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On Rounding Percentages 


PERSl DlACONlS and DAVID FREEDMAN* 

We assess the probability that a table of rounded percentages adds 
to 100 percent. This extends work of Mosteller, Youtz, and Zahn 
(1967) who found that the chance of rounding to 100 percent was 
about 5 with three categories, 4 with four categories, and (6/~c)4 
with a large number c of categories. We give a mathematical treat- 
ment of this phenomenon when the table is drawn from a multi- 
nomial distribution or from a mixture of multinomial distributions. 
We discuss the very different small-sample behavior and treat 
Benford's leading digit data as an example. 

KEY WORDS: Rounding error; Table of counts; Multinomial; 
Mixture of multinomials; Limit theorem; Leading digit. 

1. INTRODUCTION 

Sums of rounded proportions often fail t o  add to 1. For 
example, consider Table 1. This table has three categories. 
The number of categories is deno-ted by c. The propor- 
tions are rounded t o  the nearest .001 or 1 in 1,000. This 
1,000 is the rounding number n. I n  Table 1, the rounded 
proportions add t o  1.001 instead of 1. The chance that  
rounded proportions add to 1 depends on the number c 
of categories, the rounding number n, and the probability 
model for generating the table. Our object in this article 
is to  compute this chance. 

Failure to  add to 1 occurs so frequently that  if many 
sums of proportions add t o  exactly 1 in a reported set of 
tables, one begins to  suspect the reporter of forcing the 
proportions t o  add to 1. An example is discussed in 
Section 6. Sometimes altering the sample proportions in 
this way matters: For instance, i t  can cause large changes 
in the chi-squared statistic, as shown by an  example in 
Section 6. 

I n  their 1967 article, Mosteller, Youtz, and Zahn 
(MYZ) proposed several probability models for generat- 
ing tables. They computed the chance that  the rounded 
proportions add to 1. They concluded that  the chance did 
not depend very much on the rounding number but did 
depend strongly on the number of categories : They found 
that  with two categories the chance is 100 percent, with 
three categories the chance is 75 percent, with four cate- 
gories the chance is 66.66 percent, and with a large 
number c of categories the chance is about (6/nc)*. 
Although persuasive and backed by extensive empirical 
evidence (rounding behavior of 565 tables in the National 
Halothane Study), the MYZ argument was only heuristic. 

* Persi Diaconis is Associate Professor, Department of Statistics, 
Stanford University, Stanford, CA 94305, and member, technical 
staff, Bell Laboratories, 1978-79. David Freedman is Professor of 
Statistics, Department of Statistics, University of California, 
Berkeley, CA 94720. This work was supported in part by NSF Grant 
MPS 74-21416 and by the Energy Research and Development 
Administration under Contract EY-76-C-03-0515 and (second 
author) by NSF Grant GP43085. 

I n  this article we give a rigorous treatment of the main 
mathematical issues raised by MYZ. To begin with, we 
consider the multinomial model for generating tables. Due 
to the law of large numbers the sample proportions round 
essentially the same way as the theoretical probabilities. 
Thus, the chance of getting rounded sample proportions 
that  total 1 tends to  0 or 1 as the sample size tends t o  
infinity. The same type of behavior holds for many other 
models for generating a single table. This analysis is 
given in Section 2. 

Next consider a collection of many tables. Suppose the 
j th  table is drawn from a multinomial distribution with 
theoretical probability vector @ ( j )  = (pl(j), . . ., p,( j))  
and sample size N, .  I t  is natural t o  consider models in 
which the different p ( j ) ' s  are randomly chosen from a 
distribution on the simplex 

C 

(p ip i  2 0 , i  = 1 ,2 ,  . . . ,c; C pi = 1 )  . (1) 
i ~ l  

If  the sample size in the j th  table is large, the propor- 
tions in the j th  sample will round in the same way as 
Pi. Thus, the number of tables that  round to  1 will be 
close to  the probability that  the random vector p rounds 
to  1. 

The principal result of this article concerns the MYZ 
broken-stick model in which a uniform distribution is 
put on the simplex (1). I t  is convenient t o  introduce the 
symbol rn(x) for the result of rounding x t o  the nearest 

l /n.  
m + .5 m + l  m + l  

If -- < x i - - - , then r,(x) = -- ;
n n n 

m m + .5 mif - < x < - - ,  then r,(x) = -- ; 
n n n 

m + .5 m 
if -

I then r,(x) = --
n n 

m + l  
or -according 

n 

as m is even or odd. 
A discussion of r,, (x) can be found in Wallis and Roberts 

(1956, p. 175). I n  the broken-stick model, the sum of the 
proportions C:=lrn(pi) is a random variable 

with possible values 1, 1 f l /n ,  1 f 2/n, and so on. We 
want to find the chance that  c;=,r,(pi) = 1. T~ solve 
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1.  Distribution of White Families by Type, 
United States, 1970 

Type Number (1,000) Proportion 

Husband-Wife 40,802 0.887 
Other Male Head 1,036 0.023 
Female Head 4,185 0.091 

Total 46,023 1.001 

Source: Statistical Abstract, 1976, Table 53 

this problem it is convenient to introduce c - 1mutually 
independent random variables Vi, each of which is uni- 
formly distributed over the interval [- -5, .5]. Theorem 
1 shows that  when the rounding number n is large, 
CzC=lr, (pi) - 1 has approximately the same distribution 
as frl(V1 +. . .+ ITc-1)j /n. In particular, the chance 
that the rounded proportions sum to 1 converges to the 
chance that -.5 < E~I:Vi < .5. The second theorem 
shows that this last chance is approximately equal to 
(6/s(c - I))+. These theorems verify a conjecture on p. 
857 of MYZ. 

Theorem 1: Suppose pl, . . ., p, are uniformly dis-
tributed over the simplex (1). As the rounding number n 
approaches infinity, n{  r ,(pi) - 1) converges in 
distribution to rl(C:z: Vi) where Vi are independent and 
uniformly distributed on [-.5, .5]. 

Theorem 1will be proved in Section 3. The assumption 
that pl, ...,p, are uniformly distributed over the simplex 
(1) is not critical. Any absolutely continuous distribution 
will do, as shown in Section 4. 

When c is large, the Edgeworth expansion may be used 
to approximate the distribution of rl(V1 +...+ V,-I). 

Theorem 2: Suppose V1, . . . , V,-1 are independent and 
uniformly distributed over [-.5, .5]. Let c -+ m and 
let j = 0 (c,). Then rl (V1 +.. . + V,-1) = j with prob- 
ability (6/7r (c - 1)) +e-'jj2/ + O(l/c#). In particu-
lar, - .5 < V1 +. . .+ Vc-l < .5 with probability 
(6/n(c - l ) )*+ O(l/c#). 

I n  Section 5 we look a t  the small-sample behavior of 
the modeIs discussed before. This behavior can be quite 
different from what large-sample theory predicts. The 
final section contains an  application of our analysis to 
Benford's (1938) leading digit data. 

2. FIXED CELL PROBABILITY MODELS 

First consider the model in which XI,  Xz, . . ., X, have 
a joint multinomial distribution with theoretical prob- 
abilities pl, p2, . . ., p, and sample size N. Then, by the 
law of large numbers as in Feller (1968, p. 152), the vector 
of sample proportions (XIIN, . .., X,/N) must con-
centrate in smaller and smaller neighborhoods of 
(pl, . . ., p,) as N 4 m. Thus, Ci,l rn(Xi/N) behaves 
like the constant Cz,l rn(pi). There is one exceptional 
case that is discussed a t  the end of this section. I t  follows 
that for fixed n and c, the rounded proportions add to a 

constant multiple of l / n  with probability tending to 1 
as N - t  w .  

Similar results hold for many other models. For 
example, suppose XI, . . ., X, are independent Poisson 
variables with parameters XI,  .. ., A,. Let N = Xi=, Xi, 
and A = Xi=1Xi .  If X i  goes to infinity in such a way that  
Xi/A tends to a limit, a standard argument shows that  
(XIIN, ..., Xc/N) tends to the limit of (Xl/h, . . ., X,/A) 
in probability. 

We have been ignoring one exceptional case that we 
discuss in the multinomial model for definiteness. Sup- 
pose pl, .. . ,p, is in the simplex ( I ) ,  the rounding number 
is n, and npi - [npi] = .5 for one or more i's. I f  X i / N  
exceeds pil we have to round up ; if Xi/N is below pi, we 
have to round down. This introduces some randomness 
into the asymptotic distribution of rn(Xi/N).

An example will make the issue clear. Suppose c = 3, 
p1 = .35, p2 = .4,5, pa = .20, and n = 10. The rounded 
pi's are .4, .4, .2, and sum to 1. For large N,  X3/N is 
nearly .2 and rounds to .2;  so the asymptotic behavior of 
C?rlo(Xi/N) depends on whether Xi/N is just above or 
just below pi for i = 1,2. The four possibilities are shown 
in Table 2. 

2. Four Cases: C~rl,(XiIN) 

Asymptotically, the two variables 

are jointly normal, with mean 0, variance 1, and 
correlation 

The chance that  the rounded proportions sum to  1there-
fore converges to the chance that two centered normal 
variables with correlation - .66 are of opposite sign. 

3. PROOF OF THE MAIN THEOREM I N  THE 
BROKEN-STICK MODEL 

In  this model, the number of categories c is fixed, 
pl, ..., p, are uniformly distributed over the simplex 
(I),  the rounding number n is large, and r,(x) denotes x 
rounded to the nearest l/n. The random variables 
V1, . . . , V,-1 referred to in Theorem 1 may be taken as 
the rounding errors, defined as follows, for 1 5 i 5 c - 1: 

So far, the Vi are neither independent nor uniform. As 
is easily seen, however, 

Lemma 1: If pi is uniformly distributed over 
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[mln, ( m + l) /n],  then I - ,  i. uniformly distri1)ut~d over 
[ - L  L ]

21 2 ' 

These rourldirig errors L', are d~f inpd  only for 1 < 7' 
< c -- I ; now the roundirig error for p, niu5t he con-.-

qiderecl. Here i y  a preliminary fact : 

r , ,((m + u)/7z) = m/n f r l (u) ' / I  

for integer m arid rrlal u . (3.2) 
S o w  (3.1) implie5 

Using relation i:3.2), 

c-1 1 "1 

rFL(pc)= 1 - C rn(pz)+ - r l ( Z  ITt) 
1 I),  1 

Thus, 
1 e-l 1 c--1 

S u ~ ~ n ~ l i r l g  (3.1) for z = 1 1o c - 1 and the11 relation 
adding the relation (3.3) to  this i u r l ~ ,  tlitx trlnn 
l l n  CE-' I T L cancel,. Thi i  prove. Lemm~la 2. 

Lemmn 2 If I ,,(.r) i i  J rouiided to  the neare5t 1 /7z, arid 
the rounding error5 17, are defined i-~y (3 l ) ,  then 
2;r r , (pt )= 1 + (l/?z) r l ( z ; - l  ITt). 

So far, the ai5urnption that  the p,'s are uniformly dis- 
tributed ha5 1lOt been ubed, it will h? needed t o  cornpute 
the di.;tril)utioil of the I-,. Let ml, . . ., ?n,-1 1)e rlonnega- 
tive integer5 whose iurn 1s a t  most 7z - (c - 1) Let  
il (ml, . . . , m,-l) 1)e the el  eiit that 

Let -4 ,, be tl-ie uiiiori of the.? d (ml, . . . , m,+l) 01er all 
choicei of ml, . . . , ? n , ,. The probal~ilitv of A ,,tend< to 1 a i  
n + a.I n  fact, a geometric argullieiit that  we ornit shows 
that the  chance of A ,, is ( n ( n  - 1 ) .  . . (n - c + 2) ) / 
n ~ l. Theorern 1, then, can he proved h.demorlstrating 

that  given ,4,$, the  random variables 171, . . ., T7,-1 are 
conditionally independent and uniformly distributed over 
[- .5, .5]. I n  fact, a little more is true : 

Lemrna 3: Givc'n 14 (ml, . . . , mC-I), the random variables 
IT1,. . . , \',-I are conditionally independent and unifornlly 
distributed over [- .5, . 5 ] .  

The proof of Lemrna 3 is direct: The distribution of 
(pl, . . . , p,-1) is urlifornl over the  region 

c-1 

2 , L O  for l i : i _ < c - 1 ,  C x , I l .  (3.4) 
1 

15 ~iAlso, the hypercube defirliiig L4 (ml, . . , W L ~ - ~ )  holly 
contained in t lui  region Therefore, given -4 (ml, . . . ,m,-l), 
the first c - 1 of the p,'s are independent, each being 
uniformly dl-tributed over its edge of the hvpercube 
Sam Lemma 1 con~pletes the proof. Tliiy con~pletcb the 
argument for Theorerr1 1 

Itecsll that  tlir: al'gtlrnent caorlnecting tlie distri1)ution 
of the roundtld p ,  to  ta l~les  of courits is as follows : If we 
ohserve a rnultiilonlial vector 2 7 2 ,  . . . , X,) drawn 
wit11 para111etr~r.s (pl, p2, . . . , p,) aild .ITthen, l~ecause of 
the laii- of large nunlher., the. sanlple proportions will be 
close e~iougli to the voctor of 71,'s so tha t  the sanlple 
proportions rourld in the sanlc, way th:tt tllc' p,':; round. 

When the p,'s are (,hose11 fro111 the uniform distributioii 
of the simplex (1), ariotlier ayjproacli is availal~le. 'The 
dist'rii1utioi1 of (2-1, X2, . . . , Xc) averaged over the sim- 
plex (1) follows so-callrlti Rose-Ei~~steiri statistics (Feller 
1968, 1). 40; Hill 1970). Uiidrr Rose-Eiristciri statistics, 
all partitions of .I7into c parts arc. r:qually likely. Thus, the 
possii~le sample vt.c:t'ors are all tlie lattice poiiits ill thrl 
sirilples C,"=,J ,  = .Y, .r, 2 0. All points in this sirnples 
are equally lil<c,ly. Tht: points that i.ounc1 to  a fixed 
multiple of the rouriding num1)er are contained in certain 
fixed rcgiorls of this simples. As S tends to  infinity, tlie 
proportion of points in a given region tends t o  the area of 
the region. It  is esseritially tliis area that  was co~ilputed 
iri Lenlnia 3. The approach we have follo~b-($tiseems 
preferal~le 1)ecaus~ it leads to  thtl generalizatio~l of the 
next section. 

We conclude tliis sc,ctio~i with a proof of Tlleorein 2. 

I'roqf. Let m = c - 1. Let g , , , ( ~ )  I ) c  the ~)rol)aI)ilit\ 
density of + . . . i-1 , S o t e  that  f<( t71) = I?( 
= 0, arid var i l ' l )  = -1-,,. Tile ICdgewortli rxpansion, a \  
in Section 16 4 of P'eller (1971), 5llowi that 

Ir~tegrating from j - .5 to  j + ..i,and setting I /  = j -+ .r 
wc find that 

By assumption, j = 0 ( ~ n : ): by calculus, 

This completes tlie proof 

4. THE GENERALIZATION TO THE ABSOLUTELY 
CONTINUOUS CASE 

Theorem 1 is generalized in tlle follouing 11aragraph.s. 

Theorcm 3 Let ,u be a prol~ahility Illpasure on the 
iinlplex ( I )  Suppose p is abiolutely cont inuou~ wit11 
respect to  the uniforni distributio~i on ( I ) .  Therl, a s  the  
rounding number n +  a, the p distribution ot 

r , , lpz)- 1)  coI1vCrge5 ti) tho distribution of 
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r l  ( x i - '  V 1 ) ,the 1', being independent and uniformly dis- 
tributed over [- .5, .5]. 

This can be proved by the argument of the previous 
section because given that  the p,'s lie in a typical small 
hypercube, their conditional distribution must be almost 
uniform. To make this precise, it is conr~enient to use the 
idea of Lebesgue points (Dunford and Sch~vartz, 1957, 
pp. 210-218). 

The distribution 0 of pl, . . . , p,-l is a probability in the 
region (3.4) and is absolutely continuous with respect to  
(c - 1)-dimensional Lebesgue measure A. As a result, it 
admits a derivative f. By definition, x is a Lebesgue point 
of f provided tha t  : 

as the (c - 1)-dimensional hypercube C shrinks to  x .  As 
Lebesgue proved, almost all x have this property. Of 
course, if 2 is a Lebesgue point for f, then 

as the (c - 1)-dimensional hypercube C shrinks t o  x. 
To  prove the argument, the following theorem will be 

useful. Recall that  0 is the distribution of p,, . . . , pc-1 
and f = d0/dA. 

Theorem 4: Suppose f (x)  > 0 and x is a Lebesgue 
point of f .  Let the hypercube C shrink t o  x. Let Ac be 
the uniform distribution over C ,  and let Be be 0 condi- 
tioned on C. Let ' 1  I denote variation norm. Then 
10- - A c l  +0. 

Proof: The following computation is standard. 

We shall say tha t  a statenlent is true for 0-almost all 
x if i t  is true for a set of values of x that  has probability 
1 under 8. 

Corollary I :  Under the conditions of Theorem 4, 
110~- hell -+ 0 as C shrinks to  x, for 6-almost all x. 

Corollary 1 is closely related t o  the martingale proofs 
of the Radon-Nikodym Theorern. Sorne references tha t  
make the connection clear are Blackwell and Dubins 
(1962) and Rleyer (1966, p. 153). 
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Returning to  the argument for Theorem 3, let [r] 
denot,e the greatest integer in r, and define a subset B,, 
of the region (3.4) by the requirement tha t  Xi-' [nx,]
< n - (c - I ) .  P o r x  = (21, . . . ,  5 , -1) ,xE  B, , , le t  Cl(x) 
be the (c - 1)-dimensional hypercube 

As Corollary 1 implies, /10-(,) - A c , , ,  -+ 0 as n + for 
&almost all x. I n  particular, if E > 0, then for all suffi- 
ciently large n ,  

Now the argument for Theorern 1 applies almost 
verbatim. Because O c c , ,  - A c c T )  is conhtant over the 
hypercube C(x), what (4.1) says is tha t  except for a set 
of hypercubes A(ml,  . . ., m,-l) of total probability E ,  

the  conditional distribution of pl, . . ., pC-, is within c of 
being uniform over il (ml, . . .. mCpl). This completes the 
argument for Theorem 3. 

Remark: There is an  easy L1argument,: Let C run over 
a partition into hypercubes, then 

where f- (y) = 0((')/A (C) for y E C , then the right hand 
side goes to  0 as mesh iC) +0 :  approximate f ln L1by a 
smooth f*, and observe 1 1 f c  - fc*I < 1 f - f * .  

For some approximationr, the c.onditiona1 argument 
may not be useful. For any probability p on the simplex 
(I ) ,  the  exact distribution of n(Cfr,, ( p , )  - 1 )  may be 
cornputed exartly, as follo~vs. Let p* be the joint dis-
tribution of np, - [np,] for 1 < t 5 c - 1,a probability 
measure on the unit cube in (c - 1)-dirne11-
sional space. For x = (XI, . . ., .c,-~)€ Kc-l, let 
U,is) = r n  ( 4  - .xi. 

Theorem 6: The ,LL distribution of n ( C E  r,,(p,) - 11 
coincides wit11 the p* distribution of r l (X?- '  IT,).  

This is immediate from Lemma 1. The point is tha t  p* 
will be almost uniform over even for many singular 
measures p. An example of the use of p* is given a t  the 
end of the next section. 

5. SMALL-SAMPLE RESULTS 

JIYZ also consider the multinonlial model with 
p,, . . ., p, fixed rather than random. On p. 856 of their 
article, RlYZ seern to  assert tha t  with large sanlples the 
multinomial model behaves like the broken-stick niodel. 
The argument of Section 2 shows tha t  this cannot be 
correct. 

For example, consider the trinomial with equally likcly 
cells: c = 3 and pl = pz = p3 = 9 .  For n = 10, or any  
other decimal rounding, the rounded p's add t o  one unit 
less than 1: 

4 = .3  and .3 + .3 + .3  = 1 -- & . 

If XI ,  Xz, X3 are the counts in this model, as N + a;, the 
chance that  C; rlo(X,/lV) = 1 must approach 0. 
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3. Joint Distribution of (XI/ 100, Xz/ 100, X3/ 100) 
When (Xl,X2,X3)Have a Multinomial Distribution 

With Parameters 100 and (4,-&,&).* 

X2/l0O 

Xl/lOO .2 .25 .30 .35 .40 .45 5\ 

* All entries should be multiplied by 1/1,000. 

AlYZ's Table 3 shows, however, tha t  for samples of 
size N = 1 to  20, this chance is close to  73 percent. We 
now explain this. 

We began by recomputing the table. To  our dismay, 
it checked perfectly. Some further numerical explora- 
tion, however, suggested a tentative answer: From the 
point of view of rounding calculations, the law of large 
numbers works very slowly. Even when N = 100 in the 
preceding example, the distribution of (X1/100, X2/100, 
X3/100) is much closer to uniform than it is to  a point 
mass a t  (a, +,$)-and P I C ;  rlo(X,/100) = l ]  = .74! 

The joint distribution of (X1/lOO, X2/100, X3/100) 1s 

shown in Table 3. The values of X1/lOO appear a t  the  
left of the  table ; the  values of Xz/100 are across the top. 
Of course, X3/100 = 1 - X1/lOO - X2/100. The cor-
responding probabilities are reported in the body of the 
table, rounded t o  integer multiples of 1/1,000. For in- 
stance, the chance t h a t  X1/lOO = .33 and Xz/100 = .33 
-so tha t  X3/100 = .34 and the rounded proportions add 
to  .9-is about 8/1,000. The chance that X1/100 = .33 
and Xz/100 = .36-so that  X3/100 = .31 and the 
rounded proportions add to  1-is about 7/1,000. A zero 
in the table means tha t  the corresponding chance is below 
.0003. For instance, the  chance tha t  X1/lOO = .23 and 
Xz/100 = .30 is shown as 0 ;  in fact, it is .0004. 

Table 3 demonstrates tha t  (X1/lOO, Xz/100, X3/100) 
spreads out around (i, i, $) in a way tha t  really matters 
when rounding to  tenths. The discussion leading up t o  
Theorem 5 suggests examining the measure F*,  which in 

4. Joint Distribution of p* When (X,,X,,X:,) Have a 

Multinomial Distribution With Parameters 100 


and (V3, 1/3, V3). All Entries Should 

Be Multiplied by 111,000 


X,/lO - IX,/lOl 

10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 10 10 11 10 10 10 10 10 
10 10 11 11 11 10 10 10 10 10 

X, / lO- [X , / lO]  10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 9 10 10 
10 10 10 10 10 10 9 9 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 

t,his case amounts t'o the joint distribution of 

This distribution is shown in Table 4, the values of the 
first variable being given along the left edge, the value of 
the second variable across the top, arid the corresponding 
probability in the body of the table, rounded t o  an  
integer multiple of 1/1,000. I t  is essentially uniform. 

I n  this example, we have heen rounding to  tenths. 
When rounding to  halves, for instance, the spread in 
Table 3 would be relatively small; and C?r2jXi/100) = 1 
with probability only 14 percent, compared with the 75 
percent predicted by the broken-stick model on p. 856 
of MYZ. 

6. AN EXAMPLE 

While investigating t,he behavior of leading digits in 
t'ypical data,  Benford (1938) (also see Diaconis 1977, 
Raimi 1976, and Ylvisaker 1977) collected a sample of 
size 20,229 from a total  of 20 sources. These data are 
presented in Table 5 .  For example, Benford looked a t  the 
areas of 335 rivers and found tha t  31.0 percent of t,he 
areas began with 1, 16.4 percent began with 2, and so on. 

Each row in Table 5 adds to  100 percent. How likely 
is this? On the broken-stick model, the chance of a given 
row rounding to  100 percent is approximately (6/8a)i 
A- 2 .I Numerical calculations show tha t  this approxima- 
tion is quite accurate. Assuming the rows are independ- 
ent', the chance of all rows si~nultaneously rounding to 
100 percent is ast,rononlically small. We conclude that, 
Benford's table does not follow the broken-stick model- 
or any of the probability models introduced in Sections 
2, 3, or 4. This raises the  suspicion tha t  Benford manipu- 
lated t'he data t,o make the rows round properly. This 
suspicion is not hard to  verify. Consider the  first row of 
Table 5 .  The percent,age of numbers with leading digit 7 
is reported as 5.5, with a total  of 335 cases. The only 
proport'ions compatible with 5.5 are 18/335, which rounds 
t o  5.4, or 19/335, which rounds t,o 5.7: There is no pro- 
portion possible tha t  rounds to  5.5. 

The bott,om row of averages also rounds to  100 percent. 
Direct calculation shows tha t  the entries in columns 3 and 
9 have been incorrectly rounded. Benford was trying to  
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5. Benford Data (Percentages) 

Group Title 1 2 3 

Rivers, Area 31.O 16.4 10.7 
Population 33.9 20.4 14.2 
Constants 41.3 14.4 4.8 
Newspapers 30.0 18.0 12.0 

E Spec. Heat 24.0 18.4 16.2 
F Pressure 29.6 18.3 12.8 
G H. P. Lost 30.0 18.4 11.9 
H Molecular Weight 26.7 25.2 15.4 
I Drainage 27.1 23.9 13.8 
J Atomic Weight 47.2 18.7 5.5 
K n-I, d n ,  . . . 25.7 20.3 9.7 
L Design 26.8 14.8 14.3 
M Digest 33.4 18.5 12.4 
N Cost Data 32.4 18.8 10.1 
0 X-ray Volts 27.9 17.5 14.4 
P Am. League 32.7 17.6 12.6 
Q Black Body 31 .O 17.3 14.1 
R Addresses 28.9 19.2 12.6 
S n1,n2,. . . ,n! 25.3 16.0 12.0 
T Death Rate 27.0 18.6 15.7 
Average 30.6 18.5 12.4 

show that $J~,the proportion of numbers that begin with 
the leading digit i, follows the theoretical leading digit 
law: pi = 100 loglo (1 + l l i ) .  I t  turns out that in both 
columns 3 and 9, Benford incorrectly rounded toward the 
theoretical proportions pi. For column 3, 12.26 was 
rounded to 12.4. For column 9, 4.775 was rounded to 4.7. 
The theoretical percentages are pa s 12.5 and ps 4.6. 

Changes in rounded proportions to  make tables round 
to 100 percent can affect the results of statistical tests 
such as chi-square. The chi-squared statistic for goodness 
of fit of c sample proportions $, based on a sample size of 
N to  theoretical probability pi is x2 = N x9=1($i - pi)'/ 
pi. If the Iji did not sum to 1, then adjusting the fi i  that 
correspond to small pi can change the value of x2 ap- 
preciably for large N. Of course, it becomes easier to 
change the value of x2as the rounding number decreases. 

For example, consider Benford's data in Table 5. The 
proportion of all 20,229 numbers that begin with a 1 can 
be found by taking a weighted average of the proportions 
in the first column. Doing this for each digit yields 
Table 6. 

Ylvisaker (1977) gives x2from Table 6 as 85. To show 
the effect of rounding, Table 7 gives the results of round- 
ing the numbers in Table 6 to the nearest 1 percent. The 
x2statistic for goodness of fit of data to theory is approxi- 
mately 192. Both rows of Table 7 add to 101 percent. 

If 1 percent is subtracted from the data row in the 
eighth position and 1 percent is subtracted from the 
theory row in the seventh position so that both rows sum 

6. Proportion of Benford Data Beginning With Digit 

Leading i and Theoretical Proportions 


100 log ,,(l + 1l i )  


-Digit 

1 2 3 4 5 6 7 8 9 
Data 28.9 19.5 12.7 9.1 7.5 6.4 5.4 5.5 5.0 
Theory 30.1 17.6 12.3 9.7 7.9 6.7 5.8 5.1 4.6 

4 5 6 7 8 9 Count 

11.3 7.2 8.6 5.5 4.2 5.1 
8.1 7.2 6.2 4.1 3.7 2.2 
8.6 10.6 5.8 1 .O 2.9 10.6 

10.0 8.0 6.0 6.0 5.0 5.0 
14.6 10.6 4.1 3.2 4.8 4.1 
9.8 8.3 6.4 5.7 4.4 4.7 

10.8 8.1 7.0 5.1 5.1 3.6 
10.8 6.7 5.1 4.1 2.8 3.2 
12.6 8.2 5.0 5.0 2.5 1.9 
4.4 6.6 4.4 3.3 4.4 5.5 
6.8 6.6 6.8 7.2 8.0 8.9 
7.5 8.3 8.4 7.0 7.3 5.6 
7.5 7.1 6.5 5.5 4.9 4.2 

10.1 9.8 5.5 4.7 5.5 3.1 
9.0 8.1 7.4 5.1 5.8 4.8 
9.8 7.4 6.4 4.9 5.6 3.0 
8.7 6.6 7.0 5.2 4.7 5.4 
8.8 8.5 6.4 5.6 5.0 5.0 

10.0 8.5 8.8 6.8 7.1 5.5 
9.4 6.7 6.5 7.2 4.8 4.1 
9.4 8.0 6.4 5.1 4.9 4.7 

7. Numbers in Table 6 Rounded to Nearest 1 Percent 

-Digit 

1 2 3 4 5 6 7 8 9 
Data 29 20 13 9 8 6 5 6 5 
Theory 30 18 12 10 8 7 6 5 5 

to 100 percent, the x2 statistic becomes approximately 
118. Thus, rounding to help the data fit the theory can 
make a difference. This example also shows that it is 
important to calculate with many-digit accuracy when 
computing x2 for large sample sizes. 

[Received January 1978. Revised December 1978.1 
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