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ABSTRACT:

The task addressed in this paper is 3D modelling and reconstruction of (real world) trees on the basis of terrestrial laser scans.
To identify the structure of a tree in terms of stem and branches, an algorithm has been designed in 3D voxel space, based on a selection
of basic and advanced 2D raster (image) processing algorithms, transferred into the 3D domain. The selection includes filtering,
mathematical morphology, skeletonization, connected component labeling and shortest route computation.

1 INTRODUCTION

The purpose of the paper is to analyse point clouds of terrestrial
laser scans that are recorded inside a production forest. The pur-
pose is to reconstruct trees in 3D, in order to measure lengths
and thicknesses of the tree stem and of the main branches, to es-
timate the corresponding wood volumes. (In the remainder we
will not mention the stem anymore explicitely, but only speak of
branches).

Reconstruction of real world trees on the basis of terrestrial laser
scans allows to automate the estimation of forest wood mass for
valuation purposes. Also to make ecological assessments detailed
knowledge of tree structures is considered helpful in forestry.

Several authors report modelling from laser scans, but
these are usually made with airborne scanners and provide
rough estimates of tree canopies, albeit over large areas
[Pyysalo and Hyyppae, 2002, Sun, 2000]. Using 2D video and
2.5D laser pulse range measurements, [Clark, 2002] builds a 3D
model of a tree stem by combining multiple vantage points. In our
paper we will build the model from 3D measurements directly.

Datasets were provided by the Institute for Forest Growth in
Freiburg, Germany. One plot (i.e. one location in a forest) is
captured by one or more positionings of the laser scanner. The
datasets are oriented relative to each other (i.e. registered). The
data is captured with Zoller+Fröhlich laser scanners and provided
in the form of point clouds (sequence of (x,z,y)-triples).

A tree to be reconstructed is scanned from all sides by locating the
scanner at a number of viewpoints around the tree and merging
the resulting scans into a single point cloud. Because of the nature
of laser scanning, it may be expected that the coordinates of the
reflected points are located at the surfaces of the branches. Scans
are taken during the winter season when the trees are without
leaves.

At the final stage of the reconstruction process a cylinder fitting
process is carried out for each of the significant branches: a cylin-
der is fitted through those points that are at the surface of a par-
ticular branch. Before this is possible, however, it is necessary to
have a rough idea which points belong to that particular branch,
in other words to know the initial subset of points that should be
involved in the fitting process. This process itself will be able to
identify erroneous points (that do not fit) within the initial subset,
and possibly to add points to the subset that are in the vicinity and
fit on the same cylinder.

The crucial point in the above is to find the initial subset of points

for each branch. This is the problem addressed in this paper.
We are presenting an algorithm that subdivides (segments) a laser
point cloud of a tree into subsets that correspond to main branches
(those that have a significant amount of wood). Besides, points
that do not seem to correspond to any main branch are identified
as noise.

The algorithm segments a point cloud according to branches and
at the same time identifies how the branches are connected to
each other. As a result, a ”tree” data structure is constructed,
which represents the topology of the branches within a tree.

Basically, the task of the algorithm boils down to detecting elon-
gated, cylindrical structures in a point cloud. However, in general
point cloud segmentation can be considered a difficult subject, es-
pecially in presence of the before-mentioned noise, in addition to
gaps within branches (missing points, e.g. caused by occlusions
by other branches) and varying point densities (as a result of vary-
ing distance from the scanner). To establish the topology between
branches on the basis of point clouds is an unsolved problem as
well.

Therefore we decided to perform this part of the analysis in the 3-
dimensional raster domain. Connectivity and neighborhood rela-
tions between voxels in a 3D raster can be established much eas-
ier than between the original (x,y,z)-points, using morphologi-
cal operations, which are well-known from 2D image processing.
Their extension to the 3D raster domain is described here. When
defining connectivity in 3D, a choice has to be made between
6, 18 and 26-adjacency, depending on the number of voxels that
are considered neighbors of a voxel: only those with a common
face, also those with a common edge, or even also the ones with
a common corner.

The 3D reconstruction is done in several steps. After converting
the point cloud to 3D raster, closing and opening are applied to
close gaps and holes, and to remove isolated points, respectively.
Next, 3D skeletonisation is applied, which (temporarily) reduces
the stem and branches to single voxel thickness. Then, Dijk-
stra’s minimum spanning tree algorithms ensures that the skele-
ton from the previous step becomes a tree in the data structuring
sense. Topology can now be established, in which the stem and
the braches obtain unique IDs. Finally, 3D distance transform is
applied to assign to each point in the original set the ID of the
nearest branch. As a result, the points are grouped by ID accord-
ing to the tree structure.

Summarizing, the reconstruction process has two phases:



1. Segmentation of laser points into the tree stem and major
individual branches (and at the same time removal of points
that do not belong to these tree elements). This phase is
executed in the 3D raster (voxel) domain, and is described
in detail in this paper.

2. Fitting of 3D geometrical primitives, e.g cylinders, to the
segmented point sets. This takes place in the (x,y,z)
point cloud domain, where points are labeled on the ba-
sis of the results in the first phase. It is described in
[Pfeifer and Gorte, 2004].

2 VOXEL DOMAIN

Analysis for tree reconstruction from terrestrial laser point clouds
described in this paper is performed in the 3-dimensional raster
domain, which is a discrete 3-dimensional space with elements
called voxels.

Conceptually, a 3D raster data set records voxel values only, since
the voxel locations are defined implicitly by the position of a
voxel in the data set. This is in contrast to a vector data set, where
point locations (coordinates) are recorded explicitly, in addition
to values and other kinds of information, such as topology. In
our implementation, however, voxels with value 0 (usually the
vast majority) are not stored on disk, which in turn requires that
locations of non-zero voxels are stored explicitly.

Within a 3D raster different 3-dimensional phenomena can be
represented, with different meanings attached to voxel values. In
the simplest raster representation of laser points the voxel value
range may be limited to 0 (this voxel is empty) and 1 (it contains
laser points).

The overall purpose of raster processing during tree reconstruc-
tion is to segment the set of points into different trees (if appro-
priate), and within trees into different branches. At the end of this
phase, therefore, each point will have obtained a unique branch
identification number. In addition, topological information, de-
scribing how branches are connected to each other in terms of an-
cestors and descendants, will become available during this phase.

3 ALGORITHM

The algorithm has the following steps (Fig 1):

1. Point cloud to 3D raster conversion

2. 3D neighborhood operations

3. Skeletonization

4. Skeleton segmentation

5. Connected component labelling

6. Component Separation

7. Raster tree segmentation

8. Point cloud segmentation (in the continuous domain)

3.1 Point cloud to 3D raster conversion

During this step a 3-dimensional raster space is created and all
the laser points are transformed to voxels in that space. The most
important parameter is spatial resolution, which denotes the size
of a single voxel (in meter). This is the step size that is used for
quantization of the 3D space.

The 3D raster space is subdivided in planes, lines and columns.
The location of a voxel is defined by a (p, l,c) coordinate triple,
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Figure 1: Raster processing work flow. The arrows represent pro-
cessing steps, labelled by the names of the corresponding rou-
tines.

where p, l and c are integer numbers [0,1,2, . . .]. The number of
planes, lines and columns depends on the chosen resolution and
on the minimum and maximum z, y and x-coordinates (respec-
tively) that occur in the laser point cloud (Fig. 2). It is useful to
specify the thickness of a layer of empty voxels to surround the
whole block, to ensure that neighborhood operators (see below)
do not expand outside the voxel space.
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Figure 2: Voxel space with (x,y,z) and (p, l,c) coordinate sys-
tems

The choice of a suitable resolution is based on conflicting require-
ments, concerning:

Laser point density: Points belonging to a single tree should
form a connected set of voxels — or at least a set that can be
made connected in subsequent processing steps. With a too
fine resolution (small voxel size), holes will appear that may



cause problems later. When the resolution is too coarse,
on the other hand, it will happen many times that several
laser points get transformed into a single voxel. Then, these
points are indistinguishable in the voxel space and details
like small branches may be lost. Furthermore, different
branches (or trees) may get connected, i.e. pass through the
same voxel or through neighboring voxels. This may cause
errors when building topology in a later stage. It should
be noted that the laser point density decreases with the dis-
tance to the scanner, and therefore is not uniform over the
3D space. This further complicates the choice for an opti-
mal resolution.

Space and time: The number of voxels in a 3D raster increases
with the 3rd power of the resolution (when expressed
in voxels/distance) and may easily become impracticable
when resolution is chosen too fine. Memory capacity prob-
lems may occur in software that needs random access within
the 3D space. Smart implementations might prevent this sit-
uation in many cases, but not always. Moreover, processing
times usually increase with the 3rd power of the resolution
as well.

During experiments, resolution between 2 cm and 5 cm were
used. 2 cm seems to preserve the details of the tree accurately
enough, although this should be further investigated.

According to the laser scanning model, laser points occur on the
surface of objects (trees). After rasterization, only voxels that are
intersected by the tree-air surface will have non-zero values. The
actual voxel value assigned is the number of points falling inside
the cube in (x,y,z)-space corresponding to a voxel. Therefore, a
voxel value can be regarded as a point density measure.

3.2 3D neighborhood operators

After transferring the laser points to a 3D raster, neighborhood
operators are applied to enhance the data. The neighborhood op-
erators are 3D extensions of 2D raster operators, such as linear
filtering (convolution), distance transforms [Borgefors, 1996],
[Svensson and Borgefors, 2002] and mathematical morphology
[Serra, 1985].

The purpose of enhancement using neighborhood operators is
threefold:

Noise reduction: In the context of tree reconstruction, isolated
laser points, or isolated small groups of adjacent laser
points, can be considered noise. Neighborhood operations
are able to reduce this kind of noise.

Repairing gaps caused by occlusions: The software provides
morphological dilation and erosion with user-defined struc-
turing elements (Fig. 3). Closing (dilation followed by ero-
sion) is used to fill small holes and gaps between laser
point, which may be caused by branches occluding other
branches. The maximum size of the holes and gaps that can
be repaired in this way is controlled by the structuring el-
ement size, and is also related to the chosen resolution in
the previous step. By using different shapes of structuring
elements it is possible to indicate a preferred direction for
the closing, for example to connect points above each other
rather than points at the same height.

Filling ‘hollow’ trees: Laser points are located on tree surfaces
rather than inside trees. Initially, trees are hollow. How-
ever, we are going to extract the skeleton (see 3.3), allow-
ing to reveal the topology within the tree. Hollow trees
have to be filled, by a second morphological closing (Fig.
4). The structuring element size is given by the maximum
trunk thickness expected in a given raster resolution. The

Figure 3: 3D Filter kernels and structuring elements

structuring element should be oriented horizontally, since
filling is needed mostly in the (vertical) trunk.
This should work well when points are located completely
around the tree, as was the intention of recording the scene
from four different viewpoints. This would also reduce the
above-mentioned occlusion problems. Unfortunately, the
four datasets from the different scanner positionings could
not be properly co-registered. Therefore, they had to be
processed one by one, which limits the application of this
hollow tree filling method.

Figure 4: 2D illustration of dilation and erosion to fill ‘hollow’
trees. From left to right: input cross-section; dilation; erosion;
filled cross section.

3.3 Skeletonization

The next step in tree reconstruction is skeletonization, the reduc-
tion of the thickness of tree trunks and branches to one voxel.
After that, it will be possible to identify different branches and
reveal topological relations between them.

Skeletonization is done by iteratively removing voxels from the
outside of objects, up to the point where only a single-voxel
wide linear structure is left. Strictly speaking, this is line skele-
tonization, which is to be distintuished for surface skeletoniza-
tion, where volumes to are reduced to surfaces of single-voxel
thickness. At that point, removal of one more voxel would cause
a branch to break (be separated into disconnected parts), assum-
ing 26-adjacency.

Skeletonization has been a difficult problem in 2D and even
more so in 3D, but nowadays various solutions can be found
in literature [Borgefors et al, 1999], [Lohou and Bertrand, 2001],
[Palágyi et al, 2001], [Telea and Vilanova, 2003]. Skeletoniza-
tion algorithms iteratively ‘peel’ layers from the outside of ob-
jects, and some approaches can be subdivided according to the
number of subiterations within each iteration. This number can
be 6, 8 or 12, depending on whether a cubic object to be skele-
tonized would be ‘attacked’ from the faces, corners or edges,
respectively. For this project we implemented an 8-subiteration
method, described by [Palágyi and Kuba, 1999], which shows ex-
cellent performance.

3.4 Skeleton segmentation

The next step finds the structure of the tree as represented by
the skeleton, in terms of branches and junctions that connect



Figure 5: Skeletonization. Left: rasterized points; right: skeleton

branches. As suggested by [Palágyi, 2003] this step is based on
Dijkstra’s algorithm, a well-known method for finding shortest
routes in a weighted directed graph (representing, for example, a
road network).

First, the graph is created. Its nodes are the voxels that par-
ticipate in the skeleton, and any pair of adjacent voxels gen-
erates two arcs between the nodes, one in either direction (see
Fig. 6.B, but there each pair of arcs is represented by only one
line). Arcs are assigned weights of either 3, 4 or 5, depending on
whether the two voxels share a face, an edge or a point respec-
tively [Verwer, 1991].
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Figure 6: 2D illustration of skeleton segmentation. A. input
skeleton; B. graph nodes and edges; C. spanning tree with short-
est distances; D. segments and topology.

Given such a graph, Dijkstra’s algorithms finds the shortest route
to a destination node (the root!) from all other nodes in the graph.
In our application, the lowest voxel of the tree trunk typically
serves as the destination. The collection of shortest routes leading

from anywhere to the root forms a spanning tree of the graph.
The term ‘tree’ in the graph-theoretical sense is not chosen by
accident: the spanning tree that we find provides a logical model
for a tree in a rasterized laser point cloud. Any ambiguities, such
as loops caused by falsely-connected branches, which may still
exist after skeletonization, are resolved now (Fig. 6.C) — how
realistic the results are depends mostly on the success of previous
steps.

After the algorithm finishes, each node (except the root) knows
its parent, the next node along the shortest route to the root. By
traversing the tree once more it is easy to find branches and their
junctions, being nodes (voxels) that appear as a parent more than
once. During this traversal each voxel is assigned a unique branch
identification number. Each time a junction is found, a new iden-
tification number is given to this voxel and to the other voxels in
the same branch closer to the root.(Fig. 6.D).

3.5 Connected component labeling

A problem occurs during skeleton segmentation (3.4) if the scene
contains several (disconnected) trees. Dijkstra’s algorithm needs
to be provided with a single root voxel, after which it will find
shortest routes only for voxels that are connected to that root. All
other trees will be omitted.

To overcome this problem, conncected component labeling has to
be applied, followed by compenent separation (3.6). Connected
component labeling uses a slightly modified segmentation algo-
rithm, which scans the entire voxel space, starting at the bottom
(i.e. at the plane with the highest number). Each time an unas-
signed voxel is encountered, Dijkstra’s algorithm is started with
that voxel as root. One tree is then traversed and all voxels in-
volved will be assigned a label, which is unique for that tree.
After that, the algorithm continues to scan for unassigned voxels
etcetera, until the top of the space is reached.

This algorithm can be regarded a general 3D connected compo-
nent labelling, since it does not rely on the input data being skele-
tonized trees.

3.6 Component Separation

In case of a scene with multiple trees, Connected Component La-
belling (3.5) had to be applied to label the trees uniquely. Subse-
quently, the data set has to be subdivided into several sets, such
that each of these contains only one tree, which can than be seg-
mented into braches, as described in 3.4.

During the component separation step, components are sorted ac-
cording to descending number of voxels and output into different
data sets one by one. It may happen that certain components do
not contain trees, but “loose” branches or other kinds of noise.
The user may request that only a certain number of components
is generated, or that only components with more than a certain
number of voxels are considered.

3.7 Raster tree segmentation

At this stage the skeleton has been subdivided into trees and
branches, and each skeleton voxel has been labelled with a unique
branch identification. Now we will label all other tree voxels ac-
cording to the nearest skeleton label.

There would be several ways to accomplish this by raster
operations, such as iterative dilation or distance transform
[Borgefors, 1996]. We use a Nearest Neighbor search algorithm,
as it is known from database environments, where the problem
is sometimes to find k nearest neighbors (database records) of a
given query record, in an vector space of arbitrary dimension.



Usually this is a feature space, and the purpose is to find those k
records in a database that are most similar to a query specifica-
tion; the number of considered attributes specifies the dimension-
ality.

In our case the space is Euclidian with just 3 dimensions. The
skeleton provides the data base, and we need only 1 neighbor
(skeleton voxel) in each query (tree voxel). In this way all tree
voxels will be labeled (Fig. 7).

Figure 7: Segmentation. Left: segmented skeleton; right: seg-
mented voxel space

3.8 Point cloud segmentation

Finally, we use once again the routine that originally transferred
all the laser points into the voxel space. This time the purpose is
to see into which voxel each laser point would be transferred, in
order to assign the voxel’s label to the point (Fig. 8).

4 CONCLUSION

In a rather straightforward fashion we transferred a carefully cho-
sen selection of basic and advanced 2D raster (image) processing
algorithms into the 3D domain. The result is a flexible set of
tools, which we applied to segment a terrestrial laser data set of a
scene in a forest according to the individual tree branches.
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Hannu Hyyppae Henrik Haggré, Reconstructing tree crowns
from laser scanner data for feature extraction. IAPRS 34 Part
3-B pages B-218 ff (4 pages).

[Serra, 1985] J. Serra, Image Analysis and Mathematical Mor-
phology, Academic Press, London, 1982.

[Sun, 2000] Guoqing Sun, Modeling lidar returns from forest
canopies, TGARS Vol.38, No.6.

[Svensson and Borgefors, 2002] Stina Svensson and Gunilla
Borgefors, Distance transforms in 3D using four different
weights, Pattern Recognition Letters 23 (2002) 1407-1418.

[Telea and Vilanova, 2003] Alexandru Telea and Anna Vi-
lanova, A robust level-set algorithms for centerline extraction,
Joint EUROGRAPHICS-IEEE Symposium on Visualisation
(2003)

[Verwer, 1991] B.Verwer, Local Distances for Distance Trans-
formations in Two and Three Dimensions Pattern Recognition
Letters Vol.12, No. 11 (1991), 671-682


