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ABSTRACT

The problem of building geometric models has been a central application in photogrammetry. Our goal is to partially
automate this process by finding the features necessary for computing the exterior orientation. This is done by robustly
computing the fundamental matrix, and trilinear tensor for all images pairs and some image triples. The correspondences
computed from this process are chained together and sent to a commercial bundle adjustment program to find the exterior
camera parameters. To find these correspondences it is not necessary to have camera calibration, nor to compute a full
projective reconstruction. Thus our approach can be used with any photogrammetric model building package. We also
use the computed projective quantities to autocalibrate the focal length of the camera. Once the exterior orientation is
found, the user still needs to manually create the model, but this is now a simpler process.

1 INTRODUCTION

The problem of building geometric models has been a cen-
tral application in photogrammetry. Our goal is to make
this process simpler, and more efficient. The idea is to au-
tomatically find the features necessary for computing the
exterior orientation for a given set of images. The claim is
that this simplifies the model building process. To achieve
this goal it is necessary to automatically create a reliable
set of correspondences between a set of images without
user intervention.

It has been shown that under certain conditions it is pos-
sible to reliably find correspondences, and to compute the
relative orientation between image pairs. But these con-
ditions are that the images are ordered, and have a small
baseline, such as those obtained from a video sequence.
However, in photogrammetric modeling the input images
are not ordered and the baseline is often large. In this case
it is necessary to identify which image pairs overlap, and
then to compute correspondences between them.

Our solution to this problem contains a number of inno-
vations. First, we use a feature finder that is effective in
matching images with a wide baseline. Second, we use
projective methods to verify that these hypothesized matches
are in fact reliable correspondences. Third, we use the pro-
jective approach only to create a set of correspondences,
and not to compute a projective reconstruction. At the end
of the process these correspondences are sent to a bundle
adjustment to find the exterior camera parameters. This
makes the generation of the correspondences independent
of the bundle adjustment. Therefore our approach can be
used with any photogrammetric model building package.
The computed projective quantities are the fundamental
matrix between image pairs, and the trilinear tensor be-
tween image triplets. The supporting matches for the ten-
sors are chained across images that are found to be adjacent
to create correspondence chains. We show that this process
creates very reliable correspondence chains. Finally, we

use the computed projective information to autocalibrate
the camera focal length.

Working in projective space has the advantage that camera
calibration is not necessary. The other advantage is that it
is possible to autocalibrate certain camera parameters, in
particular the focal length, from the fundamental matrices.
The complexity of computing the fundamental matrix, and
trilinear tensor is less than that of the bundle adjustment.

2 DISCUSSION AND RELATED WORK

Model building is a very common industrial Photogram-
metric application. The basic methodology has been un-
changed for many years; calibrate the camera, choose the
2D projections of the 3D points of interest in different im-
ages, and then run the bundle adjustment. Then take the
computed 3D data points, and join them together to cre-
ate the model topology. The process is very manual, but
has the advantage that the user can control the exact geom-
etry and topology of the final model. Recently there has
been some important recent work in the area of automated
model building. However, the problem of finding the ap-
propriate geometry and topology is a difficult and unsolved
one. Thus the photogrammetric approach to model build-
ing will likely be used for a considerable length of time.
However, while it is very flexible it is also very labor in-
tensive.

Is it possible to partly automate the photogrammetric model
building process and still leave it’s flexibility intact? We
believe the answer is yes. Normally the feature points used
to build the model are also the ones used to run the bundle
adjustment. But what if some other automatic process had
already computed the exterior orientation? Then comput-
ing the required 3D data points for the model would require
only triangulation, instead of the bundle adjustment. The
triangulation process is inherently simpler than the bundle
adjustment, so this would simplify the process of creating



the required 3D geometry. If it were possible to automat-
ically find a set of features between overlapping images,
then it would be possible to run the bundle adjustment, and
compute the exterior orientation. In the past, such match-
ing has been done only in restricted situations. These re-
strictions are that the motion between the images is rela-
tively small, and that there is some a-priori process which
labels images as overlapping. For example, if the images
were taken from a video sequence the baseline between
then is small and they are also likely to have significant
overlap.

If we consider the set of images that are used in a typi-
cal photogrammetry project these two restrictions do not
hold. The input to the photogrammetric model building
process is a set of unordered images with a wide physical
separation, that is with a wide baseline. There have been a
number of recent attempts to compute reliable correspon-
dences between such images. The most complete system
(Schaffalitzky and Zisserman, 2002) is a wide baseline, un-
ordered matching system that uses affine invariants as the
feature descriptor. This system attempts to construct a min-
imal spanning tree of the adjacency graph and it does not
allow this spanning tree to form cycles. However, cycles
are very important in the bundle adjustment process be-
cause they reduce the propogation of errors. Another ap-
proach (Ferrari et al., 2003) tries to expand on the number
of correspondences between adjacent views by using the
concept of tracks. The method of (Martinec and Pajdla,
2002) also has tracks, but uses a trilinear tensor to increase
the number of tracks that have been found. There is also
a variety of different descriptors (Baumberg, 2000, Pritch-
ett and Zisserman, 1998) that have been used as features,
other than the corner based approaches.

This paper describes a way of solving the wide baseline,
unordered image matching problem which can interface
with standardized photogrammetric packages. The input
is a set of images without any intrinsic camera parame-
ters, and the output is a set of correspondences between
these images. These correspondences are then sent to a
commercial photogrammetric package, which uses them
to compute the exterior orientation of the cameras. While
the bundle adjustment process requires camera calibration,
the correspondence process does not. The pixel size, and
aspect ratio for the camera, can be obtained from the cam-
era manufacturers data. Since many modern digital cam-
eras have a zoom lens this camera parameter is not easily
obtained without a formal calibration step. The automatic
correspondence process also has the ability to automati-
cally find the focal length of the camera. Thus our system
computes the correspondences between images and auto-
matically calibrates the focal length.

Our approach computes the fundamental matrix between
image pairs, and the trilinear tensor between image triples.
It is based on the SIFT corner detector (Lowe, 1999), which
has been shown experimentally to be the most robust cor-
ner features (Mikolajczk and Schmid, 2003).. The cor-
respondences that support the trilinear tensor are chained
strung together in longer tracks using a breadth first search.
This method allows cycles in the image adjacency graph,

and also uses a chained trilinear tensor, which makes it dif-
ferent from other approaches. The idea of using chained
trilinear tensors was first described in (Roth and White-
head, 2000), and has been shown to create very reliable
correspondences. If there aren input images one would
expect the overall complexity of this process to beO(n3).
However, in practice, the complexity is actuallyO(m3),
wherem is the average number of images that have sign-
ficant overlap with any given image. We will show ex-
perimentally thatm is typically about one half ofn, the
total number of images. ThereforeO(m3) complexity is
not excessive becausem is relatively small. A typical pho-
togrammetric project has thirty images (n) and there are
at most ten to fifteen overlapping images (m) for each of
these thirty images. The total processing time to compute
all the correspondences in such a case is about fifteen min-
utes on a 2 gigahertz machine. Finally, as a by product
we can use the calcuated fundamental matrices to perform
autocalibration of the camera focal length.

3 ALGORITHM STEPS

The input is an unordered set of images. The output is a set
of correspondences among these images. The processing
is as follows:

For every image pair compute
a fundamental matrix.

For all fundamental matrices
that have enough supporting matches
compute an associated trilinear tensor.

Chain the trilinear tensor matches
using bread first search.

Output the chained matches
as valid correspondences.

4 PROJECTIVE VISION

Structure from motion algorithms assume that a camera
calibration is available. This assumption is removed in the
projective paradigm. To explain the basic ideas behind the
projective paradigm, we must define some notation. As
in (Xu and Zhang, 1996), given a vectorx = [x, y, . . .]T ,
x̃ defines the augmented vector created by adding one as
the last element. The projection equation for a point in 3D
space defined asX = [X, Y, Z]T is:

sm̃ = P X̃

wheres is an arbitrary scalar,P is a 3 by 4 projection ma-
trix, andm = [x, y]T is the projection of this 3D point onto
the 2D camera plane. If this camera is calibrated, then the
calibration matrixC, containing the information particu-
lar to this camera (focal length, pixel dimensions, etc.) is
known. If the raw pixel co-ordinates of this point in the
camera plane areu = [u, v]T , then:

ũ = Cm̃



whereC is the calibration matrix. Using raw pixel co-
ordinates, as opposed to actual 2D co-ordinates means that
we are dealing with an uncalibrated camera.

Consider the space point,X = [X, Y, Z]T , and its image
in two different camera locations;̃x = [x, y, 1]T andx̃′ =
[x′, y′, 1]T . Then it is well known that:

x̃T Ex̃′ = 0

HereE is the essential matrix, which is defined as:

E = [t]×R

wheret is the translational motion between the 3D cam-
era positions, andR is the rotation matrix. The essential
matrix can be computed from a set of correspondences be-
tween two different camera positions using linear methods
(Longuet-Higgins, 1981). This computational process has
been considered to be very ill-conditioned, but in fact a
simple pre-processing step improves the conditioning, and
produces very reasonable results (Hartley, 1997a). The
matrix E encodes the epipolar geometry between the two
camera positions. If the calibration matrixC is not known,
then the uncalibrated version of the essential matrix is the
fundamental matrix:

ũT F ũ′ = 0

Hereũ = [u, v, 1]T andũ′ = [u′, u′, 1]T are the raw pixel
co-ordinates of the calibrated points̃x and x̃′. The fun-
damental matrixF can be computed directly from a set
of correspondences by a modified version of the algorithm
used to compute the essential matrixE. As is the case
with the essential matrix, the fundamental matrix also en-
codes the epipolar geometry of the two images. OnceE is
known, the 3D location of the corresponding points can be
computed. Similarly, onceF is known the 3D co-ordinates
of the corresponding points can also be computed, but up
to a projective transformation. However, the actual sup-
porting correspondences in terms of pixel co-ordinates are
identical for both the essential and fundamental matrices.
Having a camera calibration simply enables us to move
from a projective space into a Euclidean space, that is from
F to E.

5 FUNDAMENTAL MATRICES

We are given a set ofn input images, and we want to cal-
culate the fundamental matrix between every one of these
n2 image pairs. Consider a single pair of images from
these set ofn2 images. We first find corners in each im-
age, then find possible matches between these corners, and
finally use these putative matches to compute the funda-
mental matrix. The number of matching corners that sup-
port a given fundamental matrix is a good indication of the
quality or correctness of that matrix.

5.1 Corners/interest Points

The first step is to find a set of corners or interest points
in each image. These are the points where there is a sig-
nificant change in image gradient in both thex andy di-
rection. The most common corner algorithm is describe

by Harris (Harris and Stephens, 1988). While these cor-
ners are invariant to rotation in the camera plane they are
sensitive to changes in scale, and also to rotations out of
the camera plane. Recently, experiments have been done
to test a newer generation of corners that are invariant over
a wider set of transformations (Mikolajczk and Schmid,
2003). The results of this test show that SIFT corners per-
form best (Lowe, 1999). The SIFT operator finds at mul-
tiple scales, and describes the region around each corner
by a histogram of gradient orientations. This description
provides robustness against localization errors and small
geometric distortions.

5.2 Matching Corners

Each SIFT corner is characterized by 128 unsigned eight
bit numbers which define the multi-scale gradient orienta-
tion histogram. To match SIFT corners it is necessary to
compare corner descriptors. This is done by simply com-
puting theL2 distance between two different descriptors.
Assume that in one image there arej corners, and in the
other there arek corners. Then the goal is for each of these
j corners to find the closest of thek corners in the other
image under theL2 norm. This takes time proportional to
jk, but sincei andj are in the order of one thousand, the
time taken is not prohibitive.

However, it is still necessary to threshold theseL2 dis-
tances in order to decide if a match is acceptable. Instead
of using a fixed threshold for thisL2 distance, a dynamic
threshold is computed. This is done by finding the first and
second closest corner match. Then we compute the ratio
of these twoL2 distances, and accept the match only if
the second best match is significantly worse than the first.
If this is not the case then the match is considered to be
ambiguous, and is rejected. This approach works well in
practice (Lowe, 1999), and avoids the use of an arbitrary
threshold to decide on whether a pair of corners is a good
match.

5.3 Computing the Fundamental Matrix

The next step is to use these potentially matching corners to
compute the fundamental matrix. This process must be ro-
bust, since it can not be assumed that all of the matches are
correct. Robustness is achieved by using concepts from the
field of robust statistics, in particular, random sampling.
Random sampling is a “generate and test process” in which
a minimal set of correspondences, in this case the smallest
number necessary to define a unique fundamental matrix
(7 points), are randomly chosen (Rousseeuw, 1984, Bolles
and Fischler, 1981, Roth and Levine, 1993, Torr and Mur-
ray, 1993, Xu and Zhang, 1996). A fundamental matrix is
then computed from this best minimal set. The set of all
corners that satisfy this fundamental matrix is called the
support set. The fundamental matrixFij , with the largest
support setSFij is returned by the random sampling pro-
cess. The matching corners (support set) for two typical
wide baseline views is shown in Figure 1.



Figure 1: The matching corners for two views

6 TRILINEAR TENSORS

While this fundamental matrix has a high probability of
being correct, it is not necessarily the case that every corre-
spondence that supports the matrix is valid. This is because
the fundamental matrix encodes only the epipolar geome-
try between two images. A pair of corners may support
the correct epipolar geometry by accident. This can occur,
for example, with a checkerboard pattern when the epipo-
lar lines are aligned with the checkerboard squares. In this
case, the correctly matching corners can not be found using
only epipolar lines (i.e. computing only the fundamental
matrix). This type of ambiguity can only be dealt with by
computing the trilinear tensor.

Assume that we see the pointX = [X, Y, Z]T , in three
camera views, and that 2D co-ordinates of its projections
areũ = [u, v, 1]T , ũ′ = [u′, v′, 1]T , ũ′′ = [u′′, v′′, 1]T . In
addition, in a slight abuse of notation, we defineũi as the
i’th element ofu; ie. u1 = u, and so on. It has been shown
that there is a 27 element quantity called the trilinear tensor
T relating the pixel co-ordinates of the projection of this
3D point in the three images (Shashua, 1995). Individual
elements ofT are labeledTijk, where the subscripts vary in
the range of 1 to 3. If the three 2D co-ordinates(ũ, ũ′, ũ′′)
truly correspond to the same 3D point, then the following
four trilinear constraints hold:

u′′Ti13ũi − u′′u′Ti33ũi + u′Ti31ũi − Ti11ũi = 0
v′′Ti13ũi − v′′u′Ti33ũi + u′Ti32ũi − Ti12ũi = 0
u′′Ti23ũi − u′′v′Ti33ũi + v′Ti31ũi − Ti21ũi = 0
v′′Ti23ũi − v′′v′Ti33ũi + v′Ti32ũi − Ti22ũi = 0

In each of these four equationsi ranges from 1 to 3, so
that each element of̃u is referenced. The trilinear tensor
was previously known only in the context of Euclidean line
correspondences (Spetsakis and Aloimonos, 1990). Gen-
eralization to projective space is relatively recent (Hartley,
1995, Shashua, 1995).

The estimate of the tensor is more numerically stable than
the fundamental matrix, since it relates quantities over three

views, and not two. Computing the tensor from its corre-
spondences is equivalent to computing a projective recon-
struction of the camera position and of the corresponding
points in 3D projective space.

6.1 Computing the Trilinear Tensor

We compute the trilinear tensor from the correspondences
that form the support set of two adjacent fundamental ma-
trices in the image sequence. Previously we computed the
fundamental matrix for every pair of images. Now we fil-
ter out those image pairs that do not have more than a cer-
tain number of supporting matches. This leaves a subset
of thesen2 image pairs that have valid fundamental matri-
ces. Consider three images,i, j andk and their associated
fundamental matricesFij andFjk. Assume that these fun-
damental matrices have a large enough set of supporting
correspondences, which we callSFij andSFjk. Say a par-
ticular element ofSFij is (xi, yi, xj , yj) and similarly an
element ofSFjk is (x′j , y

′
j , x

′
k, y′k). Now if these two sup-

porting correspondences overlap, that is if(xj , yj) equals
(x′j , y

′
j) then the triple created by concatenating them is a

member ofCTijk, the possible support set of tensorTijk.
The set of all such possible supporting triples is the input
to the random sampling process that computes the tensor.
The result is the tensorTijk, and a set of triples (corner in
the three images) that actually support this tensor, which
we callSTijk.

A tensor is computed for every possible triple of images.
In theory this isO(n3), but in practice it is much less. The
reason is that only a fraction (usually from10 to 30 per-
cent) of then2 possible fundamental matrices are valid.
And from this fraction, an even smaller fraction of the pos-
sible triples are valid.

7 CHAIN THE CORRESPONDENCES

The result of this process is a set of trilinear tensors for
three images along with their supporting correspondences.
Say that we have a sequence of images numbered from
1 to n. Assume the tensorsTijk andTjkl have support-
ing correspondences(xi, yi, xj , yj , xk, yk) in STijk and
(x′j , y

′
j , x

′
k, y′k, x′l, y

′
l) in STjkl. Those correspondences

for which (xj , yj , xk, yk) equals(x′j , y
′
j , x

′
k, y′k) represent

the same corner in imagesi, j, k andl. In such cases we
say that this corner identified inTijk is continued byTjkl.

The goal of this step is to compute the maximal chains of
supporting correspondences for a tensor sequence. This is
done in a breadth first search using the supporting tensor
correspondences as input. Individual correspondences that
are continued by a given tensor are chained for as long as
is possible. The output of the process is a unique identi-
fier for a 3D corner, and its chain of 2D feature correspon-
dences in a sequence of images. This corner list is then
sent directly to the commercial bundle adjustment program
Photomodeler (Photomodeler by EOS Systems Inc., n.d.)
using a Visual Basic routine that communicates through a
DDE interface.



8 AUTOCALIBRATION OF FOCAL LENGTH

To run the bundle adjustment it is necessary to know the
camera calibration. However, it was not necessary to know
the camera calibration to compute these correspondences.
As a side effect of computing these correspondences we
have a set of fundamental matrices between input images.
It is possible to autocalibrate the camera parameters from
these fundamental matrices.

The goal of autocalibration is to find the intrinsic camera
parameters directly from an image sequence without re-
sorting to a formal calibration process.

The standard linear camera calibration matrixK has the
following entries (Hartley, 1997b):

C =

(
fku 0 u0

0 fkv v0

0 0 1

)
(1)

This assumes that the camera skew isπ/2. Heref is the
focal length in millimeters, andku, kv the number of pix-
els per millimeter. The termsfku, fkv can be written as
αu, αv, the focal length in pixels on each image axis. The
ratio αu/αv is the aspect ratio. It is often the case that all
the camera parameters are known, except the focal length
f . The reason is that many digital cameras have a zoom
lens, and thus can change their focal length. The other
camera parameters are specified by the camera manufac-
turer.

Thus a reasonable goal of autocalibration process is simply
to find the focal length. This can be done reliably from the
fundamental matrices that have been computed as part of
the procedure to find the correspondences between image
pairs (Roth, 2002).

8.1 Autocalibration by Equal Singular Values

If we know the camera calibration matrixK, then the es-
sential matrixE is related to the fundamental matrix by
E = CtFC. The matrix E is the calibrated version of
F; from it we can find the camera positions in Euclidean
space. SinceF is a rank two matrix,E also has rank
two. However,E has the extra condition that the two non-
zero singular values must be equal. This fact can be used
for autocalibration by finding the calibration matrixC that
makes the two singular values ofF as close to equal as
possible (Mendonca and Cipolla, 1999). Given two non
zero singular values ofE: σ1 and σ2 (σ1 > σ2), then,
in the ideal case(σ1 − σ2) should be zero. Consider the
difference(1 − σ2/σ1). If the singular values are equal
this quantity is zero. As they become more different, the
quantity approaches one. Given a fundamental matrix, au-
tocalibration proceeds by finding the calibration matrixK
which minimizes(1− σ2/σ1).

Assume we are given a sequence ofn images, along with
their fundamental matrices. ThenFi, the fundamental ma-
trix relating imagesi andi + 1, has non zero singular val-
uesσi1 and σi2. To autocalibrate from thesen images

using the equal singular values method we must find the
K which minimizes

∑n−1
i=1 wi(1− σi2/σi1). Herewi is

a weight factor, which defines the confidence in a given
fundamental matrix. The weightwi is set in proportion to
the number of matching 2D feature points that support the
fundamental matrixFi. The larger this number, the more
confidence we have in that fundamental matrix. In the case
where only the focal length needs to be autocalibrated the
minimization of this quantity is a simple one dimensional
optimization process.

9 EXPERIMENTS

There are as yet no standardized data sets for testing wide
baseline matching algorithms. However, there is one data
set that has been used in a number of wide baseline match-
ing papers (Schaffalitzky and Zisserman, 2002, Ferrari et
al., 2003, Martinec and Pajdla, 2002), which is the Val-
bonne church sequence as shown in Figure 2.

Figure 2: Twelve pictures of the Valbonne Sequence

This sequence has a number of views of the church at Val-
bonne, in France. These views are typical of what would be
used in a photogrammetric model building process. This
sequence was processed by our software. There were ap-
proximately 350 feature points over these twelve images,
and each feature point exists in at least five or more im-
ages. There are twelve images, so one would expect122

fundamental matrices, and about123 trilinear tensors to be
calculated. However, only about fifty percent of the max-
imum number of fundamental matrices is calculated, and
likewise, only thirty percent of the maximum number of
trilinear tensors. A rendering of the camera positions and
feature points is shown in Figure 3. The RMS residual er-
ror of each feature point when it is reprojected into the 2D
image is at most 0.8 pixels, and at least 0.1 pixels. Thus



we can see that the feature points are computed reliable
enough to produce a good 3D reconstruction. The autocal-
ibrated focal length of the camera is610.00 pixels, while
the true focal length is listed as685 pixels, which is within
about15 percent of the correct value.

Figure 3: Rendering of camera positions and feature points

10 DISCUSSION

In this paper we have described a system which automati-
cally computes the correspondences for an unordered set of
overlapping images. These correspondences are then sent
to a bundle adjustment process to compute the extrinsic
camera parameters. This process does not require camera
calibration, and in fact can autocalibrate the camera focal
length. A demonstration version of this code can be found
in http://www.cv.iit.nrc.ca/research/PVT.html.

REFERENCES

Baumberg, A., 2000. Wide-baseline muliple-view correspon-
dences. In: Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, Hilton Head, South Carolina, pp. 1774–1781.

Bolles, R. C. and Fischler, M. A., 1981. A ransac-based approach
to model fitting and its application to finding cylinders in range
data. In: Seventh International Joint Conference on Artificial
Intelligence, Vancouver, British Colombia, Canada, pp. 637–643.

Ferrari, V., Tuytelaars, T. and Gool, L. V., 2003. Wide-baseline
muliple-view correspondences. In: Proc. IEEE Conference on
Computer Vision and Pattern Recognition, Madison, Wisconsin,
pp. 348–353.

Harris, C. and Stephens, M., 1988. A combined corner and edge
detector. In: Proceedings of the 4th lvey Vision Conference,
pp. 147–151.

Hartley, R., 1995. A linear method for reconstruction from lines
and points. In: Proceedings of the International Conference on
Computer Vision, Cambridge, Mass., pp. 882–887.

Hartley, R., 1997a. In defence of the 8 point algorithm. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 19number 6.

Hartley, R., 1997b. Kruppa’s equations derived from the funda-
mental matrix. IEEE Trans. on Pattern Analysis and Machine
Intelligence 19(2), pp. 133–135.

Longuet-Higgins, H., 1981. A computer algorithm for recon-
structing a scene from two projections. Nature 293, pp. 133–135.

Lowe, D., 1999. Object recognition from scale invariant features.
In: International Conference on Computer Vision, IEEE Com-
puter Society, pp. 1150–1157.

Martinec, D. and Pajdla, T., 2002. Structure from many per-
spective images with occlusions. In: Computer Vision - ECCV
2002, 7th European Conference on Computer Vision, Copen-
hagen, Denmark, May 28-31, 2002, Proceedings, Part II, Lecture
Notes in Computer Science, Vol. 2351, Springer, pp. 355–369.

Mendonca, P. and Cipolla, R., 1999. A simple technique for self-
calibration. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Fort Collins, Colorado, pp. 112–
116.

Mikolajczk, K. and Schmid, C., 2003. A performance evaluation
of local descriptors. In: Proc. IEEE Conference on Computer
Vision and Pattern Recognition.

Photomodeler by EOS Systems Inc., n.d.
http:/www,photomodeler.com.

Pritchett, P. and Zisserman, A., 1998. Wide baseline stereo
matching. In: Proc. International Conference on Computer Vi-
sion, Bombay, India.

Roth, G., 2002. Some improvements on two autocalibratio algo-
rithms based on the fundamental matrix. In: International Con-
ference on Pattern Recognition: Pattern Recognition Systems and
Applications, Quebec City, Canada.

Roth, G. and Levine, M. D., 1993. Extracting geometric primi-
tives. Computer Vision, Graphics and Image Processing: Image
Understanding 58(1), pp. 1–22.

Roth, G. and Whitehead, A., 2000. Using projective vision to
find camera positions in an image seqeuence. In: Vision Interface
2000, Montreal, Canada, pp. 87–94.

Rousseeuw, P. J., 1984. Least median of squares regression. Jour-
nal of American Statistical Association 79(388), pp. 871–880.

Schaffalitzky, F. and Zisserman, A., 2002. Multi-view matching
for unordered image sets. In: Proceedings of the 7th European
Conference on Computer Vision, Copenhagen,Denmark.

Shashua, A., 1995. Algebraic functions for recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17(8),
pp. 779–789.

Spetsakis, M. and Aloimonos, J., 1990. Structure from motion
using line correspondences. International Journal of Computer
Vision 4(3), pp. 171–183.

Torr, P. and Murray, D., 1993. Outlier detection and motion seg-
mentation. In: Sensor Fusion VI, Vol. 2059, pp. 432–443.

Xu, G. and Zhang, Z., 1996. Epipolar geometry in stereo, motion
and object recognition. Kluwer Academic.


