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Abstract—Two key aspects of coupled multi-object shape
analysis and atlas generation are the choice of representah
and subsequent registration methods used to align the sanl
set. For example, a typical brain image can be labeled into
three structures: grey matter, white matter and cerebrospnal
fluid. Many manipulations such as interpolation, transformation,
smoothing, or registration need to be performed on these inges
before they can be used in further analysis. Current techniges
for such analysis tend to trade off performance between thewo
tasks, performing well for one task but developing problemsvhen
used for the other.

This article proposes to use a representation that is both
flexible and well suited for both tasks. We propose to map objet
labels to vertices of a regular simplex,e.g. the unit interval for
two labels, a triangle for three labels, a tetrahedron for far
labels, etc. This representation, which is routinely usedni fuzzy
classification, is ideally suited for representing and regtering
multiple shapes. On closer examination, this representatin
reveals several desirable properties: algebraic operatits may
be done directly, label uncertainty is expressed as a weigd
mixture of labels (probabilistic interpretation), interp olation is
unbiased toward any label or the background, and registraton
may be performed directly.

We demonstrate these properties by using label space in a gra
dient descent based registration scheme to obtain a probdkstic
atlas. While straightforward, this iterative method is very slow,
could get stuck in local minima, and depends heavily on the itial
conditions. To address these issues, two fast methods areoposed
which serve as coarse registration schemes following whicthe
iterative descent method can be used to refine the results. Ruer,
we derive an analytical formulation for direct computation of the
“group mean” from the parameters of pairwise registration of all
the images in the sample set. We show results on richly labele
2D and 3D data sets.

Index Terms—Registration, probabilistic atlas, richly labeled
images, multi-object shape analysis

[. Introduction

BAN

Fig. 1. Tsai et al. 9] proposed mapping each pixel from object
label to a point in a space shaped as a non-regular simplek, ea
vertex corresponding to an object label. Visualized hereHe case

of two objects and background, the bottom left background) (@ a
distance of 1 from both labels top (0,1) and right (1,0), ehibels
are separated from each other by a distance/®f

and the representation can get very complicated for complex
structures like the white matter or gray matter.

This work focuses on implicit model4 g, 28] which avoid
these problems. After mapping the entire volume to another
space, the value of each voxel contributes to describe the
shape. In this new space, arbitrary topologies may be repre-
sented, correspondences are naturally formed betweetsyoxe
and there are no control points to redistribute. Howevegesi
this shape space is often of higher dimension than the @aligin
dataset, one key disadvantage for this type of representti
model is that it will usually increase the spatial and coraput
tional complexity of the analysis.

A common starting point for shape representation is a
simple scalar label map, each pixel indicating the object
present at that pixek.g. a label value of 1 indicating object
#1, a value of 2 indicating object #2, etc. Many techniques
[28, 3] go on to map this entire volume to another space, the
value of each pixel contributing to describe the shape.

The simplest implicit representation is a binary map where
each pixel indicates the presence or absence of the object.
Signed distance maps (SDM’s) are another example of an
implicit representation, each pixel having the distanceht®

Multi-object shape analysis is an important task in the meglearest object boundary, a negative distance for poinidens
ical imaging community. When studying the neuroanatomy @fe object |8, 2§].

patients, clinical researchers often develop statisticatiels

For the multi-object setting, binary maps may be extended

of important structures which are then useful for popukatiog scalar label maps, each pixel holding a scalar value €orre
studies or as segmentation priots[21, 23, 29, 28]. The first  sponding to the presence of a particular object; howevé, th
step for this problem consists in choosing an appropris@sh representation is not well suited for algebraic manipafati
descriptor capable of representing its statistical valitgb  For example, if labels are left as scalar values, the aritieme
There are two main types of models: explicit and implicitayerage of labels with values #1 and #3 would incorrectly
Splines and medial axis skeletons are two popular exampjggicate the label of value #2, not a mixture of labels #1 and
of explicit models 6, 7, 16, 22, 25, 26]. While providing #3.
a reduced parametric representation, explicit models havery 5qdress this, mappings of object labels to linear vector
several drawbacks. For example, they often assume a fi ces were proposed, an approach to which our method is
shape topology, require care in distributing control pginty st closely related. The work of Tsai et &9] introduced
two such representations, each for a particular task. For
registration, the authors proposed mapping scalar lalels t
binary vectors with entries corresponding to labels; a 1 in
an entry indicates the presence of the corresponding label a
that pixel location. As an example for the case of two labels
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Fig. 3. The first three label spae&configurations: a unit interval in 1D for
two labels, a triangle in 2D for three labels, and a tetratvedn 3D for four

labels (l€ft to right).

Fig. 2. Example configurations for thg! hypersphere representation 8f:[ ) . o ) .
three, six, and seven labe(keft to right) with background at the center. an alternative approach is to minimize per-pixel entropsingd

) o . i . binary maps Miller et al. 0] demonstrate that this has a
and backgroundrigure 1visualizes the spatial configurationsimilar tendency toward the sample mean. This approach has
each pixel |s_mapped o_nto. Here the background is at t§&, peen demonstrated on intensity imagkss B2]. Among
bottom left origin (0,0) with one label at (1,0) and the othefese energy-based registration techniques, iterativeices
at (0,1). Itis also important to note that they go on to perforinciyde those that are variationalq, 15] and those that use

registration considering each entry of these vectors sbggr sampling techniques3p]. Other registration methods can be
For shape analysis, Tsai et a9 proposed mapping scalar{gnd in 119, 24.

labels to layered SDM’s, in this case each layer giving the o
signed distance to the corresponding objects interface. ~ A- Our contributions
Note that in both vector valued representations describedThis paper proposes to use a multi-object implicit represen
in Tsai et al. P9, each label lies on its own axis and station scheme that is widely used to represent probabitistia
the dimension of the representation grows linearly with tHa7]. In this representation, object labels are mapped to the
number of labelsg.g. two objects require two dimensions,ertices of a regular simplex, going from a scalar label @alu
three objects require three dimensions. To address thte@bkpao a coordinate position in a high dimensional space which we
complexity, Babalola and Cootes3,[4] propose a lower termlabel space and denote by . Visualized inFigure 3 a
dimension approximation to replace the binary vectors iegular simplex is am-dimensional analogue of an equilateral
registration. By mapping labels to the unit hypersphgfe triangle. Under convex combinations, label space has akver
they demonstrate that even configurations involving dooénsdesirable properties: all labels are equally separategaces
labels can be efficiently represented with label locatioiss daddition and scalar multiplication are natural, label utaiaty
tributed uniformly on a hypersphergigure 2gives examples is expressed as a weighted combination of label vertices,
for S*. and interpolation is unbiased toward any label including th
Another representation that is widely used in fuzzy classifbackground.
cation is that of ] which uses a positive simplex to represent This representation addresses several problems withnturre
probabilistic data. It has also been used for representimgplicit mappings. For example, while the binary vector
posterior probability distribution or fuzzy labeling of age representation of Tsai et aR| was proposed for registration,
segmentation datalf]. In this work, we propose to use it for we will demonstrate that it induces a bias sometimes leauing
representation and registration of multiple shapes. misalignment, and since our label space representaticailgqu
Finally, Pohl et al. 23 indirectly embeds label maps in thespaces labels, there is no such bias. Additionally, contpare
logarithm-of-odds space using as intermediate mappirigerei to the SDM representation, the proposed method introduces
the binary or SDM representations d¥9. Particularly well no inherent per-pixel variation across equally labeledoresg
suited for probabilistic computations, the logarithmeafels making it more robust for statistical analysis. Hence, the
space is also a field providing closed operations for additiproposed method better encapsulates the functionalitytif b
and scalar multiplication. As with the representations s&iT representations. We will also demonstrate that, while tavge
et al. 9], the dimensionality of the logarithm-of-odds spacthe spatial demands of the mapping, the hypersphere repre-
increases with each additional object. We should also natentation of Babalola and Coote3 piases interpolation and
that the work of R3] did not address registration, but insteadan easily lead to erroneous results. The arrangement eff lab
assumed an already registered atlas 2i@.[Another related space incurs no such bias allowing convex combinations of
work is that of [L3], which performs a mutual-information arbitrary labels.
based non-rigid registration of probabilistic data repréed Using thelabel space representation, we propose two fast
as class labels, similar to the Log-Odds representafi8h [ techniques that coarsely register the labeled images io the
Once the representation is settled upon, registration baustintrinsic mean. These coarsely registered images there serv
performed to eliminate variation due to differences in p#se as the starting point for a gradient descent based approach
common approach is to register the set to a reference imagiijch typically converges within 10-20 iterations to a bett
however, this then introduces a bias to the shape of the nhoggnimum.
reference. Joshi et all}] propose unbiased registration with Further, we derive a formulation to analytically compute
respect to the mean sample as a template reference. Assurtiiregparameters that take every image in a given sample set
a general metric space of transformations, they descrifis-re to the group mean. This is done by pairwise registration of
tering a sample set with respect to its intrinsic mean and usach image to every other image in the group, and the affine
the L, distance for demonstration. A similar approach usgmrameters so obtained can be used to compute the group
the minimum description length to measure distance from theean.
intrinsic mean BQ]. Instead of registering to a mean template, The rest of this paper is organized as follov&ection I
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(a) Reference  (b) Image (c) Energy land-(d) Energy land-

Fig. 4. For theS! hypersphere configurations df][ cases such as these scape using9] scape using la-
yield erroneous results during interpolation. Judged bgrest neighbor, bel space
interpolating between two labels resolves to backgrounthiguously either . . .

background or another label, and finally another lafedt to right). Fig. 5. Alignment of an image with a reference template usthg

representation of 29 results in two possible alignments, the shifted one
explores several problems that can develop with the irr‘(pIidé'j“sa."gr."”g along both the top and bottom with respect toréference(red
. . . ots indicate minima). For just x- and y-translation, isocontours of the energy
representat|0ns desc”bed abO\E 23, 29] SeCtIOH ”I then |andscape show the non_unique energy m|n|m&;m
describes the proposed label space representaliatocu- _ o _
menting several of its propertieSection IV demonstrates dimensional approximation, effects that cannot be avoided
variational registration directly within this represetisa, and Unless the dimension approaches label cardinality.
Section Vdescribes two methods for performing coarse reg- The logarithm-of-odds representation of Pohl et @3] [
istration on labeled images and Sectidfi shows some provides the third and final shape representation we compare
experimental results on 3D data sets. FinallySection VII against. Aside from the normalization requirement for etbs
we summarize our work and discuss future research directioflgebraic manipulation, the main concern when using this
representation is the choice of intermediate mapping, &eho

Il. Related representations that directly impacts the resulting probabilities. The haus
In this section, we describe problems that may develop @plore the use of both representations fra2f]; however,
the representations this present work seeks to extend.  both choices have inherent drawbacks.

For the layered SDM intermediate mapping, Pohl et al.
[23] notes that SDM’s are a subspace of the logarithm-
The signed distance map (SDM) has been used as a repfeedds space. This means that, while the layered SDM’s
sentation in several studies, [L8, 23, 29, 28]; however, it may are exactly the logarithm-of-odds representation, resaiter
produce artifacts during statistical analysi§][ This is due to algebraic manipulation in the logarithm-of-odds spaceroft
the fact that SDM’s lie on a nonlinear manifold where lineayield invalid SDM’s (but still valid logarithm-of-odds rep
operations like addition/subtration introduce artifgdt6, 14]. resentations). Using such results, computing probadslifis
Label maps have inherently little per-pixel variation, glx described in 23] may yield erroneous likelihoods. Notice
far from the interface having the same label as those jusko, that the generalized logistic function is used to cai@p
off the interface. For statistical analysis in the case o omrobabilities. This introduces additional problems as tise
object, Dambreville et al.9 demonstrated that binary labelof the exponential ensures that these probabilities wilbass
maps have higher fidelity compared to SDM’s. However, fdtave nonzero character across the entire domain, evendn are
the multi-object setting, the question then becomes one mdver indicated by the sample set.
how to represent multiple shapes using binary maps? WhauUsing smoothed binary maps as intermediates also leads
is needed is a richer feature space suitable for a uniform pab problems. To begin, using binary maps directly would
wise separation of labels. mean probabilities of either zero or one, which in the log
An example of such a richer feature space is that3)f [domain produce singularities. Smoothing lessens suclateffe
where labels are mapped to points on the surface of a uypidit results in a loss of fine detail along the interface. Also,
hypersphereS™placing the background at the center. Thifohl et al. R3] shows examples where after normalization
is similar to the binary vector representation described hiye logarithm-of-odds representation develops artifattthe
[29) to spread labels out; however3][ argue that lower interface between objects, an effect which is magnified & th
dimensional approximations can be made. They demonstriigarithm domain.
that configurations involving dozens of labels can be effitye
represented by distributing label locations uniformly dre t
unit hypersphere using as few as three dimensions. Since anysai et al. R9 propose a binary vector representation
label may neighbor the background, the background muggecifically for registration. Ad=igure 1 shows, this repre-
be placed at the hypersphere center, equally spaced freemtation places labels at the corners of a right-triamgula
all other labels. The fundamental assumption is that pixedgnplex; however, unlike this present work, it is not a regul
only vary between labels that are located near to each otlsanplex but has a bias with respect to the background. The
on the hypersphere, so the placement of labels is crudsckground, located at the origin, is a unit distance from an
to avoid erroneous label mixtures. For exampiégure 4 other label, while any two labels, located along a positiis,a
demonstrates that if two labels far from each other are mixeate separated by a distance\d2. The effect may be seen in
the result may be attributed erroneously to other labelsichlo registration where there is a bias to misalign labels over th
in particular that the central placement of the backgroustd g background (penalty 1) rather than over other labels (penal
in the way when interpolating across the sphere. Smoothingy'2).
Figure 7also demonstrates these inherent effects of the lowerTo demonstrate the effect of this induced bias, consider the

A. Shape representation

B. Registration
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Fig. 6. ProposedC [3] label space for the case of three labels: a point

indicating the equal presence of all three lakft), and a point indicating
the unequal mixed presence of just the left and top lafrédht). (a) Scalar label map

example inFigure 5 Using the representation and registration
energy of Tsai et al.Z9], there are two global minima: the
image overlapping and the image shifted up. In the first case,
label #1 is misaligned over label #2, while in the second case

a strip of pixels at both the top and bottom are misaligned by S™hvpersphere of Babalola and Coot
over the background; that is, because of this bias, there (b) S"hypersp &SI

can be twice as many pixels misaligned in the shifted case
than in the unshifted. These minima (indicated by red dots
in the energy landscapes) are shown only for translation;
considering additional pose parameters further incretises

number of local minima in the energy landscape representing

misalignments. Also, this is not inherent in the energy,hes t (c) £ label space
same phenomenon is observed using the energ¥)in (

Fig. 7. Progressive smoothing directly on scalar label mtqgshypersphere
bel representation of Babalola and Cooted, [and £ label space. Both the
lll. Labe space scalar label maps and hypersphere representations dewméopening strips

o lis t t bust tati h laeb of. erroneous labels. Only label space is able to correctptuca the label
ur goa IS 10 create a robus repre_;sen_a 1onw er? algedradlyures during smoothing. The rightmost hyperspherd-igure 4 depicts
operations are natural, label uncertainty is captured,@ed the S' configuration used here ifb).

polation is unbiased toward any label. To this end we propose
mapping each label to a vertex of a regular simplex; given
n labels, including the background, we use a regular simplex
which lies inn — 1 dimensions and denote this by (see
Figure 3. A regular simplex is am-dimensional analogue of

an eqmlateral trlangle. (a) Binary vector representation of Tsai et &9
vector addition and scalar multiplication fR™ (under convex

combination). Label uncertainty is realized as the weighte 1 I I 1

mixture of vertices. For example, a pixel representing lebe (b) £ label space

#1, #23 and #31 with 1equa| 1character.|st|c W(.)u_ld S|mpIy blglg. 8. Progressive smoothing directly on binary vectorrespntation of
the pointl = 3l + 3l + 3l3, @ point equidistant from Tsai et al. p9| and £ label space. Smoothing among several labels in the

those three vertices (sdggure §. Using this fact, one can binary vector representation yields points closer to bemkgd (black) than

L gt ; .-+ :any of the original labels. Label space is able to correcdgity to smooth out
map any point in a probabilistic atlas to a unique point I&e sharp corners of the bottom two regions without errosdntroduction

the label space , i.e. given the probabilitiep:, .., p, With  of the black background label.

> p; = 1, the corresponding representationdnis given by )

I =S pil; € £, wherel; € £ is a vertex of the simplex. B: Other Properties

We should however note that only tri-linear interpolati@nc  To demonstrate some of the advantages of label space, we

be used to obtain points that lie within label space. Othgerformed progressive smoothing using the various represe

interpolation schemes such as sinc or b-spline which do nations described: scalar label values, the binary veeprer

form a convex combination are not guaranteed to give sentation of Tsai et al2p)], the S™representation of Babalola

mixture label that lies within the simplex. and Cootes J], and £ label space. In our first experiment,
Alternatively, the probability for: € £ being labell € £  there are seven labels numbering #1 through #Fiture 7

is, P(x =1)=(1—|lz—1]|)/Z, whereZ =n—3", ||z — ;|| we show an example with jagged stripes of labels #5, #7, and

acts as a normalization constant. We can thus navigate nait8; respectively. Scalar label values show the appearahce o

rally between the space of probabilities afidusing simple intervening labels #4, #5, and #6 as the original labelsdlen

algebraic operations. Further, given a pdinh £ , the most and the hypersphere representation shows the appearance of

likely label can be obtained by finding the vertex closest to labels #2, #6, and #4 as interpolation is performed across
Thus the proposed framework has parallels to the logariththe hypersphere (the hypersphere configuration used here is

of-odds representation, with the advantage that it doesismt the rightmost depicted ifrigure 4. In Figure 8 the second

logarithms, thus removing singularities in the definitidrttee  experiment shows that the smoothing among multiple labels

logit function when any of the probabilities is zero. using binary vectors produces points closest to the backgio

A. Probabilistic Interpretation

Label Space has natural probabilistic interpretation as de
scribed below and algebraic operations are as natural as



JOURNAL OF COMPUTING, VOLUME 2, ISSUE 4, APRIL 2010, ISSN 2119617 HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMRANG/ 5

(black). In both experiments, only label space correctly-pris the decomposable transformation matrix
serves the interfaces. We should however note that theybinar - - )

map representation of Tsai et &9 can be modified so as to r C,OS(H) —sin(f) 0] [sa 0
remove the bias towards the background. This can be done o) = y| |sin(®) cos(®) O] |0 sy
considering the background as a separate label and mapping 1] 0 0 1o 0
it to one of the corners of the right triangular simplex (rioe t M(z,y) R(6) H(sz,5y)
origin). Thus, by not mapping any label to the origin results r
in a representation which is similar to label space albeth wi
higher dimensionality, i.e., fon labels, the dimensionality is

. . ) K(k
The following table summarizes the comparison *
between different representations discussed abofer a translation matrix M (x,y), rotation matrix R(6),

o O =
o = O

0
0 x
1

O I =
S =

.
0
1_

Table 1. Comparison of shape representations anisotropic scale matri¥! (s, s,), and shear matri¥<(k),
Representation | P.I.* Bias Dimensionality all for the parameters taken from
Label Space | Yes No n-1 As in [15, 32], we assume the intrinsic mean mapf the
Binary Map No Yes n-1 sample set to best represent the population. We then attempt
Sm No Yes 3 minimize the energy defined as the squared distance between
LogOdds Yes | not known n-1 each transformed label map and this mean map of the

where, P.I.* = Probabilistic Interpretation and dimensigly set)M as it converges:
is given forn labels. N oy~ ~yo
2 = >z i — 7 1)

IV. Variational Registration Yoy I + il

We demonstrate here the variational registration of a set Yperes = DI 7, and while| - [| may be any differen-
maps to their intrinsic mean map, thereby respecting the fifaPle norm, we take it to be the elementa inner product
order statistics of the sample set. The proposed repramentallz| = (z, 2)!/* = |/ [ #2dx. The denominator ensures that
has the advantage of supporting registration directly an thll of the images do not shrink in size to decrease the energy
representation. By directly we mean that differentiabletee during gradient descent.
norms may be used to compare labels. In this section, we describe a variational approach to reg-

Common approaches to registration begin by fixing one jstration. Specifically we perform gradient descent to solv

the maps as a reference and registering the remaining mifjghe pose parameters minimizing this distance. We find the
to this fixed map. This is done in bott8,[29]: however, gradient of this distance, taken with respect to the popsdo

as Joshi et al.15] describes, this initial choice biases th

spatial statistics of the aligned maps. To avoid this biashi (Vp,my, mj — fi)

2
et al. [L5] describe registration with respect to a reference that Vp,d* =2 SN s + a2
best represents the sample set, i.e., the mean. In addition t ]é_l - . - . 2)
avoiding bias, the resulting gradient descent involveddas L 221’:1 [ — fil|*(Vp,m;, le + )
computation than that proposed 89 where each map is (va—l (|7 +ﬂ|\2)

compared against each other map.

Before presenting the energy used, we first describe tigtice that terms involving other label maps( for i # j) -
pr0b|em borrowing notation frornzp]. First' each label map fall out and that the gl’adlent of the mean contributes ngth|n
is mapped into the label space (simplex representation) ltgemains to definév, 1n;. For thek* element of the pose
produce a representation; for subjecti. For the set of label Parameter vectop;, using the chain rule produces
mapsM = {m;}¥ ,, our goal is to estimate the set of corre-
sponding pose parametdrs= {p,} ., for optimal alignment. 9T (p;)

We denote asn the label mapm transformed by its pose 8p§
parameters. An advantage of implicit representations over
explicit ones is that, once the Iapel maps h_ave undergore "Whereag(‘;j) is computed for each pose parameter, for exam-
transformation, we can assume direct per-pixel correspocel le P
between maps and use a vector norm to perform comparison.’
We model pose using an affine model, and so for 2D, the pose?T'(p;)  9T(p;)  OM(z,y)

X P . T = = R(0) H(syz,sy) K(k).
parameter is the vectas = [z y s, s, 6 k]' corresponding op; ox ox
to x-,y- translation, x-,y-scale, in-plane rotation, arftear.
Note that this is a fully affine model as compared to the rigi

Vet = |57 5 0}

x
Yyl
1

Iglatrix derivatives are taken componentwisdy.

transformation model used i29]. The transformed map is oM 00 1
defined asn(z,y) = m(z,y) where coordinates are mapped M =10 0 0
according to[z § 1] =T(p) [z v I}T, where T (p) Oz 00 0
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# . ' ‘ (8) Imagel (b) Image2 (c) LS solution
Fig. 11. Aligning brain images with 4 labels. Right: Resulatigning using
(a) Original (b) Aligned least squares solution.

Fig. 9. Alignment of a set of 30 maps used in the study by Tsal.gR9].

The orininal and aligned sets are sunerimnnsed for vicatilir

(a) Example maps from unaligned set

already available in the labeled images. As a first step, chenp
the area centroid of each of thelabels in the two images we
intend to register. Now we havesets of corresponding points.
It is very tempting to think that we can now directly recover
the affine transformation relating the two images; howewer,
will now discuss why this is not the case.

A. What doesn’t work

For a 2D image, ifn < 3 (or n < 4 for 3D images),
then we have an under-determined system with fewer vari-
ables (centroids) than unknowns (the parameters of theeaffin
transformation). Hence, there are infinitely many satigfyi
solutions, requiring a least squares solution which ofteidg
poor results. Assuming enough labels, if we use the least
squares approach as detailed ir?][ we still do not obtain

(b) Original (c) Aligned satisfactory results as shown kigure 11 This is clear when
Fig. 10. Alignment of a set of 33 maps with eight labels andkemund we register the centroids of the labelsHigure 11
obtained from manual MRI segmentations. The original afghatl sets are  This result gives the minimum error in the least squares
superimposed for visualization. sense for aligning 4 points (centroids) in the images shown
in Figure 1linstead of the shapes represented by the labels.

Using a forward Euler scheme for gradient descent, in terr&nce, we obtain an un-realistic estimate of the transfooma
of Vp,d?, we have the update equation for pose parameter matrix.

p§+1 = p; — At Vp, d?, B. A Solution

wheret denotes the iteration number and,, is the step size ~ We thus propose to use the second moments of each of the

for updatingp,. This jointly aligns the set of maps/ while labels along with the centroids. While the centroids can be

jointly aligning all labeled regions among the maps. F'y,a”easily used to obtain the translation parameters, the e

gradient descent proceeds by repeated Ca|cu|ati0ﬁldﬂ2 matrix for each of the labels can be used to obtain the Scale,

and adjustment qﬁj for each map in the set until Convergencé_otation and skew parameters. For the rest of the diSCU,SSE)n
We then turned to verifying our method using the 2D datill consider registering two 3D images. Thus, the covazen

from the study by Tsai et al2p], where a synthetic data setmatrix essentially represents the corresponding label by a

was generated using four labef§gure 9shows alignment on €llipsoid. For a given label, let ¢} and C> represent the

the entire data set. covariance matrices obtained from two imaghsand Is.
Last|y, we performed registration using 2D maps Obtaine-Ehe rotation matrix that aligns these two ellipSOidS can be
from expert manual segmentation of 33 patient MRI sca@®tained as follows:

involving eight labels and backgrounBigure 10shows ex-

amples from the original unaligned set as well as the super- [U SV]=S8SVD(C]{Cy); R=UVT,

imposed maps after alignment.

V. C Reqi . where SVD is the singular value decomposition of a matrix.
. Coarse Registration Given anglesd,;, 6,; and 6,;, the corresponding rotation
While gradient descent is one of the most popular techratrix is given by

nigques for registration, it has three main drawbacks that we

intend to address in this section: susceptibility to localima, CyCs —CyS; Sy
dependence on the starting point, and the difficulty in chraps K = | .85y + €S2 —8:825y + CaCs  —58zCy |,
the time stepAt¢, (Equation 1\). To address these problems, —C;SyCx + SgS;  S5:8yCq + SzC. CxCy

we propose a coarse registration strategy following whingh t
gradient descent based algorithm typically converges 240 wherec; = cos(0;1), s; = sin(6y), ¢ = {z,y, z}. EquatingR
iterations. In the proposed algorithm, we utilize inforlnat and K, we obtain the following formulae for recovering the
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rotation angles: In this work, we depart from this methodology and directly
— Rys Riscy estimate the affine transformatidn that takes imagé; to the
Ot = arctan{R—}, Oy1 = arCtaH{R—} group mean/ without explicitly computing the mean.
_}%:; 33 (3 We demonstrate the entire algorithm by a simple example
6., = arctan{ N }s where we align three imageds, I», I3} to their mean. The

technique however works for anyw. As a first step, we
where R;; is thei*" row and j'* column of R. The above coarsely align each image to every other image in the group
equation can be used to obtain the rotation angles for eagiing the method described earlier in sectiéd. We thus
of the labels in the two images about their correspondingive an affine transformation that relatesto I, and I5. Let
centroids. The final rotation for the image about its cedtrok;, 5, x5 be x-translation that aligng, « I, I, < I3
is calculated as a weighted sum of the individual rotations:and I, «— I; respectively. Then, at iteration 1, we calculate

B n the average x-translatiafy,,, required to move imageto the
0; =Y wiby, i € {x,y,z} group mearnu:
=1 Step 1.x-translation
where the weights); can be specified by the user. A byproduct I I I3 5?1(7173
of th|.s scheme is the flexibility _to assign higher Welghts to | 1, 0 T2 | T13 j%}l = 0.5(z12 + 713)
pertam labels (giving the_m more |mport.an_ce) than othehnss T I | —21 0 23 522 — 0.5(—12 + T23)
is useful, for example, in labeled brain images where more 7 0 120 —os
importance can be given to aligning subcortical structlikes 3 | 73 | T8 Ty = 0.5(=213 — 23)

caudate nucleus, hippocampus etc versus cortical stesctur

with lots of cortical folds and inherently complex variatyil
The scaling parameters can be obtained from the length

the axes of the ellipsoids. Let;; and A;; be the length of

]Jn the second step, we assume that this average x-tramslatio
0 : : .

has been applied to each image, which allows us to update the
table as follows:

the axes of the ellipsoid represented by covariance matrice Step 2.x-translation
Cy and Cs,. Then the scaling parameters in each of x, y and T, T I
z-direction for label can be calculated using 7 0 m m 0 =D
1 Tig = T12 — | T13 = T13 — Ty = L3y
T 1 )
si=1]=2, ie{xy, 2} T Tim — Tom T T T
A | L =00 P )
Once again, the overall scaling for the image can be caledilat | 7, | —2{} | -2V 0
as a weighted sum of all labels:
§i=> wjsu, i € {z,y,2}. The final x-translation that takes any imageto the mean
=1 image . is then given by:EE,l,z + 571(72,3 + ...+ :EEZ for which

Using the co-ordinates of the centroidg = [z1 y; 21] & cIose_d form expr.es_siorj_ can b_e computed as shown in
andcy = [22 Y2 2o] for labell, one can obtain the following APPendix A. The main intuition behind the procedure outtine

expression to calculate the skew parameters: above is to find the average x-translation required to align
all the images by explicitly manipulating the x-translatio
T2 — X1 Y2 — Y1 22 — 21 . . .
ky = , by = , ko= . parameters without actually applying the transformation t
Y1+ 21 1+ 21 1+ Y1

- the images. The same technique is used to find all the other
The skew parameters for the entire image can then be calgénslation, rotation, skew and scale parameters. An itapor

lated using weighted sums: point to note is that, instead of using the scale parameters
~ n s; directly, log(s;) is used making operations of addition and
ki = Z wiki, 1 € {x,y, 2} subtraction valid on the space of scale parameters. Angaver

=1 exponential mapping can be used to obtain the actual scale

Using the above analysis, one can easily recover the affif@lues.
transformation parameters that relate two richly labeteaiges ~ The final output of this procedure is a set of affine param-
I, and I,. The question still remains unanswered as to ho@iers that take every imagk to the intrinsic group meap.
to register a group of labeled images to their intrinsic meahhis method of finding the intrinsic mean is not limited to
when the mean itself is not known. We address this issuel@beled images, but can be used for gray-scale images if the
the next section. affine transformation parameters that relate them are rodxai
using any suitable method. This is one of main contributions

C. Aligning to the Mean of this work.

Our goal in this section is to build a probabilistic atlasnfro
a group of labeled imagefl;, I, ..., Ix }. One way to build
an unbiased atlas is to align all the images to their inttinsi The method outlined above requires registering every image
mean. Most of the existing algorithms explicitly compute thl; to every other imagel;, j # i of the group. This
mean image and iteratively refine the estimate at eachigerat means, for a group ofV images, we need to fin&m\;—_l)

D. A Faster Alternative
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Fig. 12. Coarse Registration using full coarse registnafieft) and using
composition (right).

Fig. 13. Experiment 1: Slices from the brain images to benalily

affine transformations. To reduce this computational lcad,
suboptimal strategy is to find onljy — 1 affine transforma-
tions A;; that relate any imagd; to all the other images
I;,j€{1,2,i—1,i+1,..N}, where we have arbitrarily fixed
the imagel;. As described earlier, to compute the mean, we
need affine transformations that relate every image to every
other image. This can be achieved by using composition of
transformations as follows: Let = 1 and assume we have
computedA;; for all j. Now, we can computedss using

Agy = A1_21A13, Agy = A1_31A14 and so on. This strategy Fig. 14. Different view of the rendering of labels of the infic mean image.
provides a very fast alternative to the method presented in

the previous section, but it is suboptimal since the errets g - _
accumulated while computing all the other transformatiorJ: htaining 1‘_1 labels (se@gure 13. In order to reduce
using compositions (see Table 2 for comparison). In 0t e computational load, we implemented a scale-space based

experiments, this faster method still gave a good startoigtp ;eg|strdat|on|algorlthrln,tlwh(.ere the cor?:se reg!strtatéon wa?
for the gradient descent based algorithm. ormed on low resolution images while gradient descent was

Figure 12shows registration of a set 30 2D labeled imag done on the original image resolution. While computing the

S : >
using both the coarse strategies outlined above. qower §cale_ images, the _|mportant property 9f label space of
not being biased to a particular label as described eadiees

VI. Experiments with 3D images in quite handy by not introducing spurious labels in random
places.
Figure 16 shows the 3D rendering of the mean image
To test the label space representation and the proposegistered after doing the coarse registration followed by
coarse registration technigues, we aligned a set of 3Ddabelradient descent. The following table gives the total numbe
brain images. In our first experiment, we aligned a set of 2} misaligned voxels from the mean image (as a percentage

images each containing 4 labels (grey matter, white mattef,the total volume) for each of the two data sets.
cerebrospinal fluid and skull of brain) plus background, a Table 2 Misaligned voxelsEr for all methods.

few slices of which are shown in Figuré3. The surface Data Set GD alone | CR+GD | CRC + GD
corresponding to the mean of the registered images is showrExperiment 1| 11.71% 7.95% 8.27%
in Figure 14 In this experiment, the input images contained Experiment 2| 7.62% 6.52% 6.60%

very noisy labeling of the skull (seigure 13. To minimize where, GD = gradient descent, CR + GD = coarse registration

the_|r effect on the ov_erall registration, we a_53|gned a Very . followed by gradient descent, CRC + GD = coarse registration
weight to this label in our coarse registration strategyolhi \ﬁith composition followed by gradient descent
the- '

is quite a useful feature in such scenarios. We computed or the data set in experiment 1, it took 78 iterations for

A. Registration

time) and 15 iterations for CRC+GD ( 24 hours of computa-

is given below: tional time) for convergence. In Experiment 2, it took only

SN H(L - ) 8 iterations for CR+GD, 16 iterations for convergence with
Er==Ff—7—", (4) CRC+GD and 70 iterations with GD alone. From both these
22— V(I) : L .
i=1 ’ experiments (see Table 2), it is clear that using the coarse

where,H is a function which measures the total number akgistration methods described in this work allows for drett

voxels that do not have the same lalié([;) is the volume in registration of the label maps than a pure gradient descent

voxels of the imagd; andy is the calculated group mean ofbased approach.

the label maps. Other error metrics used in the literature ca Further, to test the dependence of CRC+GD on the choice

be found in B]. of the initial reference image, we used 10 different refer-
In our second experiment, we registered 10 images eamfce images and computed the Misaligned voxelsfrom
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To demonstrate the detail maintained in label space prob-
abilistic calculationsFigure 18shows the conditional proba-
bilities for the amygdala and hippocampus of the first three
patients,i.e. the probability of the amygdala given the proba-
bility of the amygdala in the other patients. For visualizaf
one slice is taken that passes through both regions. These
probabilities were computed via the formula 8ection Il
Conditional probabilities like this may be used to judgesint
rater segmentation. Notice the sharp tail of the hippocampu
a feature which is easily lost in the intermediate represant
used in the logarithm-of-odds approach.

We then compared label space against both the SDMs and
binary vectors for use in linear principal component anialys
(PCA); see 29, 18] and the references therein for a description
of this technique. We chose to separate out a test patient,
compute the PCA basis on the remaining patients, and examine
the projection of the test patient onto that learned basevé-
one-out test). This is standard in PCA modeling and is also
referred to as the generalization metiid,[27]. As a side note,
we used the eigenvectors representing 99% of the variation i
Fig. 16. Rendering of labels of the intrinsic mean imaget:LEfie different the data.
lobes of the brain. Right: All the 14 labels of the mean image. We employed the Dice coefficient as a measure of percent
overlap between the test mag and its projection)M. The

Dice coefficient is defined as the amount of overlapping

the group mean. The following table gives the average apg;,me divided by the average total volumB(M, 1T) —
standard deviation (taken over 10 initializatiorfsy for each 9|M N N |/(|M]| + |M]), where| - | denotes volur;1e Table

of the experiments: . . . -
S 4 gives the mean and variance of the Dice coefficient for
Table 3Misaligned voxelstr for CRC+GD. each tissue cladsWe found that label space is better than

Fig. 15. Experiment 2:Slices from the brain images to benaliy

Data Set CRC + GD . : .
Exoerment 1 8311012 % SDMs becaus_e of the inherent low per pixel variance and _also
= pen 5 6'57 0'04 % better than binary vectors because it can represent umbiase
xperiment 57+ 0. 0 label mixtures; SDMs and binary vectors require thresimgjdi

. From the table, it IS plear_that the choice .Of initial refaren to determine label ownership. Note that the parahippocampu
image has a very I|rr_1|te_d 'T“paCt on the final outcome (thr%sults improve significantly when label uncertainty isetak
group mean is very similar in all cases). into account. Figurel9 shows the "generalization”, "com-
B. Multi-label Shape Learning using PCA pactness” and "specificity” of the PCA modeling space as
In this experiment, we examine a set of 31 patierﬂescribed in11, 27]. Generalization is defined as the ability to
. : ' . escribe previously unseen shapes (see T@pl€ompactness
brains with manually segmented amygdala, hippocampus, 88%he ability to use minimal set of parameters to descrilee th
parahippocampus Figure 17 shows these subcortical struc-_ .. y e par . i
tures. Using label space as the underlying representacbion.eptIre shape and specificity is the ability to describe pmw .
eliminate bias, we performed affine registrati@]| m_stances of the shape. For all the three shapes dl_scussed in
' this paper, the label space (black) does better than binapsm

) . ) for all the three measures.
1Data obtained from the NAMIC data repository of the Brighamd a

Women'’s Hospital, Boston. VIl. Discussion

This paper describes label space, a coupled multi-object
implicit representation borrowed from the fuzzy classiima
literature. For this representation, we demonstrated #at
gebraic operations may be done directly, label uncertdsty
expressed equivalently as a weighted mixture of labels ar in
probabilistic manner, and interpolation and smoothingikiu
ased toward any label or the background. Further, the presen
representation can be used within the LogOdds framework as
well to obtain a different probabilistic interpretation.

In order to avoid some of the inherent drawbacks of
gradient descent based techniques, namely, getting stuck i
local minima, we proposed two coarse registration methods

(a) Subcortical structures

2 .
Fig. 17. Manually segmented amygdala, hippocampus, arahipgrocampus Data reported asmean + variance

(blue, red, cyan).
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(a) Amygdala

(b) Hippocampus

Fig. 18. For one slice, conditional probability of the pmese of amygdala and hippocampus of the first three patiem&ndhe other patientsvhite indicates
high probability). Notice the fine detail of the hippocampus, features whicly i lost when using smoothed intermediate representafizf}s

TABLE V
DICE COEFFICIENT OF PROJECTION USINECA
SDMs Binary vectors Label space
Amygdala 0.783+ 0.0031 0.825+ 0.0014 0.855+ 0.0004

Hippocampus 0.782+ 0.0016 0.819+ 0.0006 0.843+ 0.0003
Parahippocampusg  0.494+ 0.0033 0.561+ 0.0017 0.773+ 0.0003

1 10 20 30 1 10 20 30 1 10 20 30
modes modes modes

(a) Compactness (b) Generalization (c) Specificity

Fig. 19. Compactness, Generalization and Specificity o8& modeling space. Label Space (black) and binary maps)bliabel Space does better for
all the three measures.

following which the gradient descent method converges to aA different limitation of the coarse registration strategy
better minimum implying better registration. We demortstrais that it is dependent upon the accuracy of the first two
this using a few examples on 3D data sets. A new methodacea moments of the labels. Hence, if there are large aatlier
compute the intrinsic mean of a set of labeled images is alsothe image, it can result in estimating the wrong affine
proposed. This method can be used to coarsely align any typmnsformation for that image.

of images (not just labeled) if the affine parameters thateel

them are known. VIII. Proof of Convergence

The coarse registration method also allows assigning dif'Here, we prove the convergence of the iterative technique

; . X f&’éscribed in SectioN-C for coarse registration. For the sake
property to have if there is prior knowledge about the rgy

bustness of the segmented labels. Further, the method Ca%{)%rggggtykl[etthl;s Srfjugé\ifte:ag(’)r:.ei’ V\\llvee arr]zvr: gésc;{renrgbgted

easily extended to use the poly-affine model 2 for non- 1) 1) (1) ~(1) :

rigid registration of label maps. g;éégrlti/,tﬁ?t.h?ljé;hiesr, we also know;, .. Another important
Nevertheless, modeling shapes in label space does have

its limitations. One major drawback to label space is the

spatial demand. It might be possible to extend the hypersphe

representation3 to avoid interpolation issues (séegure 9

by taking into consideration the empirical presence ofiegqy  This can be easily verified from the table in Step 1.

pairings when determining vertex distribution. Now, let us compute?:@):

1m

F0) + B + B = 0. 5)

3m
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[10]
H =05 (o) - - o -0 -50)
:05(<1>+§>) (6)

[12]
=058,

where the last equality follows frons). Thus,#{®) = 0.57(>) 13!

S. Dambreville, Y. Rathi, and A. Tannenbaum. A shapseldaapproach to robust
image segmentatiorLecture Notes in Computer Science, 4141:173, 2006.

R.H. Davies, C.J. Twining, P.D. Allen, T.F. Cootes, a@d]. Taylor. Shape
discrimination in the hippocampus using an MDL modeLecture Notes in
Computer Science, pages 38-50, 2003.

I. L. Dryden. General shape and registration analysisO. Barndorff-Nielsen,
W. S. Kendall, and M. N. M. van Lieshout, edito®&pchastic Geometry: likelihood
and computation, pages 333-364, London, 1999. Chapman and Hall.

E. DAgostino, F. Maes, D. Vandermeulen, and P. Suet&nsnformation theoretic
approach for non-rigid image registration using voxel slpsobabilities.Medical

and so on. Indeed, one can directly compute the sum of such a image Analysis, 10(3):413-431, 2006.

converging seriesy > 2"} = {!) — :c%,)lm Generalizing [14]

this for N images, we get the following closed form expression

for the final translation for each image: (1]

Zx(t) 1)+ [16]
(1) ( 1 n 1 ) 7
Lim - _
t=1 (N =1)E=D (N = 1) (7) [18]
_,m_ w1
Lim Lim 1+N—-1
_ .l el
zm lmN

One obtains similar expressions for computing all the tranigo!
lation, rotation and skew parameters. For the scale paexmet

one has to take the Iogarithm, compute the average 503'%2'1? D. Nain, S. Haker, A. Bobick, and A. Tannenbaum.

log space and map back using the exponential.
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