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PERSI DIACONIS and DAVID FREEDMAN*

On Rounding Percentages

We assess the probability that a table of rounded percentages adds
to 100 percent. This extends work of Mosteller, Youtz, and Zahn
(1967) who found that the chance of rounding to 100 percent was
about 3 with three categories, 2 with four categories, and (6/xc)?
with a large number ¢ of categories. We give a mathematical treat-
ment of this phenomenon when the table is drawn from a multi-
nomial distribution or from a mixture of multinomial distributions.
We discuss the very different small-sample behavior and treat
Benford’s leading digit data as an example.

KEY WORDS: Rounding error; Table of counts; Multinomial;
Mixture of multinomials; Limit theorem; Leading digit.

1. INTRODUCTION

Sums of rounded proportions often fail to add to 1. For
example, consider Table 1. This table has three categories.
The number of categories is denoted by ¢. The propor-
tions are rounded to the nearest .001 or 1 in 1,000. This
1,000 is the rounding number n. In Table 1, the rounded
proportions add to 1.001 instead of 1. The chance that
rounded proportions add to 1 depends on the number ¢
of categories, the rounding number n, and the probability
model for generating the table. Our object in this article
is to compute this chance.

Failure to add to 1 occurs so frequently that if many
sums of proportions add to exactly 1 in a reported set of
tables, one begins to suspect the reporter of forcing the
proportions to add to 1. An example is discussed in
Section 6. Sometimes altering the sample proportions in
this way matters: For instance, it can cause large changes
in the chi-squared statistic, as shown by an example in
Section 6.

In their 1967 article, Mosteller, Youtz, and Zahn
(MYZ) proposed several probability models for generat-
ing tables. They computed the chance that the rounded
proportions add to 1. They concluded that the chance did
not depend very much on the rounding number but did
depend strongly on the number of categories: They found
that with two categories the chance is 100 percent, with
three categories the chance is 75 percent, with four cate-
gories the chance is 66.66 percent, and with a large
number ¢ of categories the chance is about (6/mc)%.
Although persuasive and backed by extensive empirical
evidence (rounding behavior of 565 tables in the National
Halothane Study), the MYZ argument was only heuristic.
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Berkeley, CA 94720. This work was supported in part by NSF Grant
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In this article we give a rigorous treatment of the main
mathematical issues raised by MYZ. To begin with, we
consider the multinomial model for generating tables. Due
to the law of large numbers the sample proportions round
essentially the same way as the theoretical probabilities.
Thus, the chance of getting rounded sample proportions
that total 1 tends to O or 1 as the sample size tends to
infinity. The same type of behavior holds for many other
models for generating a single table. This analysis is
given in Section 2.

Next consider a collection of many tables. Suppose the
Jjth table is drawn from a multinomial distribution with
theoretical probability vector p(j) = (p1(9), ..., p.(7))
and sample size N;. It is natural to consider models in
which the different $(j)’s are randomly chosen from a
distribution on the simplex

{ﬁIPnZ()J:l,?,,CyZP-:l} (1)
=1

If the sample size in the jth table is large, the propor-
tions in the jth sample will round in the same way as
Pj. Thus, the number of tables that round to 1 will be
close to the probability that the random vector $ rounds
to 1.

The principal result of this article concerns the MYZ
broken-stick model in which a uniform distribution is
put on the simplex (1). It is convenient to introduce the
symbol r,.(z) for the result of rounding z to the nearest
1/n.

m—+ .5 m—+ 1 m 1
If <z < , then r,(z) = + ;
n n n
..om m 5 m
if —<z<—"—, then r.(z) = —;
n n n
m + .5 m
if 2=—, then r,(z) = —
n n
m—+ 1 .
or according
n

as m is even or odd.

A discussion of 7, (x) can be found in Wallis and Roberts
(1956, p. 175). In the broken-stick model, the sum of the
rounded proportions Y i—; 7.(p;) is a random variable
with possible values 1, 1 & 1/n, 1 & 2/n, and so on. We
want to find the chance that Y j—, r.(p;) = 1. To solve
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1. Distribution of White Families by Type,
United States, 1970

Type Number (1,000) Proportion
Husband-Wife 40,802 0.887
Other Male Head 1,036 0.023
Female Head 4,185 0.091
Total 46,023 1.001

Source: Statistical Abstract, 1976, Table 53.

this problem it is convenient to introduce ¢ — 1 mutually
independent random variables V., each of which is uni-
formly distributed over the interval [ —.5, .5]. Theorem
1 shows that when the rounding number n is large,
Y i-172(p;) — 1 has approximately thz same distribution
as {1 (Vi+...+ V.)}/n. In particular, the chance
that the rounded proportions sum to 1 converges to the
chance that —.5 < Y521 V; < .5. The second theorem
shows that this last chance is approximately equal to
(6/w(c — 1))% These theorems verify a conjecture on p.
857 of MYZ.

Theorem 1: Suppose pi1, ..., p. are uniformly dis-
tributed over the simplex (1). As the rounding number n
approaches infinity, n{Y i=;7.(p;) — 1} converges in
distribution to r1(3_¢=1 V.) where V, are independent and
uniformly distributed on [—.5, .5].

Theorem 1 will be proved in Section 3. The assumption
that pi, ..., p. are uniformly distributed over the simplex
(1) is not critical. Any absolutely continuous distribution
will do, as shown in Section 4.

When c is large, the Edgeworth expansion may be used
to approximate the distribution of ri(Vy+...4 Vo).

Theorem 2: Suppose Vi, ..., V.1 are independent and
uniformly distributed over [—.5, .5]. Let ¢ — « and
let j = 0(c?). Then 71(Vy+...4+ Ve1) = j with prob-
ability (6/w(c — 1))}et2/1 4 0(1/c}). In particu-
lar, —.5<Vi+...4+ V.1 <.5 with probability
(6/m(c — 1))} + 0(1/cH).

In Section 5 we look at the small-sample behavior of
the models discussed before. This behavior can be quite
different from what large-sample theory predicts. The
final section contains an application of our analysis to
Benford’s (1938) leading digit data.

2. FIXED CELL PROBABILITY MODELS

First consider the model in which X;, X,, ..., X, have
a joint multinomial distribution with theoretical prob-
abilities pi, P2, ..., p. and sample size N. Then, by the
law of large numbers as in Feller (1968, p. 152), the vector
of sample proportions (X:/N, ..., X;/N) must con-
centrate in smaller and smaller neighborhoods of
(P, +.+, Po) a8 N — . Thus, 2 i1 72(Xi/N) behaves
like the constant Y ;=) 7.(p:). There is one exceptional
case that is discussed at the end of this section. It follows
that for fixed n and ¢, the rounded proportions add to a
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constant multiple of 1/n with probability tending to 1
as N — «,

Similar results hold for many other models. For
example, suppose Xi, ..., X, are independent Poisson
variables with parameters A1, ..., \.. Let N = ¢, X,
and A = 37, \i. If \; goes to infinity in such a way that
Ai/A tends to a limit, a standard argument shows that
(X1/N, ..., X./N) tends to the limit of (\1/A, ..., \.,/A)
in probability.

We have been ignoring one exceptional case that we
discuss in the multinomial model for definiteness. Sup-
pose py, ..., p.is in the simplex (1), the rounding number
is n, and np; — [np;] = .5 for one or more ¢’s. If X,;/N
exceeds p;, we have to round up; if X;/N is below p;, we
have to round down. This introduces some randomness
into the asymptotic distribution of Y { r.(X,/N).

An example will make the issue clear. Suppose ¢ = 3,
P1 = .35, p2 = .45, p; = .20, and n = 10. The rounded
pJ's are .4, .4, .2, and sum to 1. For large N, X;/N is
nearly .2 and rounds to .2; so the asymptotic behavior of
3% r10(Xi/N) depends on whether X,/N is just above or
just below p, for ¢ = 1, 2. The four possibilities are shown
in Table 2. '

2. Four Cases: Y 3ryo(Xi/N)

.40 < X,/N < .45 .45 < X,/N < .50

.30 < X,/N < .35 3+4+2=09 3+5+.2=1
35 < X,/N < .40 4+.4+2=1 4+5+.2=11
Asymptotically, the two variables
Xy — Np X, — Np,

(Npa(1 — p))t’ (Npa(1 — pa))?

are jointly normal, with mean 0, variance 1, and
correlation

B [(1 i m)T =0

The chance that the rounded proportions sum to 1 there-
fore converges to the chance that two centered normal
variables with correlation —.66 are of opposite sign.

3. PROOF OF THE MAIN THEOREM IN THE
BROKEN-STICK MODEL

In this model, the number of categories ¢ is fixed,
P1, ..., D. are uniformly distributed over the simplex
(1), the rounding number # is large, and r,(z) denotes z
rounded to the nearest 1/n. The random variables
Vi, ..., Ve referred to in Theorem 1 may be taken as
the rounding errors, defined as follows, for1 <7 <¢ — 1:

Ta(ps) = pi + Vi/n . 3.1)

So far, the V; are neither independent nor uniform. As
is easily seen, however,

Lemma 1: If p; is uniformly distributed over
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[m/n, (m 4+ 1)/n], then V, is uniformly distributed over

These rounding errors V, are defined only for 1 <<
< ¢ — 1; now the rounding error for p. must be con-
sidered. Here is a preliminary fact:

r.((m =+ o)/n) = m/n + ri(c)/n
for integer m and real ¢ . (3.2)
Now (3.1) implies
c—1 c—1 1 c—1
pe=1—2pi=1-2rp) +-2V:.
1 1 n o1

Using relation (3.2),

c—1 1 c—1
rn(pc) =1—2 r.(ps) + ;7‘1(2 V) .
1 1
Thus,
1 c—1 1 c—1
7‘n(p6) = pc + - rl(z V?,) - = Z V1 . (33)
n 1 n o

Summing relation (3.1) for ¢ = 1 to ¢ — 1 and then
adding the relation (3.3) to this sum, the term
1/n 357 V, cancels. This proves Lemma 2.

Lemma 2: If r,(x) is « rounded to the nearest 1/n, and
the rounding errors V, are defined by (3.1), then
2aralps) =1+ (1/n) Tl(Zi_l V).

So far, the assumption that the p/’s are uniformly dis-
tributed has not been used; it will be needed to compute
the distribution of the V,. Let my, ..., mc._; be nonnega-
tive integers whose sum is at most n — (¢ — 1). Let

A(my, ..., m.1) be the event that
m; m, + 1 i
— < pi<—— for 1 <1 <ec—1.
n n

Let A, be the union of these 4 (my, ..., m._1) over all
choices of my, .. ., m._1. The probability of 4, tends to 1as
n — . Infact, a geometric argument that we omit shows
that the chance of 4, is {n(n — 1)...(n —c + 2)}/
ne=l, Theorem 1, then, can be proved by demonstrating
that given A,, the random variables Vi, ..., V. are
conditionally independent and uniformly distributed over
[—.5, .5]. In fact, a little more is true:

Lemma 3: Given A (my, ..., m._1), the random variables
Vi, ..., V._iare conditionally independent and uniformly
distributed over [ —.5, .5].

The proof of Lemma 3 is direct: The distribution of
(p1, ..., Pe—r) is uniform over the region

c—1

2,20 for 1<i<¢—1, Tz <1. (34
1

Also, the hypercube defining A (m, ..., m._1) is wholly
contained in this region. Therefore, given 4 (my, . . ., m._1),
the first ¢ — 1 of the p.’s are independent, each being
uniformly distributed over its edge of the hypercube.
Now Lemma 1 completes the proof. This completes the
argument for Theorem 1.
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Recall that the argument connecting the distribution
of the rounded p, to tables of counts is as follows: If we
observe a multinomial vector (X, X, ..., X,) drawn
with parameters (pi, ps, ..., p.) and N then, because of
the law of large numbers, the sample proportions will be
close enough to the vector of p,’s so that the sample
proportions round in the same way that the p,’s round.

When the p,’s are chosen from the uniform distribution
of the simplex (1), another approach is available. The
distribution of (X1, X,, ..., X,) averaged over the sim-
plex (1) follows so-called Bose-Einstein statistics (Feller
1968, p. 40; Hill 1970). Under Bose-Einstein statistics,
all partitions of N into ¢ parts are equally likely. Thus, the
possible sample vectors are all the lattice points in the
simplex > /-y, = N, z, > 0. All points in this simplex
are equally likely. The points that round to a fixed
multiple of the rounding number are contained in certain
fixed regions of this simplex. As N tends to infinity, the
proportion of points in a given region tends to the area of
the region. It is essentially this area that was computed
in Lemma 3. The approach we have followed seems
preferable because it leads to the generalization of the
next section.

We conclude this section with a proof of Theorem 2.

Proof: Let m = ¢ — 1. Let g, (x) be the probability
density of Vi +...4-V,. Note that E(V,) = £(V3)
= 0, and var(V,) = {5 The Edgeworth expansion, as
in Section 16.4 of Feller (1971), shows that

6 \* 1
gm(x) = (——> g~ 8Hm (O (—;) , uniformly in z .
m

™m

Integrating from j — .5to j + .5, and setting y = j + 2«
we find that

Plj—5<Vi+...+ V< j+.5)

6\! s 1
=(—) g 62m / e—l—l?;y/me-(iyl/mdy + 0 <___ .
™m : mi

—.0

Now

e—ﬁgﬂ/m — 1 + O (i)
m

By assumption, 7 = O(m#): by calculus,

.5 1
/ elvindy =1 + 0 (——)-
5 m

This completes the proof.

4. THE GENERALIZATION TO THE ABSOLUTELY
CONTINUOUS CASE

Theorem 1 is generalized in the following paragraphs.

Theorem 3: Let p be a probability measure on the
simplex (1). Suppose u is absolutely continuous with
respect to the uniform distribution on (1). Then, as the
rounding number the u distribution of
w3 ra(p) — 1) converges to the distribution of

n-— «©,
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(X7 V), the V, being independent and uniformly dis-
tributed over [—.5, .5].

This can be proved by the argument of the previous
section because given that the p,’s lie in a typical small
hypercube, their conditional distribution must be almost
uniform. To make this precise, it is convenient to use the
idea of Lebesgue points (Dunford and Schwartz, 1957,
pp. 210-218).

The distribution 6 of p, ..., p.-11s a probability in the
region (3.4) and is absolutely continuous with respect to
(¢ — 1)-dimensional Lebesgue measure \. As a result, it
admits a derivative f. By definition, x is a Lebesgue point
of f provided that:

) — f(x)|A(dy) — O

MC)[ 1) = J@ M)

as the (¢ — 1)-dimensional hypercube C shrinks to z. As
Lebesgue proved, almost all « have this property. Of
course, if z is a Lebesgue point for f, then

Jrdy) — f(2)

2O /

as the (¢ — 1)-dimensional hypercube C shrinks to z.
To prove the argument, the following theorem will be

useful. Recall that 6 is the distribution of p1, ..., P

and f = d6/dA.

Theorem 4: Suppose f(z) > 0 and z is a Lebesgue
point of f. Let the hypercube C shrink to z. Let \¢ be
the uniform distribution over C, and let 6¢ be 6 condi-
tioned on C. Let || | denote variation norm. Then
[6c — Aell —0.

Proof: The following computation is standard.

1

16 — Aell = /C 50 O A(dy)
1 6(C)
B o<0> o) N

—(—C-) / 1) = 1@ M)

0(0)
+5(7f)f O Mdy)
)\(C) 1
=00 x(@f 17@) — f@)|Ndy)
)\(C) 6(C)
50 \f“‘r@|*°

We shall say that a statement is true for 6-almost all
x if it is true for a set of values of z that has probability
1 under 4.

Corollary 1: Under the conditions of Theorem 4,
l6c — A¢|| — O as C shrinks to z, for 6-almost all z.

Corollary 1 is closely related to the martingale proofs
of the Radon-Nikodym Theorem. Some references that
make the connection clear are Blackwell and Dubins
(1962) and Meyer (1966, p. 153).

Journal of the American Statistical Association, June 1979

Returning to the argument for Theorem 3, let [7]
denote the greatest integer in r, and define a subset B,
of the region (3.4) by the requirement that Y {7 [na.]
<n—(c—1).Forz= (z1, ..., 2.1), 2 E B, let C(x)
be the (¢ — 1)-dimensional hypercube

nr; nr; | + 1
Z/iE ]Sytﬁg J — for

1<1<ec—1;-
n

As Corollary 1 implies, [|fc@) — Aew)|| — 0asn — o for

6-almost all x. In particular, if ¢ > 0, then for all suffi-

ciently large n,

9{.’), “00(;5) - )\C(x)” > 6} < € . (41)

Now the argument for Theorem 1 applies almost
verbatim. Because [|fc:)y — M|l iIs constant over the
hypercube C'(z), what (4.1) says is that except for a set
of hypercubes A (my, ..., m._1) of total probability e,
the conditional distribution of py, ..., p.-1 is within e of
being uniform over A4 (m,, ..., m._1). This completes the
argument for Theorem 3.

Remark: There is an easy L' argument: Let C run over
a partition into hypercubes, then

ZC: 8(O)][6c — el = [If — fell

where fc(y) = 60(C)/N(C) for y € C, then the right hand
side goes to 0 as mesh (C) — 0: approximate fin L' by a
smooth f*, and observe || fc — fc*|| < ||f — f*I|.

For some approximations, the conditional argument
may not be useful. For any probability x4 on the simplex
(1), the exact distribution of n{> {r.(p.) — 1} may be
computed exactly, as follows. Let u* be the joint dis-
tribution of np; — [(np.Jfor1 < ¢ < ¢ — 1, a probability
measure on the unit cube K, ; in (¢ — 1)-dimen-
sional space. For z = (z1, ..., x1) € K., let
Uix) = ra(z:) — 2

Theorem 6: The p distribution of n{>{r.(p:) — 1}
coincides with the u* distribution of r,(3{7" U,).

This is immediate from Lemma 1. The point is that u*
will be almost uniform over K, ; even for many singular
measures u. An example of the use of u* is given at the
end of the next section.

5. SMALL-SAMPLE RESULTS

MYZ also consider the multinomial model with
Pi1, ..., P fixed rather than random. On p. 856 of their
article, MYZ seem to assert that with large samples the
multinomial model behaves like the broken-stick model.
The argument of Section 2 shows that this cannot be
correct.

For example, consider the trinomial with equally likely
cells: ¢ = 3 and py = p2 = p; = 3. For n = 10, or any
other decimal rounding, the rounded p’s add to one unit
less than 1:

3~.3 and 3+ 34+3=1—5

If X, X,, X;are the counts in this model, as N — o, the
chance that >3 710(X:/N) = 1 must approach 0.
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3. Joint Distribution of (X,/100, X2/100, X3/100)
When (X1, X2, Xs) Have a Multinomial Distribution
With Parameters 100 and (3, %, 1).”

X,/100
X /100N -2 . .30 . . .45

N
w
w
ol
&~
o
w

.2 0000000000000000000000000000000
0000000000000000000000000000000O
0000000000000000000000000000000
000000000000000¢Q 1111100000000
000000000000¢ 1111111111NN000000O

.25 0000000000 ¢ 11112222111110000000
00000000001 11222222222111000000
00000000¢Q 112233333322111/000000
0000000¢Q 1223344444332211/000000
00000001 12234555555432211/000000

.30 0000091 1223456666654322111000000
00000f11123456777765432111000000
0000011234567888765432110000000
0000f112235678888765322110000000
0000/]112345678887654321 00000000

.35 0000Q112345678876543211(000000000
000(1122345677765432211J000000000
000/1122345666654322110000000000
000(1122345555543221 00000000000
000(112233444433221 000000000000

.40 000/11122333332211100000000000000
000Q0112222222211100000000000000
0000]j1111222111 0000000000000000
0000\111111111100000000000000000
00000 11111 0000000000000000000

.45 0000000000000000000000000000O0O0O
0000000000000000000000000000000
00000000000000000000000000000O00O0
0000000000000000000000000000000
0000000000020000000000000000000

.5 0000000000000000000000000000000O0

* All entries should be multiplied by 1/1,000.

MYZ’s Table 3 shows, however, that for samples of
size N = 1 to 20, this chance is close to 75 percent. We
now explain this.

We began by recomputing the table. To our dismay,
it checked perfectly. Some further numerical explora-
tion, however, suggested a tentative answer: From the
point of view of rounding calculations, the law of large
numbers works very slowly. Even when N = 100 in the
preceding example, the distribution of (X;/100, X2/100,
X3/100) is much closer to uniform than it is to a point
mass at (3, 3, H—and P{X}r10(X./100) = 1} = .74!

The joint distribution of (X1/100, X»/100, X3/100) 1s
shown in Table 3. The values of X;/100 appear at the
left of the table; the values of X»/100 are across the top.
Of course, X3/100 = 1 — X;/100 — X»/100. The cor-
responding probabilities are reported in the body of the
table, rounded to integer multiples of 1/1,000. For in-
stance, the chance that X;/100 = .33 and X,/100 = .33
—s0 that X3/100 = .34 and the rounded proportions add
to .9—is about 8/1,000. The chance that X,/100 = .33
and X,./100 = .36—so that X;/100 = .31 and the
rounded proportions add to 1—is about 7/1,000. A zero
in the table means that the corresponding chance is below
.0005. For instance, the chance that X,/100 = .25 and
X,/100 = .30 is shown as 0; in fact, it is .0004.

Table 3 demonstrates that (X,/100, X,/100, X;/100)
spreads out around (%, 3, %) in a way that really matters
when rounding to tenths. The discussion leading up to
Theorem 5 suggests examining the measure u*, which in
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4. Joint Distribution of u* When (X, X,, X;) Have a

Multinomial Distribution With Parameters 100

and (Y3, V3, V3). All Entries Should

Be Multiplied by 1/1,000

X,/10 — [X,/10]

10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
i0 10 10 10 11 10 10 10 10 10
10 10 11 11 11 10 10 10 10 10
X,/10 = [X,/10] 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 9 10 10
10 10 10 10 10 10 9 9 10 10
i0 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

this case amounts to the joint distribution of
X./10 — [X,/10] , X./10 — [X./10] .

This distribution is shown in Table 4, the values of the
first variable being given along the left edge, the value of
the second variable across the top, and the corresponding
probability in the body of the table, rounded to an
integer multiple of 1/1,000. It is essentially uniform.

In this example, we have been rounding to tenths.
When rounding to halves, for instance, the spread in
Table 3 would be relatively small; and 3% 75(X;/100) = 1
with probability only 14 percent, compared with the 75
percent predicted by the broken-stick model on p. 856
of MYZ.

6. AN EXAMPLE

While investigating the behavior of leading digits in
typical data, Benford (1938) (also see Diaconis 1977,
Raimi 1976, and Ylvisaker 1977) collected a sample of
size 20,229 from a total of 20 sources. These data are
presented in Table 5. For example, Benford looked at the
areas of 335 rivers and found that 31.0 percent of the
areas began with 1, 16.4 percent began with 2, and so on.

Each row in Table 5 adds to 100 percent. How likely
is this? On the broken-stick model, the chance of a given
row rounding to 100 percent is approximately (6/8x)*
= 7. Numerical calculations show that this approxima-
tion is quite accurate. Assuming the rows are independ-
ent, the chance of all rows simultaneously rounding to
100 percent is astronomically small. We conclude that
Benford’s table does not follow the broken-stick model—
or any of the probability models introduced in Sections
2, 3, or 4. This raises the suspicion that Benford manipu-
lated the data to make the rows round properly. This
suspicion is not hard to verify. Consider the first row of
Table 5. The percentage of numbers with leading digit 7
is reported as 5.5, with a total of 335 cases. The only
proportions compatible with 5.5 are 18/335, which rounds
to 5.4, or 19/335, which rounds to 5.7: There is no pro-
portion possible that rounds to 5.5.

The bottom row of averages also rounds to 100 percent.
Direct calculation shows that the entries in columns 3 and
9 have been incorrectly rounded. Benford was trying to
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5. Benford Data (Percentages)

Group Title 1 2 3 4 5 6 7 8 9 Count
A Rivers, Area 31.0 16.4 10.7 113 7.2 8.6 55 4.2 5.1 335
B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3,259
C Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104
D Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100
E Spec. Heat 24.0 18.4 16.2 14.6 10.6 41 3.2 4.8 4.1 1,389
F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703
G H. P. Lost 30.0 18.4 1.9 10.8 8.1 7.0 5.1 5.1 3.6 690
H Molecular Weight 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1,800
| Drainage 271 23.9 13.8 12.6 8.2 5.0 5.0 25 1.9 159
J Atomic Weight 47.2 18.7 55 4.4 6.6 4.4 3.3 4.4 55 91
K n, Vn,... 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5,000
L Design 26.8 14.8 143 75 8.3 8.4 7.0 7.3 5.6 560
M Digest 33.4 18.5 12.4 7.5 71 6.5 55 4.9 4.2 308
N Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 55 3.1 741
(0] X-ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 58 4.8 707
P Am. League 32.7 17.6 12.6 9.8 7.4 6.4 49 5.6 3.0 1,458
Q Black Body 31.0 17.3 141 8.7 6.6 7.0 5.2 4.7 54 1,165
R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342
S n',n?,...,n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 71 55 900
T Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 41 418
Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 20,229

show that $;, the proportion of numbers that begin with
the leading digit 7, follows the theoretical leading digit
law: p; = 100 logie (1 + 1/7). It turns out that in both
columns 3 and 9, Benford incorrectly rounded toward the
theoretical proportions p;. For column 3, 12.26 was
rounded to 12.4. For column 9, 4.775 was rounded to 4.7.
The theoretical percentages are p; = 12.5 and py = 4.6.

Changes in rounded proportions to make tables round
to 100 percent can affect the results of statistical tests
such as chi-square. The chi-squared statistic for goodness
of fit of ¢ sample proportions p, based on a sample size of
N to theoretical probability p;is x2 = N Yi=1 (#: — pi)%/
p;. If the p; did not sum to 1, then adjusting the %; that
correspond to small p; can change the value of x? ap-
preciably for large N. Of course, it becomes easier to
change the value of x? as the rounding number decreases.

For example, consider Benford’s data in Table 5. The
proportion of all 20,229 numbers that begin with a 1 can
be found by taking a weighted average of the proportions
in the first column. Doing this for each digit yields
Table 6.

Ylvisaker (1977) gives x2 from Table 6 as 85. To show
the effect of rounding, Table 7 gives the results of round-
ing the numbers in Table 6 to the nearest 1 percent. The
x? statistic for goodness of fit of data to theory is approxi-
mately 192. Both rows of Table 7 add to 101 percent.

If 1 percent is subtracted from the data row in the
eighth position and 1 percent is subtracted from the
theory row in the seventh position so that both rows sum

6. Proportion of Benford Data Beginning With Digit
Leading i and Theoretical Proportions
100 log,o(1 + 1/i)

Digit

1 2 3 4 5 6 7 8 9
Data 289 195 127 91 75 64 54 55 50
Theory 301 176 123 97 79 67 58 51 46

7. Numbers in Table 6 Rounded to Nearest 1 Percent

Digit
1 2 3 4 5 6 7 8 9
Data 29 20 13 9 8 6 5 6 5
Theory 30 18 12 10 8 7 6 5 5

to 100 percent, the x® statistic becomes approximately
118. Thus, rounding to help the data fit the theory can
make a difference. This example also shows that it is
important to calculate with many-digit accuracy when
computing x? for large sample sizes.
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