > u(d′, ω).

This eliminates uninteresting cases where there is some decision giving extremely low

payoffs in every state, which would make an unrestricted investment contract extremely

costly (via limited liability forcing β(ω) to be high) even though the expert would never

invest in that decision.

Also, we need a little more terminology. Say that a decision d is ω-extremal if it

minimizes u(d, ω) among all decisions; and it is extremal if it is ω-extremal for some ω.

Now we can state our main result relating the structure of the principal’s decision

problem to the optimality of unrestricted investment:

Proposition 3.1. Fix the decision problem (D,Ω, u), satisfying convexity.

(a) Suppose that, for every decision d, there is only one posterior p for which d is optimal

for the principal. Then, for any p0 and I0, there is a properly restricted investment

contract (i.e. M ⊂ D strictly) that is optimal.

(b) Suppose that, for every state ω, there is an ω-extremal decision d ∈ D, and a

nonempty open set of posteriors P ⊆ ∆(Ω), such that d is optimal for any posterior

p ∈ P . Then, for any prior p0, it is possible to choose I0 so that an unrestricted

investment contract is optimal. We can do this while satisfying the non-triviality

and full-support assumptions.

(c) Suppose that there exists a nonempty open set of posteriors P ⊆ ∆(Ω) such that there
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is no one decision that is optimal for all p ∈ P , and such that extremal decisions are

not optimal for any p ∈ P . Then, it is possible to choose p0 ∈ P and I0, satisfying

non-triviality and full support, such that a properly restricted investment contract is

optimal.

To aid in understanding this proposition, consider Figure 3, which shows a couple

of possible decision problems. Each panel shows a decision problem with state space

Ω = {ω1, ω2}; each decision is represented by the pair of payoffs (u(d, ω1), u(d, ω2)). The

thick curve depicts the set of available decisions D. Within each state, payoffs have been

normalized so that the payoff of the worst decision is 0. A posterior p can be represented

as a vector (p(ω1), p(ω2)); the best decision for this posterior is then the one where the

tangent to to the decision set is orthogonal to the vector.

1

2

U(p)

p

(a)

ω
1

ω
2

(b)

Figure 3: Example decision problems.

Panel (a) of the figure depicts part (a) of the proposition. In this case, for every

possible posterior there is a different optimal decision, and the proposition tells us that

properly restricted investment contracts are always optimal.

In panel (b), by contrast, the leftmost decision (where the tangent line is illustrated) is

an ω1-extremal decision that is optimal for all posteriors that put sufficiently low weight

on ω1. Hence, part (b) of the proposition tells us that unrestricted investment contracts

may be optimal in this case.

For a more general example in the same spirit, suppose that the decision space is the

efficient frontier of the convex hull of a finite set of decisions. That is, suppose we begin
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with some finite set of decisions D0; we identify each decision d with the corresponding

vector of payoffs in R
Ω, and form the convex hull D1; and then D consists of all d ∈ D1

that are not weakly dominated by some other vector in D1. In this case, one can show,

using a separating hyperplane argument, that the condition in (b) is satisfied. So at least

for some choices of I0, an unrestricted investment contract is optimal. This, in turn, is the

same as an unrestricted investment contract without allowing mixed decisions — simply

letting the expert choose from among all decisions in D0 that are not weakly dominated

by some mixture. We omit the details here.

Finally, panel (b) of the figure also illustrates part (c) of the proposition: The smooth

bump on the right side represents a set of non-extremal decisions, which correspond to

an open interval of posteriors, with the optimal decision varying as the posterior moves.

Thus, by part (c), properly restricted investment contracts may also be optimal for this

decision problem.

Are there simple conditions on the decision problem sufficient to ensure that unre-

stricted investment contracts are optimal? The logic of part (c) is quite general, and

shows that this cannot happen unless “most” decisions are extremal. But there is one

important special case where the conclusion does hold: when the principal’s decision

problem is binary.

Proposition 3.2. Suppose that D consists of just two decisions. Then, there is an unre-

stricted investment contract that is optimal.

The proofs of the two propositions from this subsection are in Appendix C. Proposition

3.1 can be proven by analyzing formula (2.17) for the optimal β. Proposition 3.2 holds

because, in the binary-decision case, restricted and unrestricted investment contracts are

actually the same under a suitable change of parameters.

4 Conclusion

We wrap up by briefly recapitulating our results and putting them in context. We con-

sidered a principal-expert model, with risk-neutrality and limited liability, and ex-post

revelation of the state of nature. We assumed unquantifiable uncertainty about the ex-

pert’s information acquisition technology, and sought out contracts that are robust to this

uncertainty, as expressed by a maxmin objective. This led quite generally to a novel form

of contracts being optimal: transform-bounded contracts, or equivalently (under a con-

vexity assumption) restricted investment contracts, in which the expert chooses to invest
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in one of a restricted subset of less-risky decisions, and is paid proportionally to the payoff

of his invested-in decision in the realized state, even though the decision that the princi-

pal actually makes may be different. The result reflects the intuition that linear payment

rules are robust because they tightly align the principal’s and expert’s payoffs, turning

an expected-payoff guarantee for the expert into a guarantee for the principal. But there

is the added wrinkle that by prohibiting investment in risky decisions, the principal can

relax the limited liability constraints and so pay the expert less.

The direct interpretation of our results is that they show how one can go about op-

timally providing incentives to experts in uncertain environments. They offer qualitative

insights into the shape of an optimal contract, and they also show that it is character-

ized by a small number of parameters, which can be helpful in actually computing the

optimum.

More broadly, this work illustrates the value of the worst-case methodology in contract

design. The standard Bayesian version of the principal-expert problem, even under risk-

neutrality and limited liability as we have assumed here, seems to be intractable except

in special cases [20]. The corresponding maxmin version offers traction quite generally —

without any functional-form assumptions on the known information acquisition technology

— by extending the linear separation methods of the earlier paper [4]. As in that earlier

paper, we also saw that the model can be extended in various directions without changing

the underlying technical machinery. The worst-case environments are not extreme. And

the analysis has led us to a new qualitative insight — that a contract tying the expert’s

payoff closely to the principal’s can be improved on by cutting out extreme messages,

thereby relaxing limited liability — that is not knife-edge sensitive to the worst-case

formulation of the objective.

It seems likely that the methods used here generalize to other kinds of robust moral

hazard contracting problems. A natural task for future work is to find as large a class

of models as possible that are amenable to the same proof approach — writing a linear

program to identify the worst case for a given contract, using duality to infer a linear bound

relating the principal’s and agent’s payoffs, and from there producing a new contract that

improves on the original. At the same time, the worst-case modeling framework may also

bring traction to difficult problems by other routes. For example, ongoing work by the

author [5] takes a worst-case approach to formulate a class of multidimensional screening

problems with a simple solution. There, the proof also works via duality, but rather than

starting with any given mechanism and finding an improvement, it involves a direct (and

more involved) construction of an adversarial environment for the principal.
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A On direct reporting of posteriors

Here we elaborate formally the revelation-principle-style argument outlined in Subsection

2.2: when looking for optimal contracts, we may assume that the expert directly reports

his posterior as one component of his message.

First we should clarify why this is not trivial. In fact, with arbitrary contracts, where

multiple posteriors may pool on the same message, it is not even clear how to write down

the model of subsequent behavior. The principal should choose her decision based on

her updated belief about the posterior, given the expert’s strategy. This means that,

to describe the principal’s behavior, we quickly run into the thorny problem of Bayesian

updating by a non-Bayesian player. Moreover, this difficulty leads to trouble in describing

the expert’s strategy as well, if we want to maintain our assumption that the expert breaks

ties by choosing the message that is best for the principal.

In this appendix, we will avoid this issue by showing that any contract, together with

any decision strategy for the principal, is weakly outperformed by a contract in which the

expert reports his posterior truthfully as part of his message, and the principal takes the

corresponding optimal decision. And to avoid the ambiguity in the expert’s tie-breaking,

we instead take a more conventional approach to the definition of contracts: requiring

a contract to specify a recommended strategy for the expert, which must be incentive-

compatible, in addition to specifying the compensation rule. We then think of the model

formulated in the main paper as expressing the same concept, but in a more compact

notation; we elaborate at the end of this appendix.

Let IAT denote the set of all possible IAT’s I with I0 ⊆ I. We properly define a

contract to consist of four parts:

• a compact message space M ;

• a continuous payment function w :M × Ω → R
+;

• an experiment strategy σ : IAT → ∆(∆(Ω))× R
+, such that σ(I) ∈ I for each I;

• a reporting strategy ρ : IAT × ∆(Ω) → M , which should be measurable in its

second argument.

Thus (σ, ρ) describes the strategy recommended for the expert. (We could also allow for

mixed strategies; this would change nothing below.)
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We want to impose that the specified strategy for the expert be incentive-compatible.

This requires defining payoffs. So given (M,w, σ, ρ), define

W (p) = max
m∈M

Ep[w(m,ω)], VE(M,w|I) = max
(F,c)∈I

(EF [W (p)]− c)

just as in the main paper. We now say that the contract (M,w, σ, ρ) is incentive-compatible

if

• for all I, the experiment (F, c) = σ(I) satisfies EF [W (p)] − c = VE(M,w|I); and

moreover

• for all I and all p,

Ep[w(ρ(I, p), ω)] = W (p).

Now define a decision rule for the principal to be any measurable r : M → D. Given

the contract and the decision rule, we define the principal’s payoff from a given I to be

VP (M,w, σ, ρ; r|I) = EF [Ep[u(r(ρ(I, p)), ω)]−W (p)]

where F is the distribution chosen by σ(I); and then define

VP (M,w, σ, ρ; r) = inf
I⊇I0

VP (M,w, σ, ρ; r|I)

as before.

Now we can give the formal justification for the modeling of contracts in the main

text, including the assumption that the expert directly communicates his posterior.

Proposition A.1. Let (M,w, σ, ρ) be any incentive-compatible contract, and r :M → D

a decision rule. Then define a new contract (M ′, w′, σ′, ρ′) and decision rule r′ by taking:

• M ′ =M ×∆(Ω);

• w′((m, p), ω) = w(m,ω);

• ρ′(I, p) = (ρ(I, p), p);

• r′(m, p) = d(p) (recall this was defined as argmaxd∈D Ep[u(d, ω)]); and

• σ′(I) is taken to be any (F, c) ∈ I that lexicographically maximizes EF [W (p)] − c

and then EF [U(p)−W (p)], where W is the reduced form of the original contract.
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Then the new contract is also incentive-compatible, and (with r′) has at least as high

a payoff guarantee VP as the original contract (with r).

Proof: At any posterior p, (m, p) is an optimal report under the new contract iff m

was optimal under the old contract; and the reduced form of the new contract is the same

as the old, W ′(p) = W (p). This in turn implies that the new contract has the same VE

as the old one. Incentive-compatibility for the new contract immediately follows.

As for the comparison of payoff guarantees, consider any I. Let (F, c) = σ(I) and

(F ′, c′) = σ′(I). Since (F ′, c′) is an optimal experiment, as is (F, c) (by incentive-

compatibility of the original contract), lexicographic maximization in the definition of

σ′ implies that EF ′ [U(p)−W (p)] ≥ EF [U(p)−W (p)]. Thus,

VP (M
′, w′, σ′, ρ′; r′|I) = EF ′ [Ep[u(r

′(ρ′(I, p)), ω)]−W ′(p)]

= EF ′ [Ep[u(d(p), ω)]−W (p)]

= EF ′ [U(p)−W (p)]

≥ EF [U(p)−W (p)]

≥ EF [Ep[u(r(ρ(I, p)), ω)]−W (p)]

= VP (M,w, σ, ρ; r|I).

Taking the infimum over I gives the result. �

Now we can think of the modeling approach taken in the main text simply as using

(M,w) as a notational shorthand for the full contract (M ′, w′, σ′, ρ′) (and decision rule r′)

above. Indeed, the choice of experiment and the principal’s payoff as defined in the main

text agree with the definitions given here for that full contract. Since we are concerned

specifically with identifying optimal contracts for the principal, it is sufficient to look at

these contracts that are constructed in Proposition A.1 (with the appropriate decision

rule).

B Omitted proofs for main optimal-contract results

Proof of Lemma 2.4:

First, for any I ⊇ I0, and any experiment (F, c) chosen by the expert, EF [W (p)] ≥

EF [W (p)]−c ≥ VE(M,w|I0), so F satisfies the constraints in (2.6), and hence VP (M,w|I)

is at least the indicated minimum. This holds for any I, so VP (M,w) is at least the

minimum in (2.6). (Note that this minimum is well-defined.)
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To prove the reverse inequality, we begin by defining the affine function Z : ∆(Ω) →

R
+ by Z(p) =

∑
ω p(ω)W (δω). By convexity, W (p) ≤ Z(p) for every p. Now let F be

a distribution attaining the minimum in (2.6). Suppose F places positive probability on

posteriors p such that W (p) < Z(p). Then we have

EF [W (p)] < EF [Z(p)] = Z(p0)

where the equality holds because Z is affine. For small ǫ > 0, define a distribution F ′ as

follows: with probability 1− ǫ, F ′ chooses a posterior according to F ; with the remaining

probability ǫ, F ′ picks a state ω ∼ p0 and gives posterior δω. Evidently, EF ′ [p] = p0, and

EF ′ [W (p)] = (1− ǫ)EF [W (p)] + ǫZ(p0) > EF [W (p)] ≥ VE(M,w|I0).

So if the IAT is I = I0 ∪ {(F ′, 0)}, the expert’s unique optimal choice of experiment is

(F ′, 0). The principal’s expected payoff VP (M,w|I) is then

EF ′ [U(p)−W (p)] = (1− ǫ)EF [U(p)−W (p)] + ǫEp0 [U(δω)−W (δω)].

By taking ǫ → 0, we see that the principal cannot be guaranteed a payoff higher than

EF [U(p)−W (p)], which is exactly the amount in (2.6).

Also, if W (p) = Z(p) throughout the support of F , but EF [W (p)] > VE(M,w|I0)

strictly, then we can give a similar argument by simply taking I = I0 ∪ {(F, 0)}.

This leaves us with the case where

VE(M,w|I0) = EF [W (p)] = EF [Z(p)] = Z(p0).

For this to happen, it must be that whatever experiment (F0, c0) is chosen under I0

satisfies W (p) = Z(p) throughout the support of F0, and c0 = 0. However, in this case,

the expert would be willing to perform the same experiment under the zero contract, so

VP (0) ≥ EF0
[U(p)] > EF0

[U(p)−W (p)] = VP (M,w|I0) ≥ VP (M,w).

(The strict inequality follows from the assumptions that W is nonzero, and F0 has mean

p0 which has full support.) This contradicts eligibility, so this case cannot happen.

Finally, let F be a distribution attaining the minimum in (2.6). Then certainly

EF [U(p)−W (p)] = VP (M,w) > U(p0) ≥ U(p0)−W (p0).
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If EF [W (p)] > VE(M,w|I0) strictly, then define another distribution F ′ by drawing a

posterior from F with probability 1− ǫ, and placing the remaining probability mass ǫ on

p0. For small ǫ, F ′ still satisfies the constraints of (2.6), and

EF ′ [U(p)−W (p)] = (1− ǫ)EF [U(p)−W (p)] + ǫ(U(p0)−W (p0)) < EF [U(p)−W (p)],

contradicting minimality for F . �

Proof of Lemma 2.6:

Let U = maxp U(p), and W = (U − U(p0))/(minω p0(ω)). We may restrict attention

to contracts whose reduced form satisfies W (δω) ≤ W for all ω. To see this, note that if

there were some message guaranteeing the expert payoff higher than (U−U(p0))/p0(ω) in

some state ω, then no matter what experiment the expert performs, he can always force

the principal to pay more than U − U(p0) in expectation (by just always sending this

message), so the principal’s expected payoff must be less than U(p0), and the principal is

worse off than by not hiring the expert.

Since W is convex, this restriction implies W (p) ≤ W for all p. Now say that a

function W : ∆(Ω) → R
+ is a reduced-form contract if it is the reduced form of some

contract. We make two claims:

• Claim 1: The set of reduced-form contracts W : ∆(Ω) → [0,W ] is compact in the

sup-norm topology.

• Claim 2: VP is upper semi-continuous on the set of reduced-form contracts (with

respect to the sup-norm topology).

Together, these claims imply that VP attains a maximum over the reduced-form contracts

whose values never exceed W , which is then a global maximum, as needed.

To prove Claim 1, letW1,W2, . . . be a sequence of reduced-form contracts taking values

in [0,W ]. Note that each Wk must be a Lipschitz function with constant W (relative to

the L1 metric on ∆(Ω)). By passing to a subsequence, we may assume that Wk converges

pointwise at each rational point p ∈ ∆(Ω). Let W∞(p) = limkWk(p) for each such p.

Define M as the set of all functions m : Ω → [0,W ] such that Ep[m(ω)] ≤ W∞(p)

for each rational p. Notice that M is a nonempty, compact subset of RΩ. Define w :

M × Ω → [0,W ] by w(m,ω) = m(ω). Then (M,w) is a contract, with reduced form

W (p) = maxm∈M Ep[m(ω)].

For each rational p, we will show W (p) = W∞(p). The direction W (p) ≤ W∞(p)

is immediate from the definition of W . For the reverse inequality, fix p. For each k,
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since Wk is a reduced-form contract, there is some affine mk : ∆(Ω) → [0,W ] such that

mk(p) = Wk(p) and mk(p
′) ≤ Wk(p

′) for all other rational p′. There is some subsequence

along which themk converge to somem∞. Then, m∞(p) = W∞(p), andm∞(p′) ≤ W∞(p′)

for each other rational p′, so that m∞ ∈ M . Therefore W (p) ≥ W∞(p), and equality

follows.

Now we claim that Wk → W in sup norm. If not, there exists some ǫ > 0 and a

subsequence of k’s and points pk along which |Wk(pk) −W (pk)| > ǫ. Again by taking a

subsequence, we may assume the pk converge to some point p. Now, pick a rational point

q such that the L1 distance between p and q is less than ǫ/4W . Then, for k high enough,

|Wk(q)−W (q)| ≤ ǫ/4 (because W (q) = W∞(q) by the previous paragraph), and for any

reduced-form contract with values at most W , its values at pk and q differ by at most ǫ/4.

Therefore,

|Wk(pk)−W (pk)| ≤ |Wk(pk)−Wk(q)|+ |Wk(q)−W (q)|+ |W (q)−W (pk)| ≤
3ǫ

4
,

a contradiction.

This shows that the set of reduced-form contracts taking values in [0,W ] is sequentially

compact, proving Claim 1.

For Claim 2, suppose we have a convergent sequence of reduced-form contracts Wk →

W . We need to show that VP (W ) ≥ lim supk VP (Wk). By passing to a subsequence, we

may assume VP (Wk) converges (to the lim sup of the original sequence). Fix any IAT

I, and let (Fk, ck) be the expert’s chosen experiment under contract Wk. Then, again

by taking a subsequence, we may assume that (Fk, ck) converges to some limit (F, c). It

follows that (F, c) ∈ I, and since

EF [W (p)]− EFk
[Wk(p)] = (EF [W (p)]− EFk

[W (p)]) + (EFk
[W (p)]− EFk

[Wk(p)]) → 0

(the first parenthesized expression goes to 0 by weak convergence of Fk, and the second

by sup-norm convergence of Wk), we can conclude that (F, c) is an optimal experiment

for the expert under W and I: If there were some strictly better experiment (F ′, c′),

then this experiment would also be preferred to (Fk, ck) under Wk for high enough k, a

contradiction.

This same double-convergence argument also implies that

EF [U(p)−W (p)]− EFk
[U(p)−Wk(p)] → 0
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from which

VP (W |I) ≥ EF [U(p)−W (p)] = lim
k
EFk

[U(p)−Wk(p)] = lim
k
VP (Wk|I) ≥ lim sup

k

VP (Wk).

Since this holds for all I, we have

VP (W ) ≥ lim sup
k

VP (Wk)

which proves Claim 2. �

Proof of Proposition 2.7: Let (M,w) be the transform-bounded contract with

parameters α, β. We will show that its payoff guarantee satisfies

VP (M,w) ≥ max
(F,c)∈I0

(
(1− α)EF [UR(p; β)]−

1− α

α
c

)
− α · Ep0 [β(ω)]. (B.1)

We will also show that there are some α, β for which the corresponding transform-bounded

contract is optimal and (B.1) is an equality. This will imply the result. (Note that once we

show this, if there exist additional maximizers α′, β′ for the right side of (B.1), then (B.1)

must be an equality for those parameters as well: otherwise the contract with parameters

α′, β′ is strictly better than the one with parameters α, β, contradicting optimality.)

First suppose α = 0. If there does not exist any (F, 0) ∈ I0, the right side of (B.1)

is −∞; and if there is such an experiment, the right side is max(F,0)∈I0 EF [UR(p; β)] ≤

max(F,0)∈I0 EF [U(p)] which is exactly the payoff guarantee from that contract. Also, if

a zero contract is optimal, we can obtain equality in (B.1) by taking α = 0 and β large

enough so that UR(p; β) = U(p).

Now suppose α > 0. The reduced form of the transform-bounded contract is precisely

W (p) = α(UR(p; β) + Ep[β(ω)]). (B.2)

Once the expert attains posterior p, his expected payment is W (p) ≤ α(U(p)+Ep[β(ω)]),

while the principal’s is

U(p)−W (p) ≥ (1− α)UR(p; β)− αEp[β(ω)]

=
1− α

α
W (p)− Ep[β(ω)].

Therefore, whatever experiment (F, c) the expert performs, the principal’s expected payoff
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VP (M,w|I) is

EF [U(p)−W (p)] ≥ EF

[
1− α

α
W (p)− Ep[β(ω)]

]

=
1− α

α
EF [W (p)]− Ep0 [β(ω)].

Since

EF [W (p)] ≥ EF [W (p)]− c ≥ VE(M,w|I0) = max
(F,c)∈I0

(EF [W (p)]− c),

we can plug in to obtain

VP (M,w|I) ≥
1− α

α
· max
(F,c)∈I0

(EF [W (p)]− c)− Ep0 [β(ω)].

Now plugging in from (B.2) and rearranging gives exactly the right side of (B.1). Since

this applies for all I, (B.1) follows.

Now consider an optimal contract (M,w). Assume it is nonzero, since we already

dealt with the case where a zero contract is optimal. Lemma 2.4 identifies its payoff

guarantee to the principal; let F ∗ be the worst-case distribution given by that lemma.

In the proof of Theorem 2.1, we obtained parameters α, β, such that the corresponding

transform-bounded contract (M ′, w′), with reduced form W ′, satisfies:

• W ′(p) ≥ W (p) for all p, hence VE(M
′, w′|I0) ≥ VE(M,w|I0);

• VP (M
′, w′) ≥ VP (M,w) (from which (M ′, w′) is again an optimal contract); and

• α(U(p) + Ep[β(ω)]) ≥ W ′(p) ≥ W (p), with equality on the support of F ∗ (this

holds because in the proof of Lemma 2.5 we showed equality in (2.7) throughout

the support of the worst-case distribution).

The proof of Theorem 2.1 also showed that we cannot have VE(M
′, w′|I0) > VE(M,w|I0)

strictly, because that would imply VP (M
′, w′) > VP (M,w), contradicting optimality of the

original contract. Hence VE(M
′, w′|I0) = VE(M,w|I0), and so F ∗ satisfies the constraints

of (2.6) for the new contract (M ′, w′). Since EF ∗ [U(p)−W ′(p)] = EF ∗ [U(p)−W (p)], F ∗

must actually attain the minimum in (2.6) (for the new contract) — otherwise the mini-

mum would be strictly lower, and we would have VP (M
′, w′) < VP (M,w), a contradiction.

Now we show that (B.1) is an equality for the new contract (M ′, w′). From (2.6) we
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have

VP (M
′, w′) = EF ∗ [U(p)−W ′(p)]

= EF ∗ [(1− α)U(p)− αEp[β(ω)]]

=
1− α

α
EF ∗ [W ′(p)]− Ep0 [β(ω)]

=
1− α

α
VE(M

′, w′|I0)− Ep0 [β(ω)]

=
1− α

α
max

(F,c)∈I0
(EF [W

′(p)]− c)− Ep0 [β(ω)].

Now plugging in W ′(p) = α(UR(p; β) + Ep[β(ω)]) gives us equality in (B.1) for the new

contract. �

C Proofs for restricted versus unrestricted invest-

ment

Here we prove Proposition 3.1. We first develop some preliminary tools. Recall Propo-

sition 2.7, which gives the formula (2.17) for the parameters of the optimal contract,

and solve out for α: given β and (F, c), the α that attains the maximum is α =√
c/(EF [UR(p; β)] + Ep0 [β(ω)]). Plugging in this value of α, (2.17) turns into

max
β:Ω→R

(F,c)∈I0

(
EF [UR(p; β)] + c− 2

√
c (EF [UR(p; β)] + Ep0 [β(ω)])

)
. (C.1)

Moreover, the optimal contract uses the corresponding value of β.

Let β0 be given by β0(ω) = −mind∈D u(d, ω), for each ω. The optimal β certainly

satisfies β(ω) ≤ β0(ω) for each ω, since otherwise β can be decreased without changing

the restricted decision space M in the corresponding transform-bounded contract, thus

saving money without affecting the expert’s incentives for information acquisition. Thus,

in the maximization (C.1), we can restrict the domain to β ≤ β0 componentwise.

The resulting contract is unrestricted investment iff β = β0. Thus, if the maximum in

(C.1) is not attained at β = β0, then there is a properly restricted investment contract

that is optimal; if it is attained at β = β0, then an unrestricted investment contract must

be optimal.

Lemma C.1. UR(p; β) is concave and increasing in β.
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Proof: For values β and β′, let m ∈ M(β) and m′ ∈ M(β′) attain the respective

maxima in the definitions of UR(p; β), UR(p; β
′). Suppose β′′ = λβ + (1 − λ)β′ with

λ ∈ [0, 1]. It is immediate that m′′ = λm+ (1− λ)m′ ∈M(β′′), from which

UR(p; β
′′) ≥ Ep[m

′′(ω)]− Ep[β
′′(ω)] = λUR(p; β) + (1− λ)UR(p; β

′).

And to see that UR is increasing in β: If β ≤ β′ componentwise, and m attains the

maximum for β, then m′(ω) = m(ω) + β′(ω)− β(ω) is in M(β′) and gives the same value

for the maximand in defining UR(p; β
′); thus UR(p; β

′) ≥ UR(p; β). �

It follows that, for each posterior p and each state ω, the one-sided partial derivative

ψ(p;ω) =
∂−UR

∂β(ω)

∣∣∣∣
(p;β0)

is well-defined and nonnegative. We will use this throughout the proof below.

Proof of Proposition 3.1:

Part (a). Fix any state ω∗. We first show that, under the assumptions of this part,

ψ(p, ω∗) = 0 for all p. Suppose not; pick p∗ with ψ(p∗, ω∗) > 0. Write κ = ψ(p∗, ω∗).

Then, for each ǫ ≥ 0, if βǫ : Ω → R is defined by βǫ(ω) = β0(ω) for ω 6= ω∗ and

βǫ(ω
∗) = β0(ω

∗) − ǫ, we get UR(p
∗; βǫ) ≤ UR(p

∗; β0) − κǫ. (This follows by concavity of

UR.) That is, for any decision d satisyfing u(d, ω∗) ≥ −β0(ω
∗)+ ǫ, we have Ep∗ [u(d, ω)] ≤

Ep∗ [u(d(p
∗), ω)]− κǫ. So for any d ∈ D, we can take ǫ = u(d, ω∗) + β0(ω

∗) and obtain

Ep∗ [u(d, ω)] ≤ Ep∗ [u(d(p
∗), ω)]− κ (u(d, ω∗) + β0(ω

∗)) . (C.2)

Plugging in d = d(p∗), transposing, and dividing by κ > 0 gives u(d(p∗), ω∗)+β0(ω
∗) ≤ 0.

But since u(d, ω∗) + β0(ω
∗) ≥ 0 for all d by definition of β0, we must have equality:

β0(ω
∗) = −u(d(p∗), ω∗). Then, (C.2) rewrites as

Ep∗ [u(d, ω)] + κu(d, ω∗) ≤ Ep∗ [u(d(p
∗), ω)] + κu(d(p∗), ω∗) (C.3)

for all d ∈ D.

Hence, if we define q(ω) = p∗(ω) for each ω 6= ω∗ and q(ω∗) = p∗(ω∗) + κ, (C.3) tells

us that d(p∗) maximizes
∑

ω q(ω)u(d, ω) over all d ∈ D. Hence, scaling down q by a factor

of 1 + κ gives another posterior belief, distinct from p∗, for which d(p∗) is optimal. This

contradicts the assumption that each decision can only be optimal for one belief. (This

argument would fail if p∗ puts weight 1 on ω∗, since then q/(1 + κ) is actually equal to
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p∗. But this cannot be the case: d(p∗) is the best decision for p∗, but we saw above that

it is the worst decision in state ω∗.)

This contradiction completes the proof that ψ(p, ω) = 0 for all p and ω.

Now, the concavity of UR implies that (UR(p; β0)−UR(p; βǫ))/ǫ decreases as ǫ→ 0, so

we can invoke the monotone convergence theorem to conclude that

d+

dǫ
EF [UR(p; βǫ)]

∣∣∣∣
ǫ=0

= EF

[
d+

dǫ
UR(p; βǫ)

∣∣∣∣
ǫ=0

]
= 0 for any F ∈ ∆(∆(Ω)).

Now consider any I0, and consider the maximand in (C.1), corresponding to the

optimal contract. The maximizing choice of (F, c) must have c > 0, since otherwise the

zero contract is optimal, contrary to assumption. Suppose that the maximizing choice of

β is β0. Consider replacing β by βǫ. Then the derivative of the maximand in (C.1) with

respect to ǫ (at 0) is equal to

p0(ω)

√
c

EF [UR(p; β0)] + Ep0 [β0(ω)]
> 0.

This contradicts maximality at β0. So the maximum is not attained at β0 after all, and

so our optimal contract is a properly restricted investment contract.

Part (b). In this case, we first choose, for each state ω, a posterior pω lying in the

corresponding open set P . We claim that ψ(pω, ω) > 0 for each state ω.

This is essentially the mirror image of the argument at the beginning of (a). Fix

any state ω∗, and put p∗ = pω∗ . By assumption, there is an ω∗-extremal decision d∗ =

d(p∗) that is optimal throughout the corresponding P . In particular, if we take κ > 0

sufficiently small, and define a belief q by q(ω) = p∗(ω)/(1 + κ) for all ω 6= ω∗ and

q(ω∗) = (p∗(ω∗) + κ)/(1 + κ), then d∗ will be optimal for each such belief q. Multiplying

through by 1 + κ tells us that, for every d ∈ D, we have

∑

ω

p∗(ω)u(d, ω) + κu(d, ω∗) ≤
∑

ω

p∗(ω)u(d∗, ω) + κu(d∗, ω∗)

or

Ep∗ [u(d, ω)] ≤ Ep∗ [u(d
∗, ω)]− κ(u(d, ω∗)− u(d∗, ω∗))

= Ep∗ [u(d
∗, ω)]− κ(u(d, ω∗) + β0(ω

∗))

where the equality holds by assumption that d∗ is ω∗-extremal. In particular, if d is a
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decision satisfying u(d, ω∗) ≥ −β0(ω
∗)+ ǫ, then we have Ep∗ [u(d, ω)] ≤ Ep∗ [u(d

∗, ω)]−κǫ.

It follows that ψ(p∗, ω∗) ≥ κ, proving the claim.

So now let η = minω ψ(pω, ω) > 0. Let F be any distribution with full support,

and mass at least ǫ on each pω, whose mean equals the given p0. We will show that an

unrestricted investment contract is optimal under I0 = {(δp0 , 0), (F, c)}, for sufficiently

small c > 0. Note that full support and non-triviality are satisfied.

We claim that for any β that is ≤ β0 componentwise,

EF [UR(p; β)] ≤ EF [UR(p; β0)]−
ǫη

|Ω|

∑

ω

(β0(ω)− β(ω)). (C.4)

Indeed, choose the state ω∗ for which β0(ω) − β(ω) is largest. Put β1(ω
∗) = β(ω∗) and

β1(ω) = β0(ω) for other states ω. Then increasingness and concavity imply

UR(p; β) ≤ UR(p; β1) ≤ UR(p; β0)− (β0(ω
∗)− β(ω∗))ψ(p, ω∗).

Applying expectations under F , noting that p = pω∗ arises with probability at least ǫ,

and β0(ω
∗)− β(ω∗) ≥

∑
ω(β0(ω)− β(ω))/|Ω| by choice of ω∗, leads to (C.4).

Thus, on the domain β ≤ β0, the function EF [UR(p; β)] is bounded above by an affine

function of β that is uniquely maximized at β0, and this upper bound (C.4) holds with

equality at β = β0. Since the quantity
√
EF [UR(p; β)] + Ep0 [β(ω)] is locally Lipschitz in

β near β0, adding a small multiple of it will not change this fact. Hence, for c sufficiently

small, the maximand in (C.1) is still uniquely maximized over β by taking β = β0. (The

optimum with respect to choice of experiment must indeed be given by (F, c), not (δp0 , 0),

by non-triviality.) It follows that an unrestricted investment contract is optimal.

Part (c). We may shrink P if necessary to assume it is an open ball. Let F0 be

any continuous distribution over posteriors, whose support is the closure of P . The

assumption that no decision is optimal throughout P ensures that EF0
[U(p)] > U(EF0

[p]).

By continuity, this remains true when we replace P by a sufficiently large closed sub-ball

P , and replace F0 with the distribution conditioned on p ∈ P ; call this distribution F .

Let the prior be p0 = EF [p]. Then p0 ∈ P by convexity.

As noted at the beginning of Subsection 2.3, if c > 0 satisfies the bound (2.3), then

I0 = {(δp0 , 0), (F , c)} satisfies the non-triviality assumption. Let F ′ be any distribution

with full support on ∆(Ω) and with mean p0. By continuity of the formula (2.17), we can

take F = (1 − ǫ)F + ǫF ′ for sufficiently small ǫ > 0, and then I0 = {(δp0 , 0), (F, c)} still

satisfies non-triviality. It clearly satisfies full support as well.
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We will show that for ǫ sufficiently small, under this I0, a properly restricted invest-

ment contract is optimal. Compactness implies that for all p ∈ P , optimal decisions are

uniformly bounded away from extremal decisions; that is, one can choose β1 : Ω → R with

β1(ω) < β0(ω), such that for all p ∈ P , any optimal decision d satisfies u(d, ω)+β1(ω) ≥ 0

for each ω.

In particular, UR(p; β1) = U(p) = UR(p; β0) for each such p.

Now, as long as ǫ is small enough, we know that the optimum in (C.1) is attained with

(F, c) rather than (δp0 , 0) (by non-triviality). On the other hand, it is immediate that

when ǫ = 0, the value of (C.1) is strictly higher with β = β1 than β0, since the UR(p; β)

terms are unchanged and the Ep0 [β(ω)] term is smaller. By continuity, this is still true for

sufficiently small ǫ. So in this case, the value of the maximum in (C.1) is attained at some

β 6= β0, which means that the corresponding optimal contract is a properly restricted

investment contract.

�

Proof of Proposition 3.2: Let D = {d0, d1}, and let D′ be the space of all

randomized decisions, which we notate as {(1 − γ)d0 + γd1 | γ ∈ [0, 1]}, thereby making

the problem convex. So we know that there are some α and β such that the corresponding

restricted investment contract, described in Proposition 2.2, is optimal.

Note that the set of γ’s corresponding to decisions satisfying (2.5) is closed and convex,

so it is an interval, say [γ, γ]. Also, if γ = γ then the restricted investment contract allows

only a single message, hence there is zero incentive for information acquisition and the

optimal contract is the zero contract, contrary to assumption. Hence, γ > γ (and α > 0).

Now, notice that

α

(
u((1− γ)d0 + γd1, ω) + β(ω)

)
with γ ∈ [γ, γ]

is equal to

α′

(
u((1− δ)d0 + δd1, ω) + β′(ω)

)

where

α′ = α(γ − γ), β′(ω) =
1

γ − γ

(
(1− γ)u(d0, ω) + γu(d1, ω) + β(ω)

)
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and δ is linearly related to γ by

δ =
γ − γ

γ − γ
∈ [0, 1].

Therefore, the restricted investment contract with parameters α, β, and restricted decision

space given by {(1 − γ)d0 + γd1 | γ ∈ [γ, γ]}, is equivalent to the restricted investment

contract with parameters α′, β′, and the full decision space D′ — that is, the unrestricted

investment contract with these parameters α′, β′.

Finally, since the optimal decision in D′ is always either d0 or d1, this is equivalent to

the unrestricted investment contract with parameters α′, β′ over the original pure decision

space D. �
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