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Abstract

We consider the tradeoff between efficiency and incentives in large double auction

environments with weak budget balance. No mechanism simultaneously gives agents

perfect incentives to be truthful and ensures first-best efficiency, but a planner

designing a mechanism may be willing to compromise on either of these dimensions

for improvements along the other. She would then naturally wish to find where the

possibility frontier lies with respect to incentives and efficiency. We make inroads

on this question: our main result locates the frontier to within a factor that is

logarithmic in the size of the market.

Thanks to (in random order) Alessandro Bonatti, Xiao Yu Wang, Ruitian Lang,

Glenn Ellison, Parag Pathak, Rakesh Vohra, and Juuso Toikka for

helpful comments and advice.

1 Introduction

1.1 Overview

Economists have known since Akerlof [2] that private information can prevent markets

from reaching efficient outcomes. Moreover, the results of Myerson and Satterthwaite [25],

among many others, show that this inefficiency is not specific to competitive markets but

rather is unavoidable under any possible mechanism for allocating goods. However, some
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mechanisms lead to more severe inefficiency than others, and so the natural next question

is what second-best mechanism achieves outcomes that are as efficient as possible. A large

literature addresses this question in many different settings.

Customarily, the mechanism design literature assumes that agents optimize perfectly.

In particular, applying the revelation principle, it is standard to take as a given con-

straint that each agent’s best possible strategy should be to truthfully reveal his private

information, and then describe the optimal mechanism subject to this constraint.

However, in practice, human decision-makers are not perfectly strategic, or at least

do not perfectly optimize the material payoffs that are usually modeled. Accordingly,

a planner could offer a mechanism asking agents to report their preferences, in which

reporting truthfully is not exactly optimal, but the incentives to behave strategically

instead are small. The planner might then expect that agents will report truthfully, rather

than go to the trouble of figuring out how to strategically manipulate the mechanism. This

notion leads to a tradeoff between incentives and efficiency, and motivates a quantitative

examination of the tradeoff.

The present paper makes initial inroads into quantitatively studying this tradeoff, in

the specific context of large double auction environments with quasilinear preferences and

weak budget balance. This is one of the most widely studied economic environments for

mechanism design, and can be viewed as an analytically convenient, stylized model of an

exchange economy.

By studying the incentive-efficiency tradeoff, we bridge two branches of theoretical

research on mechanisms for large markets. On one hand is the literature, going back to

Roberts and Postlewaite [27], showing that in large exchange economies, under the com-

petitive equilibrium mechanism, the incentives for strategic misreporting of preferences

(assuming other agents are truthful) go to zero. On the other hand is a recent literature

studying exact equilibria of large markets and showing that the inefficiency goes to zero

[16, 17, 28]. In particular, part of that latter literature [13, 29] takes a mechanism de-

sign approach and identifies the optimal rate at which any mechanism can converge to

full efficiency as the market becomes large. However, no previous work has explored the

space in between these branches, looking for compromises between perfect efficiency and

perfect incentives. If it turned out that large gains in efficiency could be achieved at the

cost of a very small relaxation of incentives, that would cast a new light on the existing

convergence-rate bounds. Conversely, if this were not possible, the existing impossibility

results would be strengthened.

Our modeling framework is fundamentally non-equilibrium-based, intended to study
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design of market institutions for agents who are not perfectly familiar with their environ-

ment. Indeed, our basic motivating assumption — that agents do not effortlessly know

how to manipulate to their advantage — would be difficult to justify in an equilibrium

model. On the other hand this assumption is reasonable for describing plenty of exchange

in real-world markets. The typical shopper at the grocery store is unlikely to think about

the demand curve of other shoppers for a pint of strawberries, or to know how he might

profitably deviate from pure price-taking behavior so as to influence the prices he faces —

or to even want to bother thinking about how he might go about strategically deviating.

To explore quantitatively the tradeoff between incentives and efficiency, we need ways

to measure both. Following [8], we work in a direct revelation framework, where a mech-

anism asks each agent his value for the good being exchanged, and determines trades

accordingly; and we take a worst-case approach to the definition of incentives. The sus-

ceptibility to manipulation of a particular market mechanism is the largest amount of

expected utility any agent could possibly gain by reporting his value strategically instead

of truthfully; the maximum is taken over all possible beliefs about the distributions from

which other agents’ behavior is drawn. Likewise, we also use a worst-case measure for

inefficiency: it is the largest value, over all possible distributions of agents’ valuations,

of the expected shortfall in surplus realized by the mechanism compared to the first-best

(assuming that agents report truthfully).1

Our worst-case methodology is appropriate for a planner choosing a trading institution

to be used in the future, when she does not have clear priors over agents’ valuations or

their strategic behavior, and wants to be sure that her mechanism will perform well.

(The author’s other work [8] fleshes out in detail a positive model of such a planner’s

choice of mechanism, showing how our measurement methodology fits in.) In addition,

when defining susceptibility, note that we take the worst case over beliefs : there is no

presumption that agents know the true distribution of others’ behavior. This is in keeping

with our non-equilibrium framework, in which agents may not accurately know the details

of their environment.

Two mechanisms in the existing literature represent polar cases with respect to the

efficiency-incentive tradeoff. On one end is the k-double auction, a version of the com-

petitive mechanism; where the goods are given to the traders whose (reported) values

are highest, and trades take place at a market-clearing price. This mechanism achieves

1We measure inefficiency using the allocation of goods, not the sum of the agents’ utilities. These
measures are different if the mechanism runs a surplus. Our measure implicitly assumes that the surplus
can be paid to someone outside the mechanism.
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first-best efficiency if traders are truthful, but does not provide perfect incentives for

truthfulness. On the other end is McAfee’s [23] dominant-strategy double auction, which

provides perfect incentives, but may fail to realize (at most) one profitable trade.

Our results, presented in Section 3, describe the asymptotic behavior of susceptibility

or inefficiency as the number of agents becomes large. We consider environments in which

buyers’ valuations are independently drawn from one distribution, sellers’ valuations are

independently drawn from another distribution, and these two distributions are not too

dissimilar. More precisely, the distributions have densities that differ everywhere by at

most some fixed ratio. Then the k-double auction has susceptibility on the order of 1/
√
N ,

and McAfee’s double auction has inefficiency on the order of 1/
√
N , where N represents

the size of the market. Our main result (Theorem 3) shows that both mechanisms are

close to the possibility frontier: There is a constant c such that any mechanism has either

susceptibility or inefficiency at least c/(
√
N logN).

The assumption of similar distributions is necessary. If we allow the buyers’ and

sellers’ valuations to come from arbitrarily different distributions, then the susceptibility-

or-inefficiency lower bound does not go to zero as the market grows (Proposition 4).

In Section 4, we address a possible “consequentialist” critique of our methodology:

Perhaps a planner designing mechanisms should not be concerned with incentives for

strategic manipulation per se, since agents might manipulate in a way that does not

adversely affect the outcome of the mechanism. Instead, she should be concerned with

the inefficiency that will result from manipulation. It turns out that our results withstand

this critique, as long as we make reasonably conservative assumptions about how agents

might try to manipulate. Specifically, we allow that agents may attempt any manipulation

that gives them a sufficiently large gain in expected utility (they will not necessarily find

the optimal manipulation), and we consider the inefficiency that may result. In this

formulation, instead of a tradeoff between efficiency under truthfulness and incentives for

truthfulness, we have a tradeoff between efficiency under manipulation and the planner’s

confidence about agents’ cost of strategic behavior. Only a little extra work is needed to

reformulate our main results in these terms.

In addition to the results themselves, the method of proof for the lower bounds merits

attention. We use a straightforward variation on a standard proof of the impossibility

of attaining both first-best efficiency and perfect incentives. That proof uses the usual

integral formula derived from the envelope theorem to compute the utility that each type

of each agent would need to receive, and verifies that the total surplus in the market

is not enough to provide that utility to each agent. We introduce error terms into the
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proof, representing inefficiency and susceptibility to manipulation. By continuity, the

same contradiction is still reached if the error terms are sufficiently small; we simply

track them explicitly to find out how large they need to be to avoid a contradiction.

Some care is needed in working the error terms into the integral formula: it turns into a

discrete approximation, and one needs to choose the approximation points appropriately.

However, the fact that we can readily adapt a standard argument to obtain our results

is encouraging, since it suggests that similar methods can be applied to study tradeoffs

involving incentives in other mechanism design domains.

1.2 Literature review

The question of incentives for truthfulness in large markets can be traced back to Roberts

and Postlewaite [27], who showed that the benefits from misreporting one’s demand func-

tion in an exchange economy (under the Walrasian mechanism) go to zero as the economy

is replicated. More recent work in the market design literature gives similar results for

matching mechanisms [3, 15, 18, 19], argues that this property makes the mechanisms

suitable for use in practice. A variety of other literature has also considered mechanisms

with small incentives to manipulate [7, 12, 20, 21, 22, 24, 30], but without looking at the

possibility frontier between these incentives and other properties of the mechanism, as we

emphasize here.

In contrast to this approach, much of the recent work on double auctions has assumed

that agents perfectly optimize — thus imposing Bayesian Nash equilibrium, with given

valuation distributions — and examined either behavior in specific mechanisms or the

design problem of finding the optimal mechanism. Several relevant papers studied rates of

convergence to perfect efficiency. In the model of Rustichini, Satterthwaite, and Williams

[28], equilibrium behavior in the k-double auction leads to inefficiency tending to zero

as the market grows, at rate 1/N . McAfee’s dominant-strategy double auction [23] also

attains rate 1/N . Satterthwaite and Williams [29] showed (for the uniform distribution)

that any mechanism has inefficiency of order at least 1/N , so that the the two mechanisms

just described are asymptotically optimal, to within a constant factor. (These results

appear to contradict our Theorem 3 below, which implies worse rates of convergence.

The discrepancy arises because we allow for a broader class of value distributions.) There

is also recent work on large double auctions with interdependent values, e.g. [26]. However,

our focus here is on environments with private values.
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2 Model

2.1 Elements

We consider double auction settings with unit capacity, private values, and quasilinear

utility. Thus, there are N sellers who each have a good to sell, and N buyers who each

would like to buy a good. Write bi for the value of the good to buyer i, and si for the

value to seller i. These values are normalized to lie in [0, 1]. We write P b, P s for profiles of

buyers’ and sellers’ valuations, (bi)i=1,...,N and (si)i=1,...,N , and P = (P b, P s) for the profile

of all 2N agents’ valuations. Then P b
−i denotes the profile of valuations of all buyers

except the ith, and P s
−i similarly.

We focus attention on direct mechanisms. (This, and other assumptions, will be dis-

cussed in Subsection 2.2.) Thus, a mechanism elicits each agent’s valuation, and deter-

mines an allocation of the goods (possibly probabilistic) and expected transfer payments

as a function of the reported valuations. Formally, a mechanism is a collection of 4N

functions,

M = (pbi , p
s
i , t

b
i , t

s
i )i=1,...,N

where

pbi , p
s
i : [0, 1]

2N → [0, 1]

denote each agent’s probability of exchange (i.e. pbi is buyer i’s probability of receiving a

good, and psi is seller i’s probability of giving up a good); and

tbi , t
s
i : [0, 1]

2N → R

denote the net payment made by each agent. We require the functions pbi , p
s
i , t

b
i , t

s
i to be

measurable. We also impose the feasibility conditions

∑

i

pbi(P ) =
∑

i

psi (P )

for every profile of valuations P ∈ [0, 1]2N .

We do not allow the mechanism to run a deficit, but we do allow a surplus; thus we

impose weak budget balance:

∑

i

tbi(P ) + tsi (P ) ≥ 0
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for all P . (With deficits allowed, the Vickrey-Clarke-Groves mechanism [10, 14] would

achieve full efficiency in dominant strategies, so the tradeoff between efficiency and incen-

tives would be uninteresting.)

If the profile of reported valuations is P , then the utilities of buyer i and seller i,

respectively (relative to not participating in the mechanism), are

U b
i (P ) = bip

b
i(P )− tbi(P ), U s

i (P ) = −sip
s
i (P )− tsi (P ).

In addition to feasibility and weak budget balance, we also require mechanisms to satisfy

ex post individual rationality:

U b
i (P ), U s

i (P ) ≥ 0

for all profiles P and all i. Note that individual rationality and weak budget balance

imply that the transfers tbi(P ), tsi (P ) are bounded.

In the operation of a mechanism, we assume that the buyers’ valuations are drawn

independently from a distribution F b on [0, 1], and the sellers’ valuations are drawn inde-

pendently from a distribution F s. We will in general not presume these distributions are

known, either to the planner or to the agents, but rather allow a set F of possible pairs

(F b, F s). We will assume that for all possible pairs, F b, F s are representable by bounded

density functions on [0, 1]. Our results would be unchanged (and indeed simpler to prove)

if we allowed for atoms in the distributions, but by requiring continuity we make clear

that atoms are not driving the results. We will sometimes write f b, f s for the respective

density functions.

The utility achieved by buyer i when the reported profile is P̂ but his true valuation

is bi is

U b
i (P̂ |bi) = bip

b
i(P̂ )− tbi(P̂ ).

Similarly define

U s
i (P̂ |si) = −sip

s
i (P̂ )− tsi (P̂ ).

We define the susceptibility to manipulation of a mechanism M as the strongest pos-

sible incentive faced by any agent to misreport his valuation. Formally, for a given set F
of distribution pairs, the buyer-susceptibility is

σb = sup
i,bi ,̂bi,(F b,F s)

(
E(F b,F s)[U

b
i (̂bi, P

b
−i, P

s|bi)]− E(F b,F s)[U
b
i (P |bi)]

)

where the supremum is over buyers i, true valuations bi ∈ [0, 1], possible reports b̂i ∈ [0, 1],
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and distribution pairs (F b, F s) ∈ F . The expectations are with respect to other agents’

reported types, where we assume other buyers’ reports are drawn from F b and sellers’

from F s (all independently). Similarly the seller-susceptibility is

σs = sup
i,si,ŝi,(F b,F s)

(
E(F b,F s)[U

s
i (P

b, ŝi, P
s
−i|si)]− E(F b,F s)[U

s
i (P |si)]

)
.

The susceptibility is then

σ = max{σb, σs}.

The motivating story behind this definition is simple: Suppose a planner knows that

agents face a psychological or computational cost of at least ǫ to behaving strategically.

If the planner chooses a mechanism whose susceptibility is known to be less than ǫ,

then agents will not bother to behave strategically and instead will simply report their

true valuations. This is discussed in more detail in [8], which also shows how the above

definition of susceptibility is equivalent to one in which players are allowed to be uncertain

about the distribution pair (F b, F s).

We define the inefficiency of a mechanism using an analogous worst-case formulation.

For any profile P of valuations, define the first-best welfare W FB(P ) to be the sum

of the N highest valuations, and the welfare WM(P ) achieved by the mechanism as∑
i bip

b
i(P ) +

∑
i si(1− psi (P )). Note that

WM(P ) =

[
∑

i

U b
i (P ) +

∑

i

U s
i (P )

]
+

[
∑

i

tbi(P ) +
∑

i

tsi (P )

]
+

[
∑

i

si

]
.

The second bracketed expression is the surplus accrued by the mechanism; we implicitly

assume when computing welfare that this surplus can be paid to an outside agent. The

third expression is independent of the choice of mechanism, so it does not affect the

shortfall relative to first best, W FB(P )−WM(P ).

The inefficiency of M relative to F is then defined as

sup
(F b,F s)

(
E(F b,F s)[W

FB(P )−WM(P )]
)

where the supremum is over (F b, F s) ∈ F , and the expectation is with respect to valuation

profiles where each bi is drawn from F b and each si is drawn from F s (independently).

In particular, this definition of inefficiency assumes truthful reporting; we will address

this issue in Section 4. Also, the definition is absolute (not normalized by the size of
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the market), though our results could just as well be formulated in terms of relative

inefficiency.

We will be mainly concerned with a set of distribution pairs F in which the buyers’ and

sellers’ value distributions are not too different. Specifically, let λ ≥ 1 be an exogenously

given constant; then define Fλ to be the family of distribution pairs (F b, F s) whose

densities satisfy f b(x)/λ ≤ f s(x) ≤ λf b(x) for all x ∈ [0, 1]. (As a special case, λ = 1

means that the buyers’ and sellers’ values are drawn from the same distribution.) Our

main results apply to Fλ. However, we will also consider the set F∞, of all possible pairs

(F b, F s) of distributions representable by bounded density functions on [0, 1].

Note that we have not required mechanisms to be anonymous — that is, to treat

all buyers and all sellers identically. Formally, a mechanism M is anonymous if, for all

profiles (bi, si) and all permutations πb, πs of {1, . . . , N}, we have

pbi(bπb(1), . . . , bπb(N), sπs(1), . . . , sπs(N)) = pbπb(i)(b1, . . . , bN , s1, . . . , sN)

for each i, and similarly for the functions psi , t
b
i , t

s
i . However, to study the inefficiency-

susceptibility frontier, it is enough to consider anonymous mechanisms. Indeed, if M

is any mechanism with susceptibility σ and inefficiency η, we can define an anonymous

mechanism M̃ by randomly permuting the buyers and the sellers and then applying M :

that is,we define

p̃bi(b1, . . . , bN , s1, . . . , sN) =
1

(N !)2

∑

πb,πs

pb(πb)−1(i)(bπb(1), . . . , bπb(N), sπs(1), . . . , sπs(N))

and define p̃si , t̃
b
i , t̃

s
i likewise; these comprise the mechanism M̃ . Then M̃ is an average

of (N !)2 mechanisms, all of which (by symmetry) have gains at most σ to any agent

from manipulating and all of which have an expected welfare loss at most η relative to

the first-best, so the same is true of M̃ . Thus we have an anonymous mechanism whose

susceptibility and inefficiency are at most those of M .

Given this, we will henceforth restrict attention to anonymous mechanisms without

further comment.

2.2 Discussion

There are a couple of assumptions implicit in the above modeling framework which call for

elaboration. Our restriction to direct mechanisms really entails two assumptions: first,
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that each agent’s strategy depends only on his valuation (and no other information);

second, that the strategy space can be taken to be the space of valuations, with honest

reporting as the default behavior of agents who do not strategize.

The second assumption is actually not a serious restriction. We view double auction

environments as a stylized model of competitive markets, and truthfulness as a metaphor

for price-taking. This seems a natural assumption about default behavior (especially

for inexperienced participants). But more generally, we could take an indirect-mechanism

approach, allowing a mechanism M to specify any strategy space for each player, together

with probabilities of trade and transfers as functions function of the strategy profile, and

a specification of a default strategy for each player (possibly mixed) that depends on that

player’s valuation. By a straightforward variation of the usual revelation principle, M

could be converted into a direct mechanism M ′, where default behavior consists of honest

reporting, and where M ′ has the same inefficiency as M and susceptibility no higher than

M (it may have strictly lower susceptibility, due to the elimination of strategies in M

that were not default strategies for any type). Since we are concerned only with the

inefficiency-susceptibility frontier, it suffices to focus on direct mechanisms as we have

done above.

The assumption that players’ behavior depends only on their valuations is more se-

rious. This assumption invites the critique of Bergemann and Morris [6] that a planner

could potentially do better by designing a mechanism in which agents also condition

their strategies on their beliefs about other agents’ behavior. If we were to formulate the

mechanism design problem in full generality taking this into account, a direct mechanism

would have agents report their full types, where a type consists not only of a valuation

but an entire belief hierarchy (including beliefs about any parameters relevant to agents’

manipulative behavior — see the discussion in Section 4 below).

However, recall that we have chosen to make no assumptions about the correctness of

agents’ beliefs about others’ behavior. The appropriate worst-case measure of inefficiency

in this framework would specify that for a mechanism to have inefficiency at most η,

the expected welfare loss relative to first-best should be at most η for every possible

distribution of buyer and seller types, regardless of whether or not their beliefs reflected

the true distribution. With such a definition, it turns out that our results would remain

valid even in this more fully-specified setting. This is because the proofs of our lower

bounds rely only on a single “true” distribution pair (F b, F s) when analyzing the incentive

to misreport, and so these lower bounds actually hold for the subset of the type space on

which it is common knowledge among the agents that values are drawn from this (F b, F s).
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On this subset, two types of a given agent differ only in their valuation, so assuming that

agents report only their valuations is without loss of generality. (However, the proofs do

analyze inefficiency using distributions other than the fixed (F b, F s), so it is crucial that

the definition of inefficiency allows the “true” distribution to be differ from the one that

agents believe to be correct.) Thus the critique of [6] does not bind here. The formal

details of this argument would be notationally involved and not relevant to the main point

of this paper, so we omit them.

We should also comment here on the interpretation of the individual rationality con-

straints, which we have written in an ex post form. These can be thought of as normative

constraints on acceptable mechanisms. They can also be viewed in positive terms, if

agents have the opportunity to renege after the mechanism has operated. However, this

latter interpretation is less tidy: as pointed out by Compte and Jehiel [11], the proper

formulation of such a constraint is as a veto constraint, which not only requires ex post

individual rationality but also imposes stronger incentive constraints — agents should

not be able to benefit by misreporting their valuation and then potentially vetoing the

outcome depending on the realizations of other agents’ types. This distinction turns out

to be immaterial for our results, however: our negative results under individual ratio-

nality still hold a fortiori under the stronger veto constraint, and it can be checked that

our positive results also hold, since the relevant mechanisms (the McAfee and k-double

auctions) satisfy the veto constraint.

Alternatively, using a richer type space as outlined above, in which strategies reflect

an agent’s full type, would allow us to instead use an interim version of the individual

rationality constraints — each agent has nonnegative expected utility from participation

— in which case the positive interpretation would be straightforward. Our lower bounds

wouls still hold with these weaker constraints rather than the ex post constraints, again

for the reason that the proofs invoke the constraints only for agents whose beliefs coincide

with the true distributions (F b, F s). Again, we omit the details.

2.3 Polar mechanisms

We now describe in precise terms our two polar mechanisms. We will content ourselves

with verbal descriptions, rather than tediously write out all the algebraic expressions.

For any k ∈ [0, 1], the k-double auction (described e.g. in [28]) is as follows. For

any profile P of 2N reported valuations, sort them as v(1) ≥ v(2) ≥ · · · ≥ v(2N), and

define the price p∗ = kv(N) + (1 − k)v(N+1). Allocate the goods to the agents with the

11



N highest valuations. (If there is a tie at v(N), ration uniformly at random; ties are not

really important since they occur with probability zero in our model.) Every buyer who

receives a good pays p∗, and every seller who sells a good receives p∗. It is clear that

this mechanism satisfies feasibility, budget balance, and individual rationality, and that

it achieves inefficiency of 0.

McAfee’s double auction, from [23], is a bit more complex. The rules are as follows.

Sort the buyers’ reported valuations in decreasing order, b(1) ≥ · · · ≥ b(N), and the sellers’

in increasing order, s(1) ≤ · · · ≤ s(N). Also define b(0) = s(N+1) = 1 and b(N+1) = s(0) = 0

for convenience. Let k be the highest value satisfying b(k) ≥ s(k); this is the efficient

number of trades. We have 0 ≤ k ≤ N . Define the price p∗ = (b(k+1) + s(k+1))/2.

If p∗ ∈ [s(k), b(k)], then have the k highest-value buyers buy the good from the k lowest-

value sellers at price p∗. (Again, break ties uniformly at random.) Otherwise, note that

k > 0, and have the k−1 highest-value buyers each receive a good and pay b(k), while the

k − 1 lowest-value sellers each sell their good for price s(k). The mechanism thus carries

out k − 1 trades and earns a budget surplus (k − 1)(b(k) − s(k)) ≥ 0.

This mechanism is again feasible, weakly budget-balanced, and individually rational.

It has been established that reporting truthfully is a dominant strategy for all agents in

this mechanism [23, Theorem 1]. Therefore, it has a susceptibility of 0.

3 The efficiency-incentive tradeoff

We can now properly introduce our results on the efficiency-incentive tradeoff.

The results are illustrated in Figure 1, where the gray region represents the (ineffi-

ciency, susceptibility) pairs (η, σ) attained by some mechanism. The frontier must be

convex, as shown in the figure: If mechanism M has inefficiency η and susceptibility σ,

and mechanism M ′ has inefficiency η′ and susceptibility σ′, then for any α ∈ [0, 1] we can

take the convex combination (1 − α)M + αM ′ (defined by taking corresponding convex

combinations of the pbi , p
s
i , t

b
i , t

s
i functions), and this mechanism has inefficiency at most

(1− α)η + αη′ and susceptibility at most (1− α)σ + ασ′.

For the main results, we consider the class of distribution pairs Fλ, in which some

similarity is imposed between the buyers’ and sellers’ value distributions. We give the

approximate locations of the two polar mechanisms, which lie on the two axes of the

possibility set, at a distance of order 1/
√
N from the origin. On the other hand, we

identify a point lying below the possibility set (indicated by the star in the figure), whose

coordinates are of order 1/(
√
N logN). Thus, these results together pin down the location
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Figure 1: The possibility frontier

of the possibility frontier to within a factor that is logarithmic in the size of the market.

If we look at the class of distribution pairs F∞, where the distribution of buyers’ values

can be arbitrarily different from the distribution of sellers’ values, then a similar picture

applies but on a different scale: the lower bound on inefficiency or susceptibility (the star

point) does not go to zero as the market becomes large. This will be shown in Subsection

3.2.

3.1 Main results

We first bound the inefficiency attained by the McAfee double auction, over Fλ. As the

number of agents grows, the inefficiency shrinks on the order of N−1/2. More specifically:

Proposition 1 There is a constant c such that the McAfee double auction has inefficiency

at most c/
√
N on Fλ. (The value of c depends on λ.)

The calculation is routine, but rather lengthy, so we leave it for Appendix A. For a

quick overview: Inefficiency is at most the value of the least valuable trade; a change-of-

variables argument implies that this value is no greater than the probability that the least

valuable trade involves of a buyer with value above x∗ and a seller with value below x∗, for

a suitable (fixed) x∗. For this to happen, in turn, it must be that either (a) the number of

agents with values above x∗ is close to N , which happens with probability on the order of
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N−1/2 by a law-of-large-numbers argument; or (b) when all 2N agents are arranged from

highest value to lowest, there is a long run of consecutive buyers or consecutive sellers,

which happens with probability decreasing exponentially in the length of the run.

We can also bound the susceptibility of the k-double auction; it is also on the order

of N−1/2. This is because the probability that any given misreport is pivotal — that

is, that it advantageously changes the market price — is of order at most N−1/2, by a

central-limit-theorem argument.

Proposition 2 There is a positive constant c such that the k-double auction has suscep-

tibility at most cN−1/2. (Again, c may depend on λ.)

Proof: Consider a buyer with value b, reporting a false value b̂. We may assume

b̂ < b, since reporting b̂ > b can never be profitable: holding fixed the realizations of other

agents’ reports, such a misreport cannot decrease the price, nor can it change the buyer’s

outcome from not receiving a good to receiving one, unless the trade occurs at a price

higher than b.

Moreover, again holding fixed the other agents’ reports, the misreport can only be

beneficial if is pivotal — more specifically, if exactly N − 1 other agents report values

higher than b̂. Indeed, if more than N − 1 other agents report higher values, then the

misreporting buyer gets no good and hence utility zero; if fewer than N − 1 other agents

report higher values, then the misreport has no effect on the price at which he trades.

Since the buyer’s realized utility is always between 0 and 1, his expected gain from

misreporting is at most the probability that exactly N − 1 other agents report a value

greater than b̂. Letting J be the number of other buyers whose values are less than b̂, we

can express this probability as a sum over possible values of J :

N−1∑

J=0

(
N − 1

J

)(
N

J

)
F b(̂b)JF s(̂b)N−J(1− F b(̂b))N−1−J(1− F s(̂b))J . (1)

We finish by invoking Lemma 9 in Appendix A. If F b(̂b) ≤ 1/2, then using
(
N−1
J

)
≤(

N
J

)
, the expression in (1) is

≤ 2
N∑

J=0

(
N

J

)2

F b(̂b)JF s(̂b)N−J(1− F b(̂b))N−J(1− F s(̂b))J

which, according to the lemma (with κ = 1/2, say, and K = 0), is at most c
√
λ/N

for some absolute constant c. This certainly implies the desired bound on the buyer’s

14



probability of being pivotal.

If F b(̂b) > 1/2, then using
(
N−1
J

)
≤
(

N
J+1

)
, the expression in (1) is

≤ 2
N−1∑

J=0

(
N

J + 1

)(
N

J

)
F b(̂b)J+1F s(̂b)N−J(1− F b(̂b))N−1−J(1− F s(̂b))J

and by a change of variable, this is

= 2
N∑

J=1

(
N

J − 1

)(
N

J

)
(1− F s(̂b))N−J(1− F b(̂b))J−1F s(̂b)JF b(̂b)N−J+1

which, again according to the lemma (with K = 1), is at most c
√
λ/N for an absolute

constant c.

This shows in both cases that the buyer-susceptibility of the k-double auction satisfies

the bound. The argument for seller-susceptibility is identical.

�

Having established these estimates for the two polar mechanisms, we can proceed

to our main result: a lower bound showing that the two polar mechanisms are close to

the optimal rate of convergence of inefficiency or susceptibility as the number of agents

becomes large.

Theorem 3 There exists a positive constant c such that, on F1, every mechanism has

either inefficiency at least c/(
√
N logN) or susceptibility at least c/(

√
N logN).

Of course, the same bounds a fortiori hold for any Fλ, λ ≥ 1.

The idea behind the proof is as follows: Consider the incentives facing a given agent

— say, a buyer — when he believes the other agents’ values are drawn from a distribution

with mass concentrated near 0 and 1. Let pb(b) be the probability that the buyer gets a

good when his value is b (and he reports truthfully). Let U
b
(b) be the expected utility he

attains if his value is b. Similarly define ps(s) and U
s
(s).

Suppose the mechanism were to have inefficiency and susceptibility zero. Then the

first-best allocation would determine pb and ps completely. In turn, these determine the

functions U
b
and U

s
via the familiar integral formula coming from the envelope theorem

(up to a constant, which is bounded below by individual rationality). These expected

utility functions are not consistent with weak budget balance — there is not enough

expected surplus in the market to give all agent types the needed utility levels.
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Let pb
∗
, ps∗, U

b∗
, U

s∗
be the functions obtained in the above calculations assuming zero

inefficiency and susceptibility. With a small amount of wiggle room, we know only that

pb and ps have to be close to pb
∗
and ps∗, and in turn that U

b
, U

s
have to be close to

U
b∗
, U

s∗
. Requiring the agents’ expected utility levels to be far enough from U

b∗
, U

s∗
to

avoid exceeding the total surplus in the market then leads to a lower bound on either

inefficiency or susceptibility.

Proof of Theorem 3: It is enough to prove the result for N sufficiently large; we

can then adjust the constant c to ensure the result holds for small N as well.2

Suppose that the number c is such that some mechanism M has susceptibility σ and

inefficiency η both less than c/(
√
N logN). Our goal is to show that c must be larger

than some absolute constant. Specifically, we will show that c ≥ 1/7000. (This is far from

best possible, but we are not concerned here with fine-tuning constants.) Thus, suppose

that c < 1/7000, and seek a contradiction.

Let γ be a sufficiently small positive number. At several points in the course of the

proof, we will use the fact that γ is smaller than various functions of N , η, and c. Rather

than writing out explicit bounds here, we will simply assume without further comment

that all needed bounds are satisfied (there will be only finitely many of them, so this

assumption is safe).

Define the density function f by

f(x) =





1/2γ, 0 ≤ x ≤ γ

0, γ < x < 1− γ

1/2γ, 1− γ ≤ x ≤ 1.

Let F be the corresponding cumulative distribution function. We focus on the incentives

facing a given agent when all other agents’ reports are independently drawn from F .

Step 1 (buyers). As in the sketch above, let pb(b) be the probability that buyer i

receives a good, when his value is b. (By anonymity, this is independent of i.) In this first

step, we use efficiency to show that pb is close to its first-best value.

However, because we are working with continuous distributions, efficiency in expecta-

tion imposes no restrictions on pb(b) itself for any single value of b. Instead, we need to

2To be precise, this requires knowing that for each small N , either inefficiency or susceptibility must
be bounded away from 0. By continuity arguments, it is enough to show that there is no mechanism with
inefficiency and susceptibility both 0. This can be proven e.g. by using revenue equivalence to show that
any such mechanism would have to be equivalent to a VCG mechanism, which always runs a deficit; see
[32].
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talk about averages. Accordingly, for γ
2
≤ b ≤ 1− γ

2
, define

pbγ(b) =
1

γ

∫ b+ γ

2

b− γ

2

pb(b′) db′.

We will show that pbγ(b) is approximately bounded below times 1/2 minus a constant

times η/b. Specifically, for any b > 3γ/2,

pbγ(b) ≥
1

2
− 16η

b− 3γ/2
. (2)

To show this, suppose otherwise, so that

1

16

(
b− 3γ

2

)(
1

2
− pbγ(b)

)
> η. (3)

Define a density function g by

g(x) =

{
1
γ
, b− γ

2
< x < b+ γ

2

0 otherwise.

Define the density h(x) =
(
1− 1

N

)
f(x) +

(
1
N

)
g(x). Let G,H be the distributions associ-

ated with g, h.

Suppose that we draw all 2N agents’ values independently from H. This is equiva-

lent to generating values as follows: we mark each agent as an F -type or G-type agent,

randomly with probability 1− 1
N

or 1
N

respectively, and then draw the valuations from F

or G accordingly. Let E denote the event that there is exactly one G-type buyer and no

G-type seller. We have

Pr(E) =

[
N ·

(
1− 1

N

)N−1

·
(

1

N

)]
·
(
1− 1

N

)N

≥ 1

16
. (4)

Conditional on E, the G-type buyer receives a good with probability pbγ(b).

On the other hand, conditional on E, all F -type agents have values distributed uni-

formly on the set [0, γ] ∪ [1 − γ, 1]. In this case, the probability that at least half the

F -type agents have values in [0, γ] is 1/2, by symmetry. Thus, conditional on E, we have

probability at least 1/2 that the G-type buyer is among the top N values, and the next

lower value is at most γ. In particular, conditional on E, there is probability at least

1/2−pbγ(b) that the G-type buyer is among the top N values but does not receive a good,
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and the next highest value is at most γ. When this occurs, there is an efficiency loss

(relative to first-best) of at least b− 3γ
2
.

Therefore, conditional on E, we have an expected efficiency loss (relative to first-

best) of at least
(
1
2
− pbγ(b)

) (
b− 3γ

2

)
. Since Pr(E) ≥ 1/16, we have an unconditional

inefficiency of at least 1
16

(
1
2
− pbγ(b)

) (
b− 3γ

2

)
. But this amount is greater than η by (3).

We have a contradiction. Therefore, (2) must hold.

In fact, we have the simpler bound

pbγ(b) ≥
1

2
− 32η

b
(5)

(as long as γ < 64η/3). Indeed, (2) implies (5) for b ≥ 3γ, and for b < 3γ the right side

of (5) is negative, so the inequality holds trivially.

Henceforth we will only need this latter bound.

Step 2 (buyers). We next construct a discrete approximation for the standard

integral formula, leading to a lower bound on the utilities of buyer types with high values.

Specifically, we will show that buyers with values in the interval [1−γ, 1] must, on average,

achieve utility at least 1/2− 1/20
√
N .

To this end, let t
b
(b) be the expected payment by buyer i, when his value is b, and

other values are drawn independently from F . Again, this is independent of i. Let

U
b
(b) = bpb(b)− t

b
(b) be the expected utility achieved by a buyer with value b.

Take K = ⌊logN⌋. Define buyer values b0, b1, . . . , bK by

bj =
(
1− γ

2

)1− j

K

(
1

20
√
N

) j

K

.

(The subscripts here simply index the values; they do not denote different buyer identi-

ties.) These buyer values will essentially serve as the interval endpoints in our approxima-

tion to the integral formula. However, instead of using these values exactly, we will need

to average over small perturbations of the values. This is because our available bounds

on probabilities of trade apply to the averages pbγ, not to pb for any single type.

Define ρ to be the ratio of successive bj’s:

ρ =
bj
bj+1

=

(
1− γ

2

1/20
√
N

)1/K
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and note that

ρ ≤ (20
√
N)1/K ≤ 202/ logN(

√
N)2/ logN = 202/ logNe < 3 (6)

(as long as N is large enough, as usual).

Now, by definition of σ, for any r ∈ [−γ/2, γ/2], a buyer of type bj + r (for any j)

cannot benefit by more than σ from misreporting as type bj+1 + r.

Consider any such r . We have

U
b
(bj + r) = (bj + r)pb(bj + r)− t

b
(bj + r)

≥ (bj + r)pb(bj+1 + r)− t
b
(bj+1 + r)− σ

= U
b
(bj+1 + r) + (bj − bj+1)p

b(bj+1 + r)− σ

for each j. By combining these inequalities for each j we get

U
b
(b0 + r) ≥ U

b
(bK + r) +

K−1∑

j=0

(bj − bj+1)p
b(bj+1 + r)−Kσ

≥
K−1∑

j=0

(bj − bj+1)p
b(bj+1 + r)−Kσ (7)

where the last step is by individual rationality.

Now average over [−γ/2, γ/2]. For each j, we know from (5) that

1

γ

∫ γ

2

− γ

2

pb(bj+1 + r) dr ≥ 1

2
− 32η

bj+1

.
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Therefore,

1

γ

∫ γ

2

− γ

2

U
b
(b0 + r) dr ≥

K−1∑

j=0

(bj − bj+1)

[
1

γ

∫ γ

2

− γ

2

pb(bj+1 + r) dr

]
−Kσ

≥
K−1∑

j=0

(bj − bj+1)

(
1

2
− 32η

bj+1

)
− c√

N

= (b0 − bK)

(
1

2

)
−K(ρ− 1) (32η)− c√

N

≥
(
1− γ

2
− 1

20
√
N

)(
1

2

)
− (logN)

(
64

c√
N logN

)
− c√

N

>
1

2
− 1

40
√
N

− 70c√
N

>
1

2
− 1

20
√
N
. (8)

(The fourth line uses (6), and the sixth uses the assumption c < 1/7000 < 1/2800.)

Now, to wrap up this step of the proof, consider the expected utility accruing to buyer i,

when all agents’ values are drawn independently from F (and all agents report truthfully).

With probability 1/2, buyer i has a value in the interval [1 − γ, 1]; and conditional on

being in this interval, buyer i’s value is uniformly distributed on the interval. Therefore,

buyer i’s unconditional expected utility is at least

1

2

(
1

2
− 1

20
√
N

)
=

1

4
− 1

40
√
N
.

Steps 1, 2 (sellers). The analysis up to this point has focused on incentives for

buyers. However, exactly the same calculations can be performed with incentives for

sellers. We briefly outline the arguments. Let ps(s) be the probability that a seller with

value s sells his good, when all other agents’ values are independently drawn from F .

Define

psγ(s) =
1

γ

∫ s+ γ

2

s− γ

2

ps(s′) ds′.

We can use the same efficiency arguments as before to obtain a counterpart to (5):

psγ(s) ≥
1

2
− 32η

1− s
. (9)
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Now define t
s
(s) be the expected net transfer paid by a seller with value s, and let

U
s
(s) = −sps(s)− t

s
(s) be the expected utility such a seller attains. Define K as before,

and define the seller values s0, . . . , sK by

sj = 1−
(
1− γ

2

)1− j

K

(
1

20
√
N

) j

K

.

As before, for any r ∈ [−γ/2, γ/2],

U
s
(sj + r) ≥ U

s
(sj+1 + r) + (sj+1 − sj)p

s(sj+1 + r)− σ

for each j. Summing over j, averaging over r ∈
[
−γ

2
, γ
2

]
, and applying (9), we obtain

1

γ

∫ γ

2

− γ

2

U
s
(s0 + r) dr >

1

2
− 1

40
√
N

− 70c√
N

>
1

2
− 1

20
√
N
.

Finally, as with the buyers, we conclude that when all agents’ values are independently

drawn from F , each seller’s expected utility is at least 1/4− 1/40
√
N .

Step 3. To complete the proof, we use the lower bound on each agent’s utility from

Step 2, compare to the total expected surplus available, and obtain a contradiction.

The lower bound of 1/4 − 1/40
√
N obtained at the end of Step 2 holds for each of

the 2N agents, and therefore the expected surplus generated by the mechanism — that

is, the expected sum of the agents’ utilities — is bounded below as

E[
∑

i

U b
i (P ) +

∑

i

U s
i (P )] ≥ N

2
−

√
N

20
. (10)

On the other hand, due to weak budget balance, the surplus at any profile P satisfies

∑

i

U b
i (P ) +

∑

i

U s
i (P ) ≤

∑

i

bip
b
i(P )−

∑

i

sip
s
i (P ) ≤ W FB(P )−

∑

i

si. (11)

Let’s bound the expectation of the first-best welfare W FB. Each agent’s value is either

in [0, γ] or in [1− γ, 1], independently with probability 1/2. Letting K be the number of

agents with high values, we can bound the first-best by summing over possible values of
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K:

E[W FB(P )] ≤
2N∑

K=0

(
2N

K

)(
1

2

)2N

[min{N,K} · 1 + (N −min{N,K}) · γ]

≤ Nγ +
2N∑

K=0

(
2N

K

)(
1

2

)2N

min{N,K}.

Break the sum into terms with K ≤ N − ⌊
√
N/4⌋ and K > N − ⌊

√
N/4⌋, rearrange,

and then use Lemma 10 from Appendix A (a crude central-limit-theorem approximation)

to bound from below the probability that K ≤ N − ⌊
√
N/4⌋:

E[W FB(P )] ≤ Nγ +

N−⌊
√
N/4⌋∑

K=0

(
2N

K

)(
1

2

)2N

·
(
N −

⌊√
N

4

⌋)

+
2N∑

K=N−⌊
√
N/4⌋+1

(
2N

K

)(
1

2

)2N

·N

= Nγ +
2N∑

K=0

(
2N

K

)(
1

2

)2N

·N

−
N−⌊

√
N/4⌋∑

K=0

(
2N

K

)(
1

2

)2N

·
⌊√

N

4

⌋

≤ Nγ +N − 1

4

⌊√
N

4

⌋

< N −
√
N

20
.

This bounds the expectation of W FB(P ).

The expression (11) also involves a
∑

i si term. But since each seller has expected

value N , the expectation of this sum is simply N/2. Consequently, (11) implies that the

expected surplus is less than
N

2
−

√
N

20
.

Comparing with (10), we have a contradiction, which completes the proof.

�
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3.2 Unrestricted distributions

We now show how the results change when no restrictions are imposed on the pair of

distributions — we use the full class F∞, rather than Fλ

Trivially, the McAfee double auction has inefficiency at most 1 (since it omits at most

one desirable trade), and the k-double auction has susceptibility at most 1 (since no agent

can ever achieve utility greater than 1). Thus, it is possible to achieve zero inefficiency or

susceptibility and a constant, independent of the market size, along the other dimension.

The following result shows that it is not possible to do better:

Proposition 4 There exists a positive constant c such that, on F∞, every mechanism

has either inefficiency or susceptibility at least c.

The argument is somewhat similar to that of Theorem 3, but simpler. Since the proof

is relatively brief, we will not bother explicitly breaking it into steps.

Proof: We will give a proof with c = 1/128. So suppose for contradiction that some

mechanism M has susceptibility σ and inefficiency η both less than 1/128. Let γ be a

positive number, chosen to be very small; as in the proof of Theorem 3, we will not bother

being explicit about the bounds needed on γ.

Let the distributions F b, F s be given by the densities

f b(x) =

{
1/γ, 1− γ ≤ x ≤ 1

0, 0 ≤ x < 1− γ

f s(x) =

{
1/γ, 0 ≤ x ≤ γ

0, γ < x ≤ 1.

Also let Gb be the distribution with density

gb(x) =

{
1/γ, 1

4
− γ ≤ x ≤ 1

4

0 otherwise,

and take Hb(x) =
(
1− 1

N

)
F b(x) +

(
1
N

)
Gb(x). Drawing a buyer’s value from Hb is

equivalent to designating the buyer as F b-type or Gb-type, with probabilities 1− 1
N

or 1
N

respectively, and then drawing the value from F b or Gb accordingly.

Suppose all buyers’ values are drawn from Hb and all sellers’ values are drawn from

F s. Let E be the event that there is exactly one Gb-type buyer. By calculations similar
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to (4), we have

Pr(E) ≥ 1

4
.

Whenever E occurs, the first-best allocation assigns all the goods to the buyers, and any

failure to assign a good to some buyer entails an efficiency loss of at least (1/4−γ)−(γ) ≥
1/8. In particular, if π is the probability that the Gb-type buyer ends up with a good

(conditional on E), we have

η ≥ Pr(E) · (1− π) · 1
8
≥ 1− π

32

from which

π ≥ 1− 32η >
3

4
.

Now let pb(b) denote the probability that a buyer receives a good, when he reports b

and all other agents’ reports are drawn from (F b, F s). The above implies that the average

of pb(b) with respect to Gb is at least 3/4:

1

γ

∫ 1
4

1
4
−γ

pb(b) db ≥ 3

4
.

Let U
b
(b) be the utility attained by a buyer with value b, when other agents’ reports

are drawn from (F b, F s).

For any r ∈ [0, γ], a buyer of value 1−r cannot benefit by more than σ by misreporting

as value 1/4− r. And so, as in Step 2 of the proof of Theorem 3, we have

U
b
(1− r) ≥ U

b
(
1

4
− r

)
+

(
1− 1

4

)
pb
(
1

4
− r

)
− σ.

Averaging over r ∈ [0, γ] gives

1

γ

∫ 1

1−γ

U
b
(b) db ≥ 1

γ

∫ 1
4

1
4
−γ

U
b
(b) db+

3

4

[
1

γ

∫ 1
4

1
4
−γ

pb(b) db

]
− σ

≥ 3

4

[
1

γ

∫ 1
4

1
4
−γ

pb(b) db

]
− σ

≥ 9

16
− σ

>
1

2
.
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Now finally suppose all agents’ values are drawn from (F b, F s). Each buyer’s expected

utility from the mechanism is (1/γ)
∫ 1

1−γ
U

b
(b) db, which is greater than 1/2, by the above

calculation.

By identical arguments, each seller’s expected utility is also greater than 1/2.

But this means that when all agents’ values are drawn from (F b, F s), the total expected

surplus generated by the mechanism must be more than 2N · 1/2 = N . Since it is never

possible to generate a surplus of more than N , we have a contradiction.

�

4 A consequentialist approach

The exposition so far has focused on incentives for truthful reporting. This follows a

substantial literature that treats strategyproofness as a basic normative criterion for eval-

uating mechanisms (see [5] for a survey, and [4] for a succinct summary of several justi-

fications). However, others [6, 9] have raised the criticism that truthfulness should not

be an end in itself; rather, what matters is the outcome that occurs as a result of any

manipulations. In particular, in the double auction environment, there is an unambiguous

objective available to a planner with such a “consequentialist” philosophy — namely, the

efficiency of the realized allocation of goods — and so it is especially natural to frame the

design problem in terms of this objective.

Fortunately, it turns out that there is a close connection between our formulation of

the efficiency-incentive tradeoff and an alternative formulation that focuses on outcome

efficiency. To motivate the latter formulation, imagine a planner who wants to ensure

an allocation within η of the first-best welfare, and who is uncertain not only about the

distributions (F b, F s) but also about the agents’ strategic behavior. Thus, the planner

wants to ensure that no matter what manipulations the agents perform, welfare is always

within η of the first-best (in expectation over realizations of the agents’ types).

To describe the planner’s problem, we must specify how she expects agents to manip-

ulate. As sketched in Subsection 2.1, we presume there is a computational cost of at least

ǫ to behaving strategically, so the planner is confident that agents will not manipulate if

they cannot gain more than ǫ expected utility by doing so. What if they can gain more

than ǫ? We could assume that agents will choose the manipulation that is optimal (with

respect to their beliefs), but this would stray from our motivating notion of inexperienced,

boundedly-rational agents. Instead we will take a more agnostic approach: agents may
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potentially make any misreport that would gain at least ǫ expected utility.3

We formalize this approach as follows. Given a mechanismM , a class F of distribution

pairs, and a minimum manipulation cost ǫ, define the manipulation set for each possible

buyer’s valuation bi ∈ [0, 1] as

W b(bi; ǫ) = {bi} ∪
{b̂i | E(F b,F s)[U

b
i (̂bi, P

b
−i, P

s|bi)]− E(F b,F s)[U
b
i (bi, P

b
−i, P

s)] ≥ ǫ

for some (F b, F s) ∈ F}.

(This is independent of i, by anonymity.) This set represents the set of all valuations

that the planner believes a buyer might report, given that his true valuation is bi. Note

that we always include bi: no matter what the mechanism is, we allow for the possibility

that strategizing is so costly that the buyer just tells the truth. Similarly, for each seller’s

valuation si we define

W s(si; ǫ) = {si} ∪
{ŝi | E(F b,F s)[U

s
i (P

b, ŝi, P
s
−i|si)]− E(F b,F s)[U

s
i (P

b, si, P
s
−i)] ≥ ǫ

for some (F b, F s) ∈ F}.

From the planner’s point of view, each buyer’s true valuation and his report are drawn

from a joint distribution Hb on [0, 1] × [0, 1], independently across buyers. We say that

such a joint distribution Hb is possible if it places probability 1 on the set of pairs (b, b̂)

such that b̂ ∈ W b(b; ǫ); and similarly for joint distributions Hs of sellers’ valuations and

reports.

The planner’s measure of inefficiency is given by the worst case over all possible joint

distributions Hb and Hs. For any profile P of true valuations and P̂ of reports, de-

fine the realized welfare WM(P̂ |P ) as
∑

i bip
b
i(P̂ ) +

∑
i si(1 − psi (P̂ )). Then define the

consequentialist inefficiency of the mechanism M (with minimum manipulation cost ǫ) as

ηc = sup
(Hb,Hs)

(
E(Hb,Hs)[W

FB(P )−WM(P̂ |P )]
)
,

where the expectation is over true profiles P and reported profiles P̂ obtained by drawing

each (bi, b̂i) ∼ Hb and each (si, ŝi) ∼ Hs independently, and the supremum is over pairs

3In [8], we gave a positive model that effectively assumes the planner considers any misreport to be
possible if she is not certain that the agents cannot gain more than ǫ. The model here is more refined.
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such that

• Hb is possible for the buyers,

• Hs is possible for the sellers, and

• the marginals F b of Hb and F s of Hs on true valuations satisfy (F b, F s) ∈ F .

The value of ηc of course depends on ǫ. The higher ǫ is, the smaller the manipulation

sets are, the smaller the set of (Hb, Hs) over which the sup is taken, and so the smaller is

consequentialist inefficiency. Note also that the consequentialist inefficiency ηc is always

at least as large as the truthful inefficiency η.

This leads to our main definition: we say that a mechanism M has a (σ, η) consequen-

tialist tradeoff on the class of distribution pairs F if, for any manipulation cost ǫ < σ, the

mechanism’s consequentialist inefficiency on F is at least η. This expresses the tradeoff

faced by a planner: she must either be willing to assume that agents have a manipulation

cost at least σ, or accept an allocative inefficiency of at least η.

With these definitions behind us, we can proceed to convert our results into the con-

sequentialist framework. Our earlier results were of the form

for a given class of distribution pairs F , every mechanism either has inefficiency

greater than [bound] or susceptibility greater than [bound].

We would now like to have results of the form

for a given F , every mechanism has a ([bound],[bound]) consequentialist trade-

off.

To make this leap, we focus on misreports that are not too small. The intuition is as

follows: Suppose a mechanism makes a buyer of value b willing to misreport as a value

b̂, and b̂ is far from b — say b̂ < b for example. Then when all other agents report

values in between b and b̂, the mechanism cannot distinguish whether the buyer reporting

b̂ actually has value b̂ (in which case efficiency would imply that the buyer should not

get the good) or actually has value b (in which case the buyer should get the good). So

whatever allocation the mechanism specifies will be bounded away from efficiency in one

of the two cases.

Once again, the intuition requires some elaboration because of our restriction to con-

tinuous distributions — misreports by just a single type, or by a finite set of types, have
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zero effect on expected efficiency. The technical apparatus needed to make the argument

work is as follows.

We define a quasi-misreport for a buyer to be a triple (b, b̂, δ), where δ ∈ [0, 1] and

b, b̂ ∈ [δ, 1− δ], and b̂ 6= b. The interpretation of a quasi-misreport is not just that buyers

of type b are willing to misreport as b̂, but rather that a positive measure of types b′

within δ of b are each incentivized to misreport by the amount b̂ − b. A quasi-misreport

for a seller is analogously a triple (s, ŝ, δ).

Formally: we say that the mechanismM is σ-susceptible to the quasi-misreport (b, b̂, δ)

of a buyer under F , if the set

{b′i ∈ [b− δ, b+ δ] | b′i + (̂b− b) ∈ W b(b′i; σ)

has positive Lebesgue measure. We define σ-susceptibility to quasi-misreports of a seller

analogously.

It is clear that if a mechanism is σ-susceptible to any quasi-misreport, then it has

susceptibility at least σ. Thus we can think of susceptibility to a particular set of quasi-

misreports as a strengthening of susceptibility. This strengthening ties in with consequen-

tialist inefficiency via the following lemma:

Lemma 5 Assume N ≥ 2. Let F be a set of distribution pairs with F1 ⊆ F .

If M is σ-susceptible to the buyer’s quasi-misreport (b, b̂, δ), and

η <
b− b̂− 4δ

64
, (12)

then M has a (σ, η) consequentialist tradeoff over F . Similarly, if M is σ-susceptible to

the seller’s quasi-misreport (s, ŝ, δ), and

η <
ŝ− s− 4δ

64
, (13)

then M has a (σ, η) consequentialist tradeoff over F .

Proof: We give the proof for (12); the argument for (13) is essentially identical. Note

(12) implies b− b̂ ≥ 4δ.

Let R be the set of values r ∈ [−δ, δ] such that a buyer of type b+ r can benefit by at

least σ from misreporting as b̂+ r, for some distribution pair in F . Thus, for every r ∈ R,

the manipulation set W b(b+ r; σ) contains b̂+ r, and R has Lebesgue measure µ > 0.
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Define density functions f, g as follows:

f(x) =

{
2/δ, b+b̂

2
− δ < x < b+b̂

2
+ δ

0 otherwise;

g(x) =

{
1/µ, x = b+ r for some r ∈ R

0 otherwise.

Define the density h(x) =
(
1− 1

N

)
f(x) +

(
1
N

)
g(x). Let F,G,H be the associated distri-

butions.

Drawing an agent’s value from H is equivalent to designating the agent as “F -type”

or “G-type” with probabilities 1 − 1/N or 1/N , respectively, then drawing a valuation

from F or G accordingly.

Certainly (H,H) ∈ F . Suppose all agents’ values are drawn independently from H,

and that the agents report as follows: any G-type buyer misreports by b̂− b (so if his true

value is b+ r, he reports b̂+ r); all other agents report truthfully.

Let E denote the event that there is exactly one G-type buyer, and the 2N − 1 other

agents are all F -type. As in (4), we have

Pr(E) ≥ 1

16
. (14)

Conditional on E, let π be the probability that the G-type buyer ends up with a good

under the mechanism. Notice that in event E, the first-best always requires this buyer to

receive a good; when he does not, the resulting efficiency loss is at least as large as the

difference between his value and the next-highest value, which is at least

(b− δ)−
(
b+ b̂

2
+ δ

)
=

b− b̂

2
− 2δ.

Therefore, the consequentialist inefficiency of the mechanism (with minimum manipula-

tion cost σ) satisfies the lower bound

ηc ≥ Pr(E) · (1− π) ·
(
b− b̂

2
− 2δ

)
≥

b−b̂
2

− 2δ

16
· (1− π). (15)

29



On the other hand, let ĝ be the density defined by

ĝ(x) =

{
1/µ, x = b̂+ r for some r ∈ R

0 otherwise.

and ĥ(x) =
(
1− 1

N

)
f(x) +

(
1
N

)
ĝ(x). Define Ĝ, Ĥ the distributions associated with ĝ, ĥ.

Note that Ĝ represents the distribution of reports by a G-type buyer in the previous

scenario who misreports his value.

Suppose now that all agents’ values are drawn from Ĥ, instead of H, and that all

agents report truthfully. We can label agents as F -type or Ĝ-type, as before. Let Ê

denote the event that there is one Ĝ-type buyer and all other agents are F -type. We

then have Pr(Ê) ≥ 1/16 once again. Moreover, the distribution of profiles conditional

on Ê, when values are drawn from Ĥ, is exactly the same as the distribution of reported

profiles conditional on E, when values were drawn from H and when G-type buyers were

misreporting. Consequently, conditional on Ê, the probability that the Ĝ-type buyer

receives a good is again π.

However, conditional on Ê, the first-best requires that the Ĝ-type buyer never receive

a good; and when he does receive one, the efficiency loss is at least the difference between

his value and the next higher value, which is at least

(
b+ b̂

2
− δ

)
−
(
b̂+ δ

)
=

b− b̂

2
− 2δ.

So we have

η ≥ Pr(Ê) · π ·
(
b− b̂

2
− 2δ

)
≥

b−b̂
2

− 2δ

16
· π. (16)

Adding (15) and (16), and dividing by 2 gives ηc ≥ (b− b̂− 4δ)/64. Combining with (12),

we see that the mechanism has a (σ, η) consequentialist tradeoff, as claimed.

�

We can now use Lemma 5 to restate our main results from Section 3 in terms of

consequentialist tradeoffs. The following theorem extends Theorem 3:

Theorem 6 There exists a positive constant c such that every possible mechanism has a

(c/(
√
N logN), c/(

√
N logN)) consequentialist tradeoff on F1.

Proof: Suppose not: some mechanism M has consequentialist inefficiency ηc less than

c/(
√
N logN) for manipulation cost σ < c/(

√
N logN). We repeat exactly the steps of
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the proof of Theorem 3. Since η < ηc, the only assumption from that theorem that is no

longer present was the assumption that each agent can gain at most σ by misreporting.

That assumption was used only once in the original proof — in Step 2, in the line “a

buyer of type bj + r (for any j) cannot benefit by more than σ from misreporting as type

bj+1+ r” (and the analogous argument for sellers). This line now requires elaboration. In

particular, it must be reformulated in terms of quasi-misreports.

We claim that for each j, the mechanism M cannot be σ-susceptible to the quasi-

misreport
(
bj, bj+1,

γ
2

)
. For suppose otherwise. Then by Lemma 5, we have

η ≥ bj − bj+1 − 2γ

64
>

bj − bj+1

70
.

Now, the ratio ρ satisfies the lower bound

ρ ≥ 3

4
(20

√
N)1/K ≥ 3

4
(
√
N)1/ logN =

3

4
e1/2 >

6

5
, (17)

which gives us

bj − bj+1 = (ρ− 1)bj+1 ≥
bj+1

5
≥ 1

100
√
N

and therefore

η ≥ 1/100
√
N

70
=

1

7000
√
N
.

Since η < c/(
√
N logN), we obtain c ≥ 1/7000 (as long as N ≥ 3), contradicting our

assumption at the beginning of the proof.

Thus, M is not susceptible to the quasi-misreport
(
bj, bj+1,

γ
2

)
. So it remains true that

for almost all r ∈ [−γ/2, γ/2], a buyer of type bj + r (for any given j) cannot benefit by

more than σ from misreporting as type bj+1 + r. Hence, for almost all r, this holds for all

j simultaneously.

For each such r, the argument leading to (7) remains valid. Then (8) continues to

hold as well, since that inequality is derived by integrating over r ∈ [−γ/2, γ/2] (and the

integrand is bounded). Thus, the conclusion of Step 2 on the average utility of each buyer

still applies. An entirely analogous argument shows that we also still have the same lower

bound on average utility for the sellers.

From there, the rest of the argument for Theorem 3 leads to the same contradiction

as before. �

Similarly, the following result extends Proposition 4 to the consequentialist framework:
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Proposition 7 There exists a positive constant c such that every mechanism has a (c, c)

consequentialist tradeoff on F∞.

Proof: We prove the proposition with c = 1/128. Thus suppose for contradiction

that some mechanism has consequentialist inefficiency ηc < 1/128 with σ < 1/128. Again,

we repeat line-for-line the proof of Proposition 4, making a change analogous to the one

we applied to prove Theorem 6.

Specifically, the only line in the proof of Proposition 4 that needs to be changed is

the assertion “for any r ∈ [0, γ], a buyer of value 1− r cannot benefit by more than σ by

misreporting as value 1/4− r.” Instead, this line now only holds for almost all r ∈ [0, γ];

that is, the mechanism is not σ-susceptible to the quasi-misreport
(
1− γ

2
, 1
4
− γ

2
, γ
2

)
. Proof:

if it were σ-susceptible, then by Lemma 5, we would have

η ≥ 3/4− 2γ

64
>

1

128
,

contrary to assumption. (An analogous change would be made in the argument for sellers.)

Again, the fact that misreports are prevented for almost all r ∈ [0, γ] rather than all

r is immaterial, since the proof of Proposition 4 then proceeds by integrating over r. The

rest of that proof then carries through, and we reach the same contradiction.

�

To summarize this section: although our main results were originally expressed in

terms of the tradeoff between incentives for strategic manipulation and efficiency under

truth-telling, they can be easily rephrased in terms of the tradeoff between costs of strate-

gic behavior and efficiency under manipulation. The proofs carry over with only minor

enhancements needed.

Before closing, we should mention that all of the above discussion has used only the

allocation of goods as the relevant welfare criterion. In fact, with our assumption that

agents face a cost to behaving strategically, it would arguably be appropriate to count this

cost as a welfare loss whenever it is incurred. Of course, doing so would only strengthen

our lower bounds on consequentialist inefficiency.

5 Onwards

In this paper, we have looked at the tradeoff between efficiency and incentives for strategic

manipulation in large double auction mechanisms. In so doing, we have begun to fill a
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gap between two earlier literatures on large double auctions — one looking only at incen-

tives for manipulation, and one looking at inefficiency in perfectly incentive-compatible

mechanisms. By looking at the tradeoff, we have addressed the question of whether it

would be possible to achieve much-improved convergence to full efficiency by making a

small sacrifice in terms of incentives for truthful behavior. Our main result, Theorem 3,

gives a negative answer to this question, by providing a near-optimal bound for the rate

at which either the inefficiency or the susceptibility to manipulation of any mechanism

can converge to zero as the size of the market becomes large. We have also reinterpreted

the bound in terms of the severity of inefficiency that may result when agents actually do

manipulate (Theorem 6).

There are several clear technical directions in which to extend this paper. One direction

would be to strengthen Theorem 3 to give a sharp bound on the inefficiency-susceptibility

tradeoff. Ideally, it should be possible to parameterize the curve to which the inefficiency-

susceptibility frontier (depicted in Figure 1) converges as N becomes large, analogously

to the deficit-inefficiency frontier parameterized by Tatur [31].

One might also wish to give analogous bounds for other classes of distribution pairs F ,

besides those we have looked at. For example, one might consider the family of all pairs

(F b, F s) given by continuous densities taking values in some interval [p, p], where 0 < p < p

are fixed; this would be more comparable with previous literature [13, 23, 28, 31].

The present paper fits into the program advanced in [8], which argues that it can

be useful to quantify incentives for strategic behavior in mechanisms, and that a nat-

ural approach to doing so — defining a mechanism’s susceptibility to manipulation as

the maximum expected utility an agent could gain by manipulating — is analytically

tractable. By looking at incentives in this way, rather than treating incentive constraints

as rigid, we open up a new quantitative dimension to mechanism design. Understanding

this dimension may be useful in designing and evaluating mechanisms for practical use.

A Omitted proofs

We begin by introducing some asymptotic notation used in the proofs. We follow the

conventions of [8] and keep explicit track of constant factors. Specifically, for functions

F (N), G(N), we write F (N) ∼ G(N) to mean that F (N)/G(N) → 1 as N → ∞, and

F (N) . G(N) to mean lim supN→∞ F (N)/G(N) ≤ 1.

Now, we prove a technical result, Lemma 9, that is used in the proofs of Propositions

1 and 2. It provides a central-limit-theorem-style approximation on the probability of a
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given split between the number of high-value and the number of low-value agents.

We first need the following preliminary calculation:

Lemma 8 Fix 0 < κ < 1. Then

max
0≤J≤N

(
N

J

)
κJ(1− κ)N−J .

1√
2πκ(1− κ)N

.

Proof: The maximum of the left-hand side over J is attained at J = ⌊(N + 1)κ⌋
(this can be proven by computing the ratio of its values over successive J). Now expand

explicitly, use Stirling’s approximation [1, eq. 6.1.38] for the factorials, and simplify. �

Lemma 9 Let 0 < κ < 1 and λ ≥ 1 be given. There exist a constant c and an integer

N0 with the following property: For all N > N0, all K ≤ (1 − κ)N , and all a, b ∈ [0, 1]

such that

b ≤ λa, 1− b ≤ λ(1− a),

we have the inequality

N∑

J=K

(
N

J

)(
N

J −K

)
aN−JbJ−K(1− a)J(1− b)N−J+K ≤ c

√
λ

κN
. (18)

Proof: We consider three cases, depending on the values of a and b.

(i) Suppose that a < κ/4λ. Then b < κ/4. For every J we have either

κ

2λ
≤ N − J

N
(19)

or
κ

2
≤ J −K

N
, (20)

since otherwise adding would give N−K
N

< κ1+1/λ
2

≤ κ, a contradiction.

If (19) holds then consider (
N

J

)
aN−J(1− a)J

which is log-concave in a, maximized at a = (N − J)/N . The constraint a < κ/4λ
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then implies

(
N

J

)
aN−J(1− a)J <

(
N

J

)( κ

4λ

)N−J (
1− κ

4λ

)J

.
1√

2πN
(

κ
4λ

) (
1− κ

4λ

)

using Lemma 8.

If (20) holds then consider

(
N

J −K

)
bJ−K(1− b)N−J+K ,

which is log-concave in b, maximized at b = (J − K)/N . The constraint b < κ/4

implies

(
N

J −K

)
bJ−K(1− b)N−J+K <

(
N

J −K

)(κ
4

)J−K (
1− κ

4

)N−J+K

.
1√

2πN
(
κ
4

) (
1− κ

4

)

again by Lemma 8.

So there is an absolute constant c such that, for every J , one of the two factors

(
N

J

)
aN−J(1− a)J ,

(
N

J −K

)
bJ−K(1− b)N−J+K

is at most c
√
λ/κN (as long as N is large enough). Then the sum in (18) is at most

c

√
λ

κN

[
N∑

J=K

(
N

J −K

)
bJ−K(1− b)N−J+K +

N∑

J=K

(
N

J

)
aN−J(1− a)J

]

≤ c

√
λ

κN

[
(b+ (1− b))N + (a+ (1− a))N

]
= 2c

√
λ

κN
.

(ii) Suppose that 1− a < κ/4λ. Then 1− b < κ/4. Here the analysis is quite similar to

case (i): For every J we have either

1

2
≤ J

N
(21)
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or
1

2
≤ N − J +K

N
. (22)

If (21) holds then

(
N

J

)
aN−J(1− a)J <

(
N

J

)(
1− κ

4λ

)N−J ( κ

4λ

)J

.
1√

2πN
(
1− κ

4λ

) (
κ
4λ

)

and if (22) holds then

(
N

J −K

)
bJ−K(1− b)N−J+K <

(
N

J −K

)(
1− κ

4

)J−K (κ
4

)N−J+K

.
1√

2πN
(
1− κ

4

) (
κ
4

) .

This case is completed exactly as in the previous case.

(iii) The remaining possibility is κ/4λ ≤ a ≤ 1−κ/4λ. In this case, we hold a fixed and

let N and J vary. We use Lemma 8, which gives

max
J

(
N

J

)
aN−J(1− a)J .

1√
2πNa(1− a)

≤ c

√
λ

κN

for an appropriate constant c. Then the sum in (18) is at most

c

√
λ

κN

N∑

J=K

(
N

J −K

)
bJ−K(1− b)N−J+K ≤ c

√
λ

κN
[(b+ (1− b))N ] = c

√
λ

κN
.

�

Proof of Proposition 1: We will show the following stronger result: there is an

absolute constant c such that the expected value of the least valuable trade, under any

distribution pair (F b, F s) ∈ Fλ, is at most cλ5/2N−1/2, as long as N is sufficiently large

relative to λ. Denote this expected value by ζ(F b, F s).

First, fix any N and any (F b, F s) ∈ F . For each x ∈ [0, 1], let H(x) denote the

probability that s(k) < x < b(k), where s(k), b(k) denote the values involved in the lowest-

value trade as in Subsection 2.3. Conditional on the realized profile, the value of this
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lowest-value trade, b(k) − s(k), equals the probability that s(k) < x < b(k) when x is drawn

uniformly from [0, 1]. Hence, the unconditional expected value of b(k) − s(k) is just the

expected value of H(x), over x ∼ U [0, 1]. That is,

ζ(F b, F s) = E[b(k) − s(k)] =

∫ 1

0

H(x) dx.

So it suffices to show that maxx∈[0,1] H(x) is bounded above by cλ5/2N−1/2.

Thus, fix x∗ ∈ [0, 1]. Call a valuation high if it is in [x∗, 1] and low if it is in [0, x∗).

Notice that b(k) is the lowest buyer’s value among the top N values, and s(k) is the highest

seller’s value among the bottom N values. Therefore, s(k) < x∗ < b(k) if and only if all

buyers among the top N values are high and all sellers among the bottom N values are

low. Call this event E∗. Thus, H(x∗) = Pr(E∗).

To bound the probability of E∗, we define the following events:

• EK , for each integer K = −N,−N + 1, . . . , N , is the event that there are exactly

N +K high values.

• E ′
K , for K = 0, . . . , N , is the event that EK happens and the (N + 1)th, . . . , (N +

K)th highest values are all buyer values.

• E ′
K , for K = −N, . . . ,−1, is the event that EK happens and the Nth, (N − 1)th,

. . . , (N +K + 1)th highest values are all seller values.

Note that E∗ is contained in the union of the E ′
K .

We claim that for |K| ≤ N/2, Pr(EK) ≤ cλ1/2N−1/2, where c is an absolute constant

(as long as N is large enough). Indeed, if we let J denote the number of high buyer values,

we can sum over possible realizations of J to obtain (when K ≥ 0) the equality

Pr(EK) =
N∑

J=K

(
N

J

)(
N

N +K − J

)
F b(γ)N−JF s(γ)J−K(1− F b(γ))J(1− F s(γ))N+K−J .

(23)

A direct application of Lemma 9, with κ = 1/2, then implies that Pr(EK) ≤ cλ1/2N−1/2

as claimed. The argument for the case K < 0 is identical.

Next, we claim that

Pr(E ′
K |EK) ≤

(
1 +

1

2λ2

)−|K|
, for |K| ≤ N

2
. (24)
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To show this, we argue in terms of the joint density of the 2N values (bi, si). We will

again assume K ≥ 0; the argument for K < 0 is identical.

For any weakly decreasing sequence of values v = (v(1) ≥ · · · ≥ v(2N)) and any sequence

of labels t = (t(1), . . . , t(2N)) with each t(i) ∈ {b, s}, let

Q(v, t) =
∏

i: t(i)=b

f b(v(i)) ·
∏

i: t(i)=s

f s(v(i)).

If the buyers’ and sellers’ values are drawn independently from F b and F s, then the

probability density of a given profile P of values is exactly Q(v, t), where v consists of the

values in P sorted in decreasing order, and t(i) = b if the value v(i) belongs to a buyer

and s if a seller. For any set T of label sequences t, let Q(v, T ) =
∑

t∈T Q(v, t). For

J = 0, . . . , K, let TJ be the set of label sequences consisting of N b’s and N s’s, such that

exactly J of the labels t(N+1), . . . , t(N+K) are equal to s; and let T∪ = ∪K
J=0 TJ , the set of

all label sequences consisting of N b’s and N s’s.

Let VK be the set of value sequences consisting of N +K high values and N −K low

values. Then

Pr(EK) = (N !)2
∫

VK

Q(v, T∪) dv. (25)

(The (N !)2 factor comes from the fact that each sequence v of distinct values and label

sequence t distinguishing the buyer values from the seller values should be counted multi-

ple times, once for each of the N ! possible assignments of buyer identities to buyer values

and N ! assignments of seller identities to seller values.) Similarly

Pr(E ′
K) = (N !)2

∫

VK

Q(v, T0) dv. (26)

On the other hand, for any fixed v and any fixed J ∈ {0, . . . , K − 1}, we can relate

Q(v, TJ) with Q(v, TJ+1) as follows. Call an element tJ ∈ TJ and tJ+1 ∈ TJ+1 connected if

tJ+1 is obtained from tJ by switching some t(i) from b to s, where i ∈ {N+1, . . . , N+K},
and switching some t(j) from s to b, where j /∈ {N + 1, . . . , N +K}. Each element of TJ

is connected to exactly (K − J)(N − J) elements of TJ+1, and each element of TJ+1 is

connected to exactly (J+1)(N−K+J+1) elements of TJ . Moreover, if tJ+1 is connected

to tJ , then Q(v, tJ) ≤ λ2Q(v, tJ+1), since the ratio between f b and f s is always bounded
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by λ. Summing over all connected pairs, we have

(K − J)(N − J)
∑

tJ∈TJ

Q(v, tJ) ≤ (J + 1)(N −K + J + 1)
∑

tJ+1∈TJ+1

λ2Q(v, tJ+1)

from which

Q(v, TJ+1) ≥
(K − J)(N − J)

(J + 1)(N −K + J + 1)λ2
Q(v, TJ).

Since N ≥ 2K and J ≤ K − 1 this gives

Q(v, TJ+1) ≥
K − J

J + 1
· 1

2λ2
Q(v, TJ) =

(
K

J+1

)
(
K
J

) · 1

2λ2
Q(v, TJ).

Now by induction we have

Q(v, TJ) ≥
(
K

J

)
·
(

1

2λ2

)J

Q(v, T0)

for all J . Summing gives

Q(v, T∪) =
K∑

J=0

Q(v, TJ) ≥
(
1 +

1

2λ2

)K

Q(v, T0).

Combining with (25) and (26) gives

Pr(EK) ≥
(
1 +

1

2λ2

)K

Pr(E ′
K).

This is exactly (24) for K ≥ 0. The K < 0 case is identical.

In addition, if K > N/2, then any draw in E ′
K requires the (N + 1)th, . . . , ⌊3N/2⌋th

highest values all to be buyer values; so an identical argument gives

Pr(E ′
K |EK) ≤

(
1 +

1

2λ2

)−⌊N/2⌋

for K > N/2. And by the same argument, this conclusion also holds when K < −N/2.
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We conclude that

Pr(E∗) ≤
N∑

K=−N

Pr(E ′
K)

≤
⌊N/2⌋∑

K=−⌊N/2⌋
cλ1/2N−1/2 ·

(
1 +

1

2λ2

)−|K|
+

∑

−N≤K≤N
|K|>N/2

(
1 +

1

2λ2

)−⌊N/2⌋

≤ 2
∞∑

K=0

(
1 +

1

2λ2

)−K

· cλ1/2N−1/2 + (N + 2)

(
1 +

1

2λ2

)−⌊N/2⌋

≤ 7cλ5/2N−1/2.

The last inequality holds because
∑∞

K=0(1 + 1/2λ2)−K = 2λ2 + 1 ≤ 3λ2, and the final

term (N + 2)(1 + 1/2λ2)−⌊N/2⌋ is exponentially decreasing in N , so is certainly at most

cλ5/2N−1/2 when N is large enough.

Thus we have shown that there is an absolute constant c for which H(x∗) = Pr(E∗) ≤
cλ5/2N−1/2 when N is large enough. Moreover, at no step in the proof did we use the spe-

cific value of x∗ or the distribution (F b, F s) ∈ F ; therefore the constant c and the thresh-

old for N are independent of these choices. We conclude that sup(F b,F s)∈F ζ(F b, F s) ≤
cλ5/2N−1/2, which is what we wanted.

�

Finally, we prove a simple central-limit-theorem approximation used in the proof of

Theorem 3.

Lemma 10 If N is sufficiently large, then

N−⌊
√
N/4⌋∑

K=0

(
2N

K

)(
1

2

)2N

≥ 1

4
.

Proof: From Stirling’s approximation, we have

(
2N

K

)(
1

2

)2N

≤
(
2N

N

)(
1

2

)2N

.

√
2

πN

and in particular (
2N

K

)(
1

2

)2N

<
1√
N
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for all K, as long as N is large enough. Then, we have

N−⌊
√
N/4⌋∑

K=0

(
2N

K

)(
1

2

)2N

≥
N∑

K=0

(
2N

K

)(
1

2

)2N

− ⌊
√
N/4⌋ 1√

N
≥ 1

4
.

�
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