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THE DISTRIBUTION O F  LEADING DIGITS 

AND UNIFORM DISTRIBUTION MOD 1' 


BY PERSI DIACONIS 

Stan ford University 
The lead digit behavior of a large class of arithmetic sequences is de- 

termined by using results from the theory of uniform distribution mod I .  
Theory for triangular arrays is developed and applied to binomial coeffi- 
cients. A conjecture of Benford's that the distribution of digits in all places 
tends to be nearly uniform is verified. 

1. Introduction. A widely quoted empirical observation is that randomly 
occurring tables of data tend to have entries that begin with low numbers. There 
have been many theoretical models offered which predict that the proportion of 
entries beginning with first digit i is well approximated by 

Excellent detailed surveys of the literature on this problem are in Knuth (1971) 
and Raimi (1976). 

Almost the only large data set collected and referred to is the sample of 20,229 
observations classified into 20 data types published by Benford (1938). Close to 
30% of the data Benford presents comes from arithmetical sequences. The chi- 
squared statistic for goodness of fit of Benford's arithmetical sequences to the 
model (1.1) is greater than 440 on 8 degrees of freedom. This suggests such 
sequences as candidates for detailed mathematical analysis. 

It is difficult to determine a complete list of the sequences Benford considered: 
lln, nh, an for a fixed, and n! are listed, but undoubtedly others were also used. 
A standard set of tables, Abramowitz and Stegun (1964), yields the sequences 
in Table 1 below. 

The theorems that follow yield the first digit behavior for each of the sequences 
in Table 1. The principal tool, Theorem 1, relates lead digit behavior to uniform 
distribution mod 1. Binomial coefficients (2for various values of n and k = 0 
to n are given special treatment as a triangular array in Section 3 which provides 
a proof of a conjecture of Sarkar (1973). Benford (1938) conjectured that if all 
digits in a table are considered, not just lead digits, the relative frequency of the 
digits 0 through 9 approaches the uniform limit for large data sets. This is 
given a mathematical formulation and proof in Section 4. An argument due to 
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TABLE 1 

Numerical sequences from Section 1 of 


Abramowitz and Stegun (1964) 


nb for b a fixed real number 
an for a > 0 fixed 
nrc 
logb n for various bases b 
n ! 

P p a prime 
logp p a prime 

Charles Stein leads to the variance and a central limit theorem for the number 
of ones in the binary expansion of a random integer. 

2. Density and uniform distribution mod 1. Throughout, [x]means the great- 
est integer less than or equal to x; (x) = x - [x]is the fractional part of x. In 
discussing the uniform distribution of sequences mod 1, the notation of Kuipers 
and Niederreiter (1974) will be followed. Let the left-most digit of a real number 
be defined by taking its left-most digit when expressed base 10 when sign and 
leading zeros are neglected (thus .008 has first digit 8). Digits k from the left 
are similarly defined. Without loss of generality, only positive numbers will be 
considered when discussing leading digit behavior. 

The problem of a suitable definition of "pick an integer at random" has caused 
considerable difficulty at the foundational level. See R6nyi (1970) page 73 and 
de Finetti (1972), pages 86,98, 134. For consideration of numerical sequences, the 
naturally associated (finitely additive) measure is density or relative frequency. 
Let Dl = {1,2, . . . , 91, D,= {0, 1, . . . , 9) for i 2 2, write s, = n;=,Di. For 
a > 0, x E s,, let a(x) be 1 if the jth digit from the left of a is xj for j = 1, .,k; 
let a(x) be 0 otherwise. 

DEFINITION.A sequence of real numbers {a,} is a strong Benford sequence if 

for each x E s, and all integers k where 

Taking k = 1 in the definition shows that for a strong Benford sequence the 
relative frequency of lead digits i approaches log,, (1 + lli). 

Several writers who discuss lead digit behavior have used the tools of uniform 
distribution mod 1 (see, for example, Feller (1971), page 63, or Macon and 
Moser (1950)). Raimi (1976), in a discussion of this point, mentions that strong 
Benford sequences were first defined by J. Cigler using the language of uniform 
distribution. The equivalence of the two definitions is given in Theorem 1. 
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THEOREM The sequence {a,} is a strong Benford sequence if and only if {log,, a,} 1. 
is uniformly distributed mod 1. 

PROOF. For fixed k let x s,. a,(x) = 1 if and only if x, 10j + x, 10j-I + + 
xIC 10j-(k-ll I- for some integer j.a, < xllOj + . . . + ( ~ , + , ) l O j - ( ~ - ~ ~  This holds 
if and only if 

+ ") 5 (log10 a,) < log10 (x, + . . 
1Ok-' 

If log,, ai is uniformly distributed mod 1, clearly 

Conversely, any interval [a, b), 0 $ a < b 5 1, can be approximated arbitrarily 
closely by a finite union of intervals with end points of the form 

If ai is a strong Benford sequence, the proportion of points of the sequence {log,, a,} 
falling into intervals with such logarithmic end points will be proportional to 
the interval's length. Thus the sequence {log,, ai} must be uniformly distributed 
mod 1. 1 

Using known results from the theory of uniform distribution mod 1, the lead 
digit behavior of the sequences of Table 1 can be derived. For example, Theorem 
2.6 of Chapter 1 of Kuipers and Niederreiter (1974) yields the following corollary: 

COROLLARY If a sequence of real numbers {a,} is a strong Benford sequence, 2. 
then lim sup,,, n log (a,+,/a,) = cm. 

Corollary 2 easily yields the fact that the sequences {nb} for any fixed real b, 
{an} for a > 0 and {log, n} for any base b are not strong Benford sequences. 
Using bounds from the prime number theorem, it is straightforward to show that 
the sequences {P,} and {log P,}, where P, denotes the ith prime, are not strong 
Benford sequences. 

For a an irrational number it is well known that the sequence {an} is uniformly 
distributed mod 1. Thus Theorem 1 proves that {2"} is a strong Benford sequence. 

Benford used the sequence n! in his collection of numerical sequences. The 
next theorem establishes a conjecture of Sarkar (1973), who analyzed the first 
digits of factorials from 1 to 10,OOO.e 

THEOREM The sequence n! is a strong Benford sequence. 3. 

PROOF. Using Theorem 1, it must be shown that log,, n! is uniformly dis- 
tributed mod 1. Using Stirling's formula and Theorem 1.2 of Chapter 1 of 
Kuipers and Niederreiter (1974), it is sufficient to show {f(n)} is uniformly dis- 
tributed mod 1 where f(x) = a(x + 4).log x + bx for a and b constants. Straight- 
forward differentiation and an application of Van der Corput's basic estimate 
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for trigonometric sums (see, for example, Theorem 2.7 of Chapter 1 in Kuipers 
and Niederreiter (1974)) yield for any integer h 

1 log n 
-Ic:=~exp (2nihf(j))i = 0 (-T)
n n 

as n -+w. This gives the result by Weyl's criterion, Theorem 2.1 of Chapter 1 
in Kuipers and Niederreiter (1974). 0 

For sequences without the strong Benford property, the relative frequency of 
lead digits does not tend to a limit as more and more terms are considered. While 
some easily accessible sequences have the strong Benford property, Benford's 
(1938) finding (page 556) that "the greatest variations from the logarithmic rela- 
tion were found in the first digits of mathematical tables from engineering hand- 
books" suggests that he chose sequences without the strong Benford property. 

3. Triangular arrays. Sequences such as nk or binomial coefficients suggest 
consideration of triangular arrays. Results of this section are used to show the 
triangular array of binomial coefficients has the strong Benford property. 

Let {a t j } ;i = 1, 2, 3, . .  .;j = 1, 2, . .,f(i) be a triangular array of positive 
real numbers. Let x r a S b ,be the indicator function of the interval [a, b), 
0 j a  j b s l .  

DEFINITION.The array {a i j }is uniformly distributed mod 1 if 

for each 0 5 a < b < 1. 

1. The principal application of the definitions of this section will be triangular 
arrays with f(k) = k. P6lya and Szego (1972), page 93, prove results which 
imply that the array of the Farey sequence and the array jln, where j runs through 
the $(n) numbers relatively prime to n (#(n) is Euler's function), are uniformly 
distributed mod 1. 

2. The distribution of left-most digits may be analogously defined for two- 
dimensional arrays and, with obvious modifications, a version of Theorem 1 
above connects the distribution of leading digits and uniform distribution of 
triangular arrays. For this reason, only the uniform distribution versions of 
results will be given. 

3. If a sequence is formed from a triangular array by considering the array 
rows one after another, then if the array was uniformly distributed mod 1 it can 
be shown that the sequence will be uniformly distributed mod 1. The array 

at = 1 i even, 1 5j 5 i 
= 0 i odd, 1 5  j s  i 
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shows the converse of this statement fails even for bounded sequences. A similar 
comment holds for the distribution of leading digits. 

Sarkar (1973) computed the lead digit behavior for the array (2f ~ r0 5 k 5 n, 
n = 1 to 500, and on the basis of numerical results conjectured that the triangular 
array would have the strong Benford property. Theorem 4 provides a proof of 
this in the language of uniform distribution mod 1. 

THEOREM The triangular array log (1) is uniformly distributed mod 1. 4. 

PROOF. Consider for an integer h, the obvious inequality 

(3.1) /C?=,exp(2nih log (;))I 
5 3 + 2/ClSj,,,, exp(-2nih(logj! + log (n - j)!)l . 

To bound the right side of (3.1) use Stirling's formula and a triangular-array 
version of Theorem 1.2 of Chapter 1 of Kuipers and Niederreiter (1974) to see 
that it is enough to evaluate the sum 

(3.2) Clsj<n,z exp (2nif(j)) 


In (3.2) f(x) = -x log x + (n - x) log (n - x), f'(x) = log (n - x) - log x, 

f "(x) = l/(n - x) - 1/x > c/n for some constant c. Thus, the standard Van der 

Corput arguments referred to in Theorem 3 show the sum in (3.2) is O(n+ log n). 

Dividing by n and using a triangular array version of Weyl's criterion gives the 

result. 0 


4. Another law given in Benford's paper. Benford and other writers who 
consider leading digits have noted that digits k places from the left have curious 
limiting behavior. The results are similar to those for lead digits. For example, 
the relative frequency of integers with second digit equal to 1 does not tend to 
a limit as the number of integers considered goes to infinity. Any of the ap- 
proaches used for lead digits can be employed to suggest the limit 

The suggested probabilities for second digit 0 to 9 are more nearly equal than 
the corresponding probabilities for lead digits. Looking further to the right of 
the lead digit, the suggested probabilities can be shown to get closer and closer 
to &. Benford (1938)' page 553, writes: "As a result of this approach to the 
uniformity in the 9th place, the distribution of digits in all places in an extensive 
tabulation of multi-digit numbers will be nearly uniform." 

In this case, a theorem can be given which substantiates Benford's conjecture. 
Let n = C:==ock(n)lOkbe the expansion of n to base 10. Thus 0 5 c,(n) 2 9 and 
for fixed n only finitely many c,(n) are different from 0. Let Y(k) be the number 
of digits of the integer k in the base 10. Let D(x) = C,,,Y(k) be the number 
of all digits of integers less than or equal to x. For 0 5 k 5 9 let D,(x) be the 
number of occurrences of the digit k in all numbers less than or equal to x. 
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PROOF. For simplicity, the result will be proved when k = 1. 

Let skf(j) be 1 if the coefficient of lok in the base 10 expansion of j is 1 ;~, ' ( j )= 0 
otherwise; 

Standard manipulation of the right-hand sides of (4.1) and (4.2) gives the 
theorem. C] 

The argument used to prove Theorem 5 can be applied to prove similar results 
for subsets of the integers such as the square-free numbers. Charles Stein has 
kindly provided a probabilistic proof of Theorem 5 using techniques similar to 
those in Stein (1970). His proof generalizes to give the variance of the number 
of ones. For simplicity, the proof is given for binary expansions. 

Let X be an integer chosen uniformly on [0, n]. Let Y = Y(X) be the number 
of ones in the binary expansion of X. In Lemma 6 and in Theorems 7 and 8, 
numbers x 5 n are written with m = [log, n] + 1 digits, all leading zeros being 
counted as possible digits. Let Q = Q(x, n) be the number of zeros in the binary 
expansion of x which cannot be changed into ones without making the trans- 
formed number greater than n (thus Q(10, 5) = 1). 

PROOF. Let I be a random subscript distributed uniformly on [ I ,  m] .  For 
0 5 x $ n, let x, be the ith digit of x for i = 1 to m. Let 

Yf = Y + 1 - 2XI if X + (1 - 2XI)21d15 n 

= Y otherwise. 

Thus Yf is the number of digits in the number Xf which has the same digits as 
X except that the Ith digit has been changed from XI to 1 - XI. Y and Yf are 
exchangeable random variables. For any two exchangeable variables, the fol- 

.lowing identity holds provided the expectations involved exist: 
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It is straightforward to check that 

Taking the expectation of both sides of (4.6) and using (4.5) with f(Y) F 1 
gives (4.3). 

To prove (4.4), notice that 

Take f(Y) = Y in (4.5) and use (4.7) and (4.6), yielding 

Solving in (4.8) for Var Y yields (4.4). 0 

THEOREM With notation as above, the following two approximations are valid: 7. 

n log, nCzszY(i) = ---+ O(n) ;
2 

PROOF. Consider the random variable Q of Lemma 6. It is not hard to see 
that Q(x) 2 k implies x coincides with n in its left-most k - 1 digits. The num- 
ber of x 5 n which coincide with n in the left-most k - 1 digits is bounded by 
2[logZn]-(k-1). Thus 

It follows that 

This and Lemma 6 prove (4.9). For (4.10), consider the inequality Cov (Y, Q) 2 
(Var Y)t(Var Q ) h .  Using (4.1 1) to show Var Q = 0(1), Lemma 6 yields 

Var (Y) = log, (n) + O((var Y)&) 
4 

A straightforward argument leads from this to (4.10). 0 

A final result obtained jointly with Professor Stein is the following central 
limit theorem for the number of ones in the binary expansion of a random 
integer. 

THEOREM8. Let X be an integer chosen uniformly on [0, n]. Let Y be the number 
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of ones in the base 2 expansion of X .  Write m = [log, (n ) ]+ 1 .  Then 

where Q ( x )  = 1/(2n)h 15, e-"2/2dx  and c is a constant. 

PROOF. With notation as in Lemma 6 and Theorem 7 above, let S = ( Y  -
m/2)/(rn/4)& m/2)/(m/4)4.Let the real-valued continuous function and S f  = ( Y f-
g(x ) be defined as 

Stein (1970),page 594, has shown that g satisfies g'(x) = xg(x) + ~ , ( x )- @(b) 
where X, is the indicator function of the set [-a,b] .  The differential equation 
is understood in the sense that the integral of the left-hand side between any two 
limits is equal to the integral of the right-hand side between the same limits. 
Stein (1970) has also proved that 

(4.12) I g ( x ) l S l ,  I x s ( x ) / $ ~ , / ~ ' ( x ) / 5 1 .  

Using (4.5) yields, with f ( Y )  = g(S)mt/2 ,  

(4.13) 0 = E {mhg(S)E(Y- Y' / X ) }  - mi ( Y  - Y f ) { g ( S )- g(s ' ) } ] .[ 2 

Now (4.6) implies 

mhE[Y - Y f I X ]= S + - .Q 
m4 

Using this in (4.13) along with E(Q) = O(1) yields 

Define the random step function h(t ) as 

= 0 elsewhere. 

Note that I:, h(t)  = 1 and that conditional on X 

m' ( y- yl) = 0 and S' = S with probability -
Q 

2 m 

mh m4 2 Y 
-( Y  - Y')  = - and S' = S -- with probability -
2 2 mt m 

mt -mt 2 m - Y - Q
- ( Y  - Y')  = - and S' = S + - with probability 
2 2 rnt m 
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Thus 

Using (4.15) in (4.14) yields 

It is straightforward to check that 

Assume for the moment 

Then (4.16) and (4.18) hold uniformly in b and imply there are positive con- 
stants e, and e,  such that 

e e 
a-25 E{\:, zb(t)h(t)  dt} - Q(b) 5 

mh mh 

From (4.17), 

In the last inequality the easily verified fact that 

@(c)- @ ( c  * $) = 0 (L)
mh 

uniformly in c is used. Corresponding inequalities give the lower bound for 
P(S < b)  and the theorem. Thus it only remains to prove (4.18). Note that 
(4.12) implies Ig(x) - g(y)l 5 Ix - yl and thus lsg(s) - tg(t)l 5 (Is/ + l ) / s- ti. 
This last bound implies 

l ~ { s g ( s )- s tg(t)h(t) dt11 5 ~ { ( l s i+ 1 ) 1:-
 I S  - tlh(t) dt)  

since Theorem 9 implies E{lsj + 1 )  = O(E(s2)h)= O(1). u 
Reference to number theoretic functions related to D,(x) may be found in 

Delange (1975). 
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