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Affine Registration of label maps in Label Space
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Abstract—Two key aspects of coupled multi-object shape
analysis and atlas generation are the choice of representation
and subsequent registration methods used to align the sample
set. For example, a typical brain image can be labeled into
three structures: grey matter, white matter and cerebrospinal
fluid. Many manipulations such as interpolation, transformation,
smoothing, or registration need to be performed on these images
before they can be used in further analysis. Current techniques
for such analysis tend to trade off performance between the two
tasks, performing well for one task but developing problemswhen
used for the other.

This article proposes to use a representation that is both
flexible and well suited for both tasks. We propose to map object
labels to vertices of a regular simplex,e.g. the unit interval for
two labels, a triangle for three labels, a tetrahedron for four
labels, etc. This representation, which is routinely used in fuzzy
classification, is ideally suited for representing and registering
multiple shapes. On closer examination, this representation
reveals several desirable properties: algebraic operations may
be done directly, label uncertainty is expressed as a weighted
mixture of labels (probabilistic interpretation), interp olation is
unbiased toward any label or the background, and registration
may be performed directly.

We demonstrate these properties by using label space in a gra-
dient descent based registration scheme to obtain a probabilistic
atlas. While straightforward, this iterative method is very slow,
could get stuck in local minima, and depends heavily on the initial
conditions. To address these issues, two fast methods are proposed
which serve as coarse registration schemes following whichthe
iterative descent method can be used to refine the results. Further,
we derive an analytical formulation for direct computation of the
“group mean” from the parameters of pairwise registration of all
the images in the sample set. We show results on richly labeled
2D and 3D data sets.

Index Terms—Registration, probabilistic atlas, richly labeled
images, multi-object shape analysis

I. Introduction
Multi-object shape analysis is an important task in the med-

ical imaging community. When studying the neuroanatomy of
patients, clinical researchers often develop statisticalmodels
of important structures which are then useful for population
studies or as segmentation priors [18, 21, 23, 29, 28]. The first
step for this problem consists in choosing an appropriate shape
descriptor capable of representing its statistical variability.

There are two main types of models: explicit and implicit.
Splines and medial axis skeletons are two popular examples
of explicit models [6, 7, 16, 22, 25, 26]. While providing
a reduced parametric representation, explicit models have
several drawbacks. For example, they often assume a fixed
shape topology, require care in distributing control points,
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Fig. 1. Tsai et al. [29] proposed mapping each pixel from object
label to a point in a space shaped as a non-regular simplex, each
vertex corresponding to an object label. Visualized here for the case
of two objects and background, the bottom left background (0,0) is a
distance of 1 from both labels top (0,1) and right (1,0), while labels
are separated from each other by a distance of

√

2.

and the representation can get very complicated for complex
structures like the white matter or gray matter.

This work focuses on implicit models [18, 28] which avoid
these problems. After mapping the entire volume to another
space, the value of each voxel contributes to describe the
shape. In this new space, arbitrary topologies may be repre-
sented, correspondences are naturally formed between voxels,
and there are no control points to redistribute. However, since
this shape space is often of higher dimension than the original
dataset, one key disadvantage for this type of representational
model is that it will usually increase the spatial and computa-
tional complexity of the analysis.

A common starting point for shape representation is a
simple scalar label map, each pixel indicating the object
present at that pixel,e.g. a label value of 1 indicating object
#1, a value of 2 indicating object #2, etc. Many techniques
[28, 3] go on to map this entire volume to another space, the
value of each pixel contributing to describe the shape.

The simplest implicit representation is a binary map where
each pixel indicates the presence or absence of the object.
Signed distance maps (SDM’s) are another example of an
implicit representation, each pixel having the distance tothe
nearest object boundary, a negative distance for points inside
the object [18, 28].

For the multi-object setting, binary maps may be extended
to scalar label maps, each pixel holding a scalar value corre-
sponding to the presence of a particular object; however, this
representation is not well suited for algebraic manipulation.
For example, if labels are left as scalar values, the arithmetic
average of labels with values #1 and #3 would incorrectly
indicate the label of value #2, not a mixture of labels #1 and
#3.

To address this, mappings of object labels to linear vector
spaces were proposed, an approach to which our method is
most closely related. The work of Tsai et al. [29] introduced
two such representations, each for a particular task. For
registration, the authors proposed mapping scalar labels to
binary vectors with entries corresponding to labels; a 1 in
an entry indicates the presence of the corresponding label at
that pixel location. As an example for the case of two labels
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Fig. 2. Example configurations for theS1 hypersphere representation of [3]:
three, six, and seven labels(left to right) with background at the center.

and background,Figure 1visualizes the spatial configuration
each pixel is mapped onto. Here the background is at the
bottom left origin (0,0) with one label at (1,0) and the other
at (0,1). It is also important to note that they go on to perform
registration considering each entry of these vectors separately.
For shape analysis, Tsai et al. [29] proposed mapping scalar
labels to layered SDM’s, in this case each layer giving the
signed distance to the corresponding object’s interface.

Note that in both vector valued representations described
in Tsai et al. [29], each label lies on its own axis and so
the dimension of the representation grows linearly with the
number of labels,e.g. two objects require two dimensions,
three objects require three dimensions. To address this spatial
complexity, Babalola and Cootes [3, 4] propose a lower
dimension approximation to replace the binary vectors in
registration. By mapping labels to the unit hypersphereSn,
they demonstrate that even configurations involving dozensof
labels can be efficiently represented with label locations dis-
tributed uniformly on a hypersphere.Figure 2gives examples
for S1.

Another representation that is widely used in fuzzy classifi-
cation is that of [5] which uses a positive simplex to represent
probabilistic data. It has also been used for representing
posterior probability distribution or fuzzy labeling of image
segmentation data [13]. In this work, we propose to use it for
representation and registration of multiple shapes.

Finally, Pohl et al. [23] indirectly embeds label maps in the
logarithm-of-odds space using as intermediate mappings either
the binary or SDM representations of [29]. Particularly well
suited for probabilistic computations, the logarithm-of-odds
space is also a field providing closed operations for addition
and scalar multiplication. As with the representations of Tsai
et al. [29], the dimensionality of the logarithm-of-odds space
increases with each additional object. We should also note
that the work of [23] did not address registration, but instead
assumed an already registered atlas via [20]. Another related
work is that of [13], which performs a mutual-information
based non-rigid registration of probabilistic data represented
as class labels, similar to the Log-Odds representation [23].

Once the representation is settled upon, registration mustbe
performed to eliminate variation due to differences in pose. A
common approach is to register the set to a reference image;
however, this then introduces a bias to the shape of the chosen
reference. Joshi et al. [15] propose unbiased registration with
respect to the mean sample as a template reference. Assuming
a general metric space of transformations, they describe regis-
tering a sample set with respect to its intrinsic mean and use
the L2 distance for demonstration. A similar approach uses
the minimum description length to measure distance from the
intrinsic mean [30]. Instead of registering to a mean template,

Fig. 3. The first three label spaceL configurations: a unit interval in 1D for
two labels, a triangle in 2D for three labels, and a tetrahedron in 3D for four
labels(left to right).

an alternative approach is to minimize per-pixel entropy. Using
binary maps Miller et al. [20] demonstrate that this has a
similar tendency toward the sample mean. This approach has
also been demonstrated on intensity images [31, 32]. Among
these energy-based registration techniques, iterative solutions
include those that are variational [29, 15] and those that use
sampling techniques [32]. Other registration methods can be
found in [19, 24].

A. Our contributions

This paper proposes to use a multi-object implicit represen-
tation scheme that is widely used to represent probabilistic data
[17]. In this representation, object labels are mapped to the
vertices of a regular simplex, going from a scalar label value
to a coordinate position in a high dimensional space which we
term label space and denote byL . Visualized inFigure 3, a
regular simplex is ann-dimensional analogue of an equilateral
triangle. Under convex combinations, label space has several
desirable properties: all labels are equally separated in space,
addition and scalar multiplication are natural, label uncertainty
is expressed as a weighted combination of label vertices,
and interpolation is unbiased toward any label including the
background.

This representation addresses several problems with current
implicit mappings. For example, while the binary vector
representation of Tsai et al. [29] was proposed for registration,
we will demonstrate that it induces a bias sometimes leadingto
misalignment, and since our label space representation equally
spaces labels, there is no such bias. Additionally, compared
to the SDM representation, the proposed method introduces
no inherent per-pixel variation across equally labeled regions
making it more robust for statistical analysis. Hence, the
proposed method better encapsulates the functionality of both
representations. We will also demonstrate that, while lowering
the spatial demands of the mapping, the hypersphere repre-
sentation of Babalola and Cootes [3] biases interpolation and
can easily lead to erroneous results. The arrangement of label
space incurs no such bias allowing convex combinations of
arbitrary labels.

Using thelabel space representation, we propose two fast
techniques that coarsely register the labeled images to their
intrinsic mean. These coarsely registered images then serve
as the starting point for a gradient descent based approach
which typically converges within 10-20 iterations to a better
minimum.

Further, we derive a formulation to analytically compute
the parameters that take every image in a given sample set
to the group mean. This is done by pairwise registration of
each image to every other image in the group, and the affine
parameters so obtained can be used to compute the group
mean.

The rest of this paper is organized as follows.Section II

c©2010 Journal of Computing https://sites.google.com/site/journalofcomputing/
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Fig. 4. For theS1 hypersphere configurations of [3], cases such as these
yield erroneous results during interpolation. Judged by nearest neighbor,
interpolating between two labels resolves to background, ambiguously either
background or another label, and finally another label(left to right).

explores several problems that can develop with the implicit
representations described above [3, 23, 29]. Section III then
describes the proposed label space representationL docu-
menting several of its properties.Section IV demonstrates
variational registration directly within this representation, and
Section Vdescribes two methods for performing coarse reg-
istration on labeled images and SectionVI shows some
experimental results on 3D data sets. Finally inSection VII
we summarize our work and discuss future research directions.

II. Related representations
In this section, we describe problems that may develop in

the representations this present work seeks to extend.

A. Shape representation

The signed distance map (SDM) has been used as a repre-
sentation in several studies [1, 18, 23, 29, 28]; however, it may
produce artifacts during statistical analysis [10]. This is due to
the fact that SDM’s lie on a nonlinear manifold where linear
operations like addition/subtration introduce artifacts[10, 14].

Label maps have inherently little per-pixel variation, pixels
far from the interface having the same label as those just
off the interface. For statistical analysis in the case of one
object, Dambreville et al. [9] demonstrated that binary label
maps have higher fidelity compared to SDM’s. However, for
the multi-object setting, the question then becomes one of
how to represent multiple shapes using binary maps? What
is needed is a richer feature space suitable for a uniform pair-
wise separation of labels.

An example of such a richer feature space is that of [3]
where labels are mapped to points on the surface of a unit
hypersphereSnplacing the background at the center. This
is similar to the binary vector representation described by
[29] to spread labels out; however, [3] argue that lower
dimensional approximations can be made. They demonstrate
that configurations involving dozens of labels can be efficiently
represented by distributing label locations uniformly on the
unit hypersphere using as few as three dimensions. Since any
label may neighbor the background, the background must
be placed at the hypersphere center, equally spaced from
all other labels. The fundamental assumption is that pixels
only vary between labels that are located near to each other
on the hypersphere, so the placement of labels is crucial
to avoid erroneous label mixtures. For example,Figure 4
demonstrates that if two labels far from each other are mixed,
the result may be attributed erroneously to other labels. Notice
in particular that the central placement of the background gets
in the way when interpolating across the sphere. Smoothing in
Figure 7also demonstrates these inherent effects of the lower
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Fig. 5. Alignment of an image with a reference template usingthe
representation of [29] results in two possible alignments, the shifted one
misaligning along both the top and bottom with respect to thereference(red
dots indicate minima). For just x- and y-translation, isocontours of the energy
landscape show the non-unique energy minima in(c).

dimensional approximation, effects that cannot be avoided
unless the dimension approaches label cardinality.

The logarithm-of-odds representation of Pohl et al. [23]
provides the third and final shape representation we compare
against. Aside from the normalization requirement for closed
algebraic manipulation, the main concern when using this
representation is the choice of intermediate mapping, a choice
that directly impacts the resulting probabilities. The authors
explore the use of both representations from [29]; however,
both choices have inherent drawbacks.

For the layered SDM intermediate mapping, Pohl et al.
[23] notes that SDM’s are a subspace of the logarithm-
of-odds space. This means that, while the layered SDM’s
are exactly the logarithm-of-odds representation, results after
algebraic manipulation in the logarithm-of-odds space often
yield invalid SDM’s (but still valid logarithm-of-odds rep-
resentations). Using such results, computing probabilities as
described in [23] may yield erroneous likelihoods. Notice
also, that the generalized logistic function is used to compute
probabilities. This introduces additional problems as theuse
of the exponential ensures that these probabilities will always
have nonzero character across the entire domain, even in areas
never indicated by the sample set.

Using smoothed binary maps as intermediates also leads
to problems. To begin, using binary maps directly would
mean probabilities of either zero or one, which in the log
domain produce singularities. Smoothing lessens such effects
yet results in a loss of fine detail along the interface. Also,
Pohl et al. [23] shows examples where after normalization
the logarithm-of-odds representation develops artifactsat the
interface between objects, an effect which is magnified in the
logarithm domain.

B. Registration

Tsai et al. [29] propose a binary vector representation
specifically for registration. AsFigure 1 shows, this repre-
sentation places labels at the corners of a right-triangular
simplex; however, unlike this present work, it is not a regular
simplex but has a bias with respect to the background. The
background, located at the origin, is a unit distance from any
other label, while any two labels, located along a positive axis,
are separated by a distance of

√
2. The effect may be seen in

registration where there is a bias to misalign labels over the
background (penalty 1) rather than over other labels (penalty√

2).
To demonstrate the effect of this induced bias, consider the
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Fig. 6. ProposedL [3] label space for the case of three labels: a point
indicating the equal presence of all three labels(left), and a point indicating
the unequal mixed presence of just the left and top labels(right).

example inFigure 5. Using the representation and registration
energy of Tsai et al. [29], there are two global minima: the
image overlapping and the image shifted up. In the first case,
label #1 is misaligned over label #2, while in the second case,
a strip of pixels at both the top and bottom are misaligned
over the background; that is, because of this bias, there
can be twice as many pixels misaligned in the shifted case
than in the unshifted. These minima (indicated by red dots
in the energy landscapes) are shown only for translation;
considering additional pose parameters further increasesthe
number of local minima in the energy landscape representing
misalignments. Also, this is not inherent in the energy, as the
same phenomenon is observed using the energy in (1).

III. Label space
Our goal is to create a robust representation where algebraic

operations are natural, label uncertainty is captured, andinter-
polation is unbiased toward any label. To this end we propose
mapping each label to a vertex of a regular simplex; given
n labels, including the background, we use a regular simplex
which lies in n − 1 dimensions and denote this byL (see
Figure 3). A regular simplex is ann-dimensional analogue of
an equilateral triangle.

A. Probabilistic Interpretation

Label Space has natural probabilistic interpretation as de-
scribed below and algebraic operations are as natural as
vector addition and scalar multiplication inRn (under convex
combination). Label uncertainty is realized as the weighted
mixture of vertices. For example, a pixel representing labels
#1, #2, and #3 with equal characteristic would simply be
the point l = 1

3 l1 + 1
3 l2 + 1

3 l3, a point equidistant from
those three vertices (seeFigure 6). Using this fact, one can
map any point in a probabilistic atlas to a unique point in
the label spaceL , i.e. given the probabilitiesp1, .., pn with
∑

pi = 1, the corresponding representation inL is given by
l =

∑
pili ∈ L , where li ∈ L is a vertex of the simplex.

We should however note that only tri-linear interpolation can
be used to obtain points that lie within label space. Other
interpolation schemes such as sinc or b-spline which do not
form a convex combination are not guaranteed to give a
mixture label that lies within the simplex.

Alternatively, the probability forx ∈ L being labell ∈ L
is, P (x = l) = (1− ‖x− l‖)/Z, whereZ = n−∑

i ‖x− li‖
acts as a normalization constant. We can thus navigate natu-
rally between the space of probabilities andL using simple
algebraic operations. Further, given a pointl in L , the most
likely label can be obtained by finding the vertex closest tol.

Thus the proposed framework has parallels to the logarithm-
of-odds representation, with the advantage that it does notuse
logarithms, thus removing singularities in the definition of the
logit function when any of the probabilitiespi is zero.

(a) Scalar label map

(b) Snhypersphere of Babalola and Cootes [3]

(c) L label space

Fig. 7. Progressive smoothing directly on scalar label maps, the hypersphere
representation of Babalola and Cootes [3], and L label space. Both the
scalar label maps and hypersphere representations developintervening strips
of erroneous labels. Only label space is able to correctly capture the label
mixtures during smoothing. The rightmost hypersphere inFigure 4 depicts
the S1 configuration used here in(b).

(a) Binary vector representation of Tsai et al. [29]

(b) L label space

Fig. 8. Progressive smoothing directly on binary vector representation of
Tsai et al. [29] and L label space. Smoothing among several labels in the
binary vector representation yields points closer to background (black) than
any of the original labels. Label space is able to correctly begin to smooth out
the sharp corners of the bottom two regions without erroneous introduction
of the black background label.

B. Other Properties

To demonstrate some of the advantages of label space, we
performed progressive smoothing using the various represen-
tations described: scalar label values, the binary vector repre-
sentation of Tsai et al. [29], the Snrepresentation of Babalola
and Cootes [3], and L label space. In our first experiment,
there are seven labels numbering #1 through #7. InFigure 7,
we show an example with jagged stripes of labels #5, #7, and
#3, respectively. Scalar label values show the appearance of
intervening labels #4, #5, and #6 as the original labels blend,
and the hypersphere representation shows the appearance of
labels #2, #6, and #4 as interpolation is performed across
the hypersphere (the hypersphere configuration used here is
the rightmost depicted inFigure 4). In Figure 8, the second
experiment shows that the smoothing among multiple labels
using binary vectors produces points closest to the background
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(black). In both experiments, only label space correctly pre-
serves the interfaces. We should however note that the binary
map representation of Tsai et al. [29] can be modified so as to
remove the bias towards the background. This can be done by
considering the background as a separate label and mapping
it to one of the corners of the right triangular simplex (not the
origin). Thus, by not mapping any label to the origin results
in a representation which is similar to label space albeit with
higher dimensionality, i.e., forn labels, the dimensionality is
n.

The following table summarizes the comparison
between different representations discussed above:

Table 1. Comparison of shape representations
Representation P.I.* Bias Dimensionality

Label Space Yes No n-1
Binary Map No Yes n-1

Sn No Yes 3
LogOdds Yes not known n-1

where, P.I.* = Probabilistic Interpretation and dimensionality
is given forn labels.

IV. Variational Registration

We demonstrate here the variational registration of a set of
maps to their intrinsic mean map, thereby respecting the first
order statistics of the sample set. The proposed representation
has the advantage of supporting registration directly on the
representation. By directly we mean that differentiable vector
norms may be used to compare labels.

Common approaches to registration begin by fixing one of
the maps as a reference and registering the remaining maps
to this fixed map. This is done in both [3, 29]; however,
as Joshi et al. [15] describes, this initial choice biases the
spatial statistics of the aligned maps. To avoid this bias, Joshi
et al. [15] describe registration with respect to a reference that
best represents the sample set, i.e., the mean. In addition to
avoiding bias, the resulting gradient descent involves farless
computation than that proposed in [29] where each map is
compared against each other map.

Before presenting the energy used, we first describe the
problem borrowing notation from [29]. First, each label map
is mapped into the label space (simplex representation) to
produce a representationmi for subjecti. For the set of label
mapsM = {mi}N

i=1, our goal is to estimate the set of corre-
sponding pose parametersP = {pi}N

i=1 for optimal alignment.
We denote asm̃ the label mapm transformed by its pose
parameters. An advantage of implicit representations over
explicit ones is that, once the label maps have undergone this
transformation, we can assume direct per-pixel correspondence
between maps and use a vector norm to perform comparison.
We model pose using an affine model, and so for 2D, the pose
parameter is the vectorp = [x y sx sy θ k]T corresponding
to x-,y- translation, x-,y-scale, in-plane rotation, and shear.
Note that this is a fully affine model as compared to the rigid
transformation model used in [29]. The transformed map is
defined asm̃(x̃, ỹ) = m(x, y) where coordinates are mapped
according to

[
x̃ ỹ 1

]T
= T (p)

[
x y 1

]T
, whereT (p)

is the decomposable transformation matrix

T (p) =





1 0 x
0 1 y
0 0 1





︸ ︷︷ ︸

M(x,y)





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1





︸ ︷︷ ︸

R(θ)





sx 0 0
0 sy 0
0 0 1





︸ ︷︷ ︸

H(sx,sy)

×





1 k 0
k 1 0
0 0 1





︸ ︷︷ ︸

K(k)

for a translation matrixM(x, y), rotation matrix R(θ),
anisotropic scale matrixH(sx, sy), and shear matrixK(k),
all for the parameters taken fromp.

As in [15, 32], we assume the intrinsic mean mapµ̃ of the
sample set to best represent the population. We then attemptto
minimize the energy defined as the squared distance between
each transformed label map̃m and this mean map̃µ of the
setM̃ as it converges:

d2 =

∑N
i=1 ‖m̃i − µ̃‖2

∑N
i=1 ‖m̃i + µ̃‖2

, (1)

whereµ̃ = 1
N

∑N
i=1 m̃i, and while‖ · ‖ may be any differen-

tiable norm, we take it to be the elementalL2 inner product

‖x‖ = 〈x, x〉1/2 =
√

∫
x2dx. The denominator ensures that

all of the images do not shrink in size to decrease the energy
during gradient descent.

In this section, we describe a variational approach to reg-
istration. Specifically we perform gradient descent to solve
for the pose parameters minimizing this distance. We find the
gradient of this distance, taken with respect to the posepj , to
be:

∇pj
d2 = 2

〈∇pj
m̃j , m̃j − µ̃〉

∑N
i=1 ‖m̃i + µ̃‖2

+ 2

∑N
i=1 ‖m̃i − µ̃‖2〈∇pj

m̃j , m̃j + µ̃〉
(
∑N

i=1 ‖m̃i + µ̃‖2
)2

(2)

Notice that terms involving other label maps (m̃i for i 6= j)
fall out and that the gradient of the mean contributes nothing.
It remains to define∇pj

m̃j . For thekth element of the pose
parameter vectorpj , using the chain rule produces

∇
p

k
j
m̃j =

[
∂m̃j

∂x̃
∂m̃j

∂ỹ 0
] ∂T (pj)

∂p
k
j





x
y
1



 ,

where∂T (pj)

∂p
k
j

is computed for each pose parameter, for exam-

ple,

∂T (pj)

∂p
1
j

=
∂T (pj)

∂x
=

∂M(x, y)

∂x
R(θ) H(sx, sy) K(k).

Matrix derivatives are taken componentwise,e.g.

∂M(x, y)

∂x
=





0 0 1
0 0 0
0 0 0



 .
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(a) Original (b) Aligned

Fig. 9. Alignment of a set of 30 maps used in the study by Tsai etal. [29].
The original and aligned sets are superimposed for visualization

(a) Example maps from unaligned set

(b) Original (c) Aligned

Fig. 10. Alignment of a set of 33 maps with eight labels and background
obtained from manual MRI segmentations. The original and aligned sets are
superimposed for visualization.

Using a forward Euler scheme for gradient descent, in terms
of ∇pj

d2, we have the update equation for pose parameterpj

p
t+1
j = p

t
j − ∆tp∇pj

d2,

wheret denotes the iteration number and∆tp is the step size
for updatingpj . This jointly aligns the set of mapsM while
jointly aligning all labeled regions among the maps. Finally,
gradient descent proceeds by repeated calculation of∇pj

d2

and adjustment ofpj for each map in the set until convergence.
We then turned to verifying our method using the 2D data

from the study by Tsai et al. [29], where a synthetic data set
was generated using four labels.Figure 9shows alignment on
the entire data set.

Lastly, we performed registration using 2D maps obtained
from expert manual segmentation of 33 patient MRI scans
involving eight labels and background.Figure 10shows ex-
amples from the original unaligned set as well as the super-
imposed maps after alignment.

V. Coarse Registration
While gradient descent is one of the most popular tech-

niques for registration, it has three main drawbacks that we
intend to address in this section: susceptibility to local minima,
dependence on the starting point, and the difficulty in choosing
the time step∆tp (Equation IV). To address these problems,
we propose a coarse registration strategy following which the
gradient descent based algorithm typically converges in 10-20
iterations. In the proposed algorithm, we utilize information

(a) Image1 (b) Image2 (c) LS solution

Fig. 11. Aligning brain images with 4 labels. Right: Result of aligning using
least squares solution.

already available in the labeled images. As a first step, compute
the area centroid of each of then labels in the two images we
intend to register. Now we haven sets of corresponding points.
It is very tempting to think that we can now directly recover
the affine transformation relating the two images; however,we
will now discuss why this is not the case.

A. What doesn’t work

For a 2D image, ifn < 3 (or n < 4 for 3D images),
then we have an under-determined system with fewer vari-
ables (centroids) than unknowns (the parameters of the affine
transformation). Hence, there are infinitely many satisfying
solutions, requiring a least squares solution which often yields
poor results. Assuming enough labels, if we use the least
squares approach as detailed in [12], we still do not obtain
satisfactory results as shown inFigure 11. This is clear when
we register the centroids of the labels inFigure 11.

This result gives the minimum error in the least squares
sense for aligning 4 points (centroids) in the images shown
in Figure 11instead of the shapes represented by the labels.
Hence, we obtain an un-realistic estimate of the transformation
matrix.

B. A Solution

We thus propose to use the second moments of each of the
labels along with the centroids. While the centroids can be
easily used to obtain the translation parameters, the covariance
matrix for each of the labels can be used to obtain the scale,
rotation and skew parameters. For the rest of the discussion, we
will consider registering two 3D images. Thus, the covariance
matrix essentially represents the corresponding label by an
ellipsoid. For a given labell, let C1 and C2 represent the
covariance matrices obtained from two imagesI1 and I2.
The rotation matrixR that aligns these two ellipsoids can be
obtained as follows:

[U S V ] = SVD(CT
1 C2); R = UV T ,

where SVD is the singular value decomposition of a matrix.
Given anglesθxl, θyl and θzl, the corresponding rotation
matrix is given by

K =





cycz −cysz sy

czsxsy + cxsz −szsxsy + cxcz −sxcy

−czsycx + sxsz szsycx + sxcz cxcy



 ,

whereci = cos(θil), si = sin(θil), i = {x, y, z}. EquatingR
and K, we obtain the following formulae for recovering the
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rotation angles:

θxl = arctan{−R23

R33
}, θyl = arctan{R13c1

R33
}

θzl = arctan{−R12

R11
},

(3)

whereRij is the ith row and jth column of R. The above
equation can be used to obtain the rotation angles for each
of the labels in the two images about their corresponding
centroids. The final rotation for the image about its centroid
is calculated as a weighted sum of the individual rotations:

θ̃i =
n∑

l=1

wjθil, i ∈ {x, y, z}

where the weightswj can be specified by the user. A byproduct
of this scheme is the flexibility to assign higher weights to
certain labels (giving them more importance) than others. This
is useful, for example, in labeled brain images where more
importance can be given to aligning subcortical structureslike
caudate nucleus, hippocampus etc versus cortical structures
with lots of cortical folds and inherently complex variability.

The scaling parameters can be obtained from the length of
the axes of the ellipsoids. LetAi1 and Ai2 be the length of
the axes of the ellipsoid represented by covariance matrices
C1 andC2. Then the scaling parameters in each of x, y and
z-direction for labell can be calculated using

sil =

√
Ai1

Ai2
, i ∈ {x, y, z}.

Once again, the overall scaling for the image can be calculated
as a weighted sum of all labels:

s̃i =

n∑

l=1

wjsil, i ∈ {x, y, z}.

Using the co-ordinates of the centroidsc1l = [x1 y1 z1]
andc2l = [x2 y2 z2] for label l, one can obtain the following
expression to calculate the skew parameters:

kxl =
x2 − x1

y1 + z1
, kyl =

y2 − y1

x1 + z1
, kzl =

z2 − z1

x1 + y1
.

The skew parameters for the entire image can then be calcu-
lated using weighted sums:

k̃i =

n∑

l=1

wlkil, i ∈ {x, y, z}.

Using the above analysis, one can easily recover the affine
transformation parameters that relate two richly labeled images
I1 and I2. The question still remains unanswered as to how
to register a group of labeled images to their intrinsic mean,
when the mean itself is not known. We address this issue in
the next section.

C. Aligning to the Mean

Our goal in this section is to build a probabilistic atlas from
a group of labeled images{I1, I2, ..., IN}. One way to build
an unbiased atlas is to align all the images to their intrinsic
mean. Most of the existing algorithms explicitly compute the
mean image and iteratively refine the estimate at each iteration.

In this work, we depart from this methodology and directly
estimate the affine transformationTi that takes imageIi to the
group meañI without explicitly computing the mean.

We demonstrate the entire algorithm by a simple example
where we align three images{I1, I2, I3} to their mean. The
technique however works for anyN . As a first step, we
coarsely align each image to every other image in the group
using the method described earlier in sectionV-B. We thus
have an affine transformation that relatesI1 to I2 andI3. Let
x12,x13, x23 be x-translation that alignsI1 ↔ I2, I1 ↔ I3

and I2 ↔ I3 respectively. Then, at iteration 1, we calculate
the average x-translatioñxim required to move imagei to the
group meanµ:

Step 1.x-translation

I1 I2 I3 x̃
(1)
im

I1 0 x12 x13 x̃
(1)
1m = 0.5(x12 + x13)

I2 −x12 0 x23 x̃
(1)
2m = 0.5(−x12 + x23)

I3 −x13 −x23 0 x̃
(1)
3m = 0.5(−x13 − x23)

In the second step, we assume that this average x-translation
has been applied to each image, which allows us to update the
table as follows:

Step 2.x-translation
I1 I2 I3

I1 0 x
(1)
12 = x12 −

x̃
(1)
1m − x̃

(1)
2m

x
(1)
13 = x13 − x̃

(1)
1m − x̃

(1)
3m

I2 −x
(1)
12 0 x

(1)
23 = x23 − x̃

(1)
2m − x̃

(1)
3m

I3 −x
(1)
13 −x

(1)
23 0

The final x-translation that takes any imageIi to the mean
imageµ is then given byx̃(1)

im + x̃
(2)
im + ... + x̃

(t)
im, for which

a closed form expression can be computed as shown in
Appendix A. The main intuition behind the procedure outlined
above is to find the average x-translation required to align
all the images by explicitly manipulating the x-translation
parameters without actually applying the transformation to
the images. The same technique is used to find all the other
translation, rotation, skew and scale parameters. An important
point to note is that, instead of using the scale parameters
si directly, log(si) is used making operations of addition and
subtraction valid on the space of scale parameters. An inverse
exponential mapping can be used to obtain the actual scale
values.

The final output of this procedure is a set of affine param-
eters that take every imageIi to the intrinsic group meanµ.
This method of finding the intrinsic mean is not limited to
labeled images, but can be used for gray-scale images if the
affine transformation parameters that relate them are obtained
using any suitable method. This is one of main contributions
of this work.

D. A Faster Alternative

The method outlined above requires registering every image
Ii to every other imageIj , j 6= i of the group. This
means, for a group ofN images, we need to findN(N−1)

2
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Fig. 12. Coarse Registration using full coarse registration (left) and using
composition (right).

affine transformations. To reduce this computational load,a
suboptimal strategy is to find onlyN − 1 affine transforma-
tions Aij that relate any imageIi to all the other images
Ij , j ∈ {1, 2, i−1, i+1, ..N}, where we have arbitrarily fixed
the imageIi. As described earlier, to compute the mean, we
need affine transformations that relate every image to every
other image. This can be achieved by using composition of
transformations as follows: Leti = 1 and assume we have
computedA1j for all j. Now, we can computeA23 using
A23 = A−1

12 A13, A34 = A−1
13 A14 and so on. This strategy

provides a very fast alternative to the method presented in
the previous section, but it is suboptimal since the errors get
accumulated while computing all the other transformations
using compositions (see Table 2 for comparison). In our
experiments, this faster method still gave a good starting point
for the gradient descent based algorithm.

Figure 12shows registration of a set 30 2D labeled images
using both the coarse strategies outlined above.

VI. Experiments with 3D images

A. Registration

To test the label space representation and the proposed
coarse registration techniques, we aligned a set of 3D labeled
brain images. In our first experiment, we aligned a set of 20
images each containing 4 labels (grey matter, white matter,
cerebrospinal fluid and skull of brain) plus background, a
few slices of which are shown in Figure13. The surface
corresponding to the mean of the registered images is shown
in Figure 14. In this experiment, the input images contained
very noisy labeling of the skull (seeFigure 13). To minimize
their effect on the overall registration, we assigned a verylow
weight to this label in our coarse registration strategy which
is quite a useful feature in such scenarios. We computed the
total number of misaligned voxels with the group mean as
a quantitative measure to assess the efficacy of the proposed
algorithms. The mathematical formulation of this error metric
is given below:

Er =

∑N
i=1 H(Ii − µ)
∑N

i=1 V (Ii)
, (4)

where,H is a function which measures the total number of
voxels that do not have the same label,V (Ii) is the volume in
voxels of the imageIi andµ is the calculated group mean of
the label maps. Other error metrics used in the literature can
be found in [8].

In our second experiment, we registered 10 images each

Fig. 13. Experiment 1: Slices from the brain images to be aligned

Fig. 14. Different view of the rendering of labels of the intrinsic mean image.

containing 14 labels (seeFigure 15). In order to reduce
the computational load, we implemented a scale-space based
registration algorithm, where the coarse registration wasper-
formed on low resolution images while gradient descent was
done on the original image resolution. While computing the
lower scale images, the important property of label space of
not being biased to a particular label as described earlier comes
in quite handy by not introducing spurious labels in random
places.

Figure 16 shows the 3D rendering of the mean image
registered after doing the coarse registration followed by
gradient descent. The following table gives the total number
of misaligned voxels from the mean image (as a percentage
of the total volume) for each of the two data sets.

Table 2.Misaligned voxelsEr for all methods.
Data Set GD alone CR+GD CRC + GD

Experiment 1 11.71% 7.95% 8.27%
Experiment 2 7.62% 6.52% 6.60%

where, GD = gradient descent, CR + GD = coarse registration
followed by gradient descent, CRC + GD = coarse registration
with composition followed by gradient descent.

For the data set in experiment 1, it took 78 iterations for
GD algorithm (4 days of computational time on a typical fast
machine), 7 iterations for CR+GD ( 48 hours of computational
time) and 15 iterations for CRC+GD ( 24 hours of computa-
tional time) for convergence. In Experiment 2, it took only
8 iterations for CR+GD, 16 iterations for convergence with
CRC+GD and 70 iterations with GD alone. From both these
experiments (see Table 2), it is clear that using the coarse
registration methods described in this work allows for better
registration of the label maps than a pure gradient descent
based approach.

Further, to test the dependence of CRC+GD on the choice
of the initial reference image, we used 10 different refer-
ence images and computed the Misaligned voxelsEr from
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Fig. 15. Experiment 2:Slices from the brain images to be aligned

Fig. 16. Rendering of labels of the intrinsic mean image. Left: The different
lobes of the brain. Right: All the 14 labels of the mean image.

the group mean. The following table gives the average and
standard deviation (taken over 10 initializations)Er for each
of the experiments:

Table 3.Misaligned voxelsEr for CRC+GD.
Data Set CRC + GD

Experiment 1 8.31± 0.12 %
Experiment 2 6.57± 0.04 %

From the table, it is clear that the choice of initial reference
image has a very limited impact on the final outcome (the
group mean is very similar in all cases).

B. Multi-label Shape Learning using PCA

In this experiment, we examine a set of 31 patient
brains with manually segmented amygdala, hippocampus, and
parahippocampus.1 Figure 17shows these subcortical struc-
tures. Using label space as the underlying representation to
eliminate bias, we performed affine registration [29].

1Data obtained from the NAMIC data repository of the Brigham and
Women’s Hospital, Boston.

(a) Subcortical structures

Fig. 17. Manually segmented amygdala, hippocampus, and parahippocampus
(blue, red, cyan).

To demonstrate the detail maintained in label space prob-
abilistic calculations,Figure 18shows the conditional proba-
bilities for the amygdala and hippocampus of the first three
patients,i.e. the probability of the amygdala given the proba-
bility of the amygdala in the other patients. For visualization,
one slice is taken that passes through both regions. These
probabilities were computed via the formula inSection III.
Conditional probabilities like this may be used to judge inter-
rater segmentation. Notice the sharp tail of the hippocampus,
a feature which is easily lost in the intermediate representation
used in the logarithm-of-odds approach.

We then compared label space against both the SDMs and
binary vectors for use in linear principal component analysis
(PCA); see [29, 18] and the references therein for a description
of this technique. We chose to separate out a test patient,
compute the PCA basis on the remaining patients, and examine
the projection of the test patient onto that learned basis (leave-
one-out test). This is standard in PCA modeling and is also
referred to as the generalization metric [11, 27]. As a side note,
we used the eigenvectors representing 99% of the variation in
the data.

We employed the Dice coefficient as a measure of percent
overlap between the test mapM and its projectionM̂ . The
Dice coefficient is defined as the amount of overlapping
volume divided by the average total volume:D(M, M̂) =
2|M ∩ M̂ |/(|M | + |M̂ |), where | · | denotes volume. Table
4 gives the mean and variance of the Dice coefficient for
each tissue class2. We found that label space is better than
SDMs because of the inherent low per pixel variance and also
better than binary vectors because it can represent unbiased
label mixtures; SDMs and binary vectors require thresholding
to determine label ownership. Note that the parahippocampus
results improve significantly when label uncertainty is taken
into account. Figure19 shows the ”generalization”, ”com-
pactness” and ”specificity” of the PCA modeling space as
described in [11, 27]. Generalization is defined as the ability to
describe previously unseen shapes (see TableV). Compactness
is the ability to use minimal set of parameters to describe the
entire shape and specificity is the ability to describe only valid
instances of the shape. For all the three shapes discussed in
this paper, the label space (black) does better than binary maps
for all the three measures.

VII. Discussion
This paper describes label space, a coupled multi-object

implicit representation borrowed from the fuzzy classification
literature. For this representation, we demonstrated thatal-
gebraic operations may be done directly, label uncertaintyis
expressed equivalently as a weighted mixture of labels or ina
probabilistic manner, and interpolation and smoothing is unbi-
ased toward any label or the background. Further, the present
representation can be used within the LogOdds framework as
well to obtain a different probabilistic interpretation.

In order to avoid some of the inherent drawbacks of
gradient descent based techniques, namely, getting stuck in
local minima, we proposed two coarse registration methods

2Data reported as:mean ± variance
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(a) Amygdala

(b) Hippocampus

Fig. 18. For one slice, conditional probability of the presence of amygdala and hippocampus of the first three patients given the other patients(white indicates
high probability). Notice the fine detail of the hippocampus, features which may be lost when using smoothed intermediate representations[23].

TABLE V
DICE COEFFICIENT OF PROJECTION USINGPCA

SDMs Binary vectors Label space
Amygdala 0.783± 0.0031 0.825± 0.0014 0.855± 0.0004

Hippocampus 0.782± 0.0016 0.819± 0.0006 0.843± 0.0003
Parahippocampus 0.494± 0.0033 0.561± 0.0017 0.773± 0.0003

(a) Compactness (b) Generalization (c) Specificity

Fig. 19. Compactness, Generalization and Specificity of thePCA modeling space. Label Space (black) and binary maps (blue). Label Space does better for
all the three measures.

following which the gradient descent method converges to a
better minimum implying better registration. We demonstrate
this using a few examples on 3D data sets. A new method to
compute the intrinsic mean of a set of labeled images is also
proposed. This method can be used to coarsely align any type
of images (not just labeled) if the affine parameters that relate
them are known.

The coarse registration method also allows assigning dif-
ferent weights to each of the labels which is another useful
property to have if there is prior knowledge about the ro-
bustness of the segmented labels. Further, the method can be
easily extended to use the poly-affine model of [2] for non-
rigid registration of label maps.

Nevertheless, modeling shapes in label space does have
its limitations. One major drawback to label space is the
spatial demand. It might be possible to extend the hypersphere
representation [3] to avoid interpolation issues (seeFigure 4)
by taking into consideration the empirical presence of neighbor
pairings when determining vertex distribution.

A different limitation of the coarse registration strategy
is that it is dependent upon the accuracy of the first two
area moments of the labels. Hence, if there are large outliers
in the image, it can result in estimating the wrong affine
transformation for that image.

VIII. Proof of Convergence

Here, we prove the convergence of the iterative technique
described in SectionV-C for coarse registration. For the sake
of simplicity, let us assumeN = 3, i.e., we are registering
3 images. At the end of iteration 1, we have computed
x

(1)
12 , x

(1)
13 , x

(1)
23 . Further, we also know̃x(1)

im . Another important
property that holds is

x̃
(1)
1m + x̃

(1)
2m + x̃

(1)
3m = 0. (5)

This can be easily verified from the table in Step 1.

Now, let us computẽx(2)
1m:
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x̃
(2)
1m = 0.5

(

x
(1)
12 − x̃

(1)
1m − x̃

(1)
2m + x

(1)
13 − x̃

(1)
2m − x̃

(1)
3m

)

= 0.5
(

x̃
(1)
2m + x̃

(1)
3m

)

= −0.5x̃
(1)
1m,

(6)

where the last equality follows from (5). Thus,x̃(3)
1m = 0.5x̃

(2)
1m

and so on. Indeed, one can directly compute the sum of such a
converging series:

∑∞
t=1x

(t)
1m = x

(1)
1m − x

(1)
1m

1
1+2 . Generalizing

this forN images, we get the following closed form expression
for the final translation for each image:

∞∑

t=1

x
(t)
im = x

(1)
im+

x
(1)
im

∞∑

t=1

(

− 1

(N − 1)(2t−1)
+

1

(N − 1)(2t)

)

= x
(1)
im − x

(1)
im

1

1 + N − 1

= x
(1)
im − x

(1)
im

1

N

(7)

One obtains similar expressions for computing all the trans-
lation, rotation and skew parameters. For the scale parameter,
one has to take the logarithm, compute the average scale in
log space and map back using the exponential.
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[16] A. Kelemen, G. Székely, and G. Gerig. Three-dimensional model-based segmen-
tation. In Int. Workshop on Model Based 3D Image Analysis, pages 4–13, 1998.

[17] JT Kent and KV Mardia. Spatial classification using fuzzy membership models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5):659–671,
1988.

[18] M. Leventon, E. Grimson, and O. Faugeras. Statistical shape influence in geodesic
active contours. InIEEE. Computer Vision and Pattern Recognition, pages 1316–
1324, 2000.

[19] P. Lorenzen, M. Prastawa, B. Davis, G. Gerig, E. Bullitt, and S. Joshi. Multi-modal
image set registration and atlas formation.Medical image analysis, 10(3):440–451,
2006.

[20] E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared
densities on transforms. InIEEE. Computer Vision and Pattern Recognition, pages
1464–1471, 2000.

[21] D. Nain, S. Haker, A. Bobick, and A. Tannenbaum. Multiscale 3-d shape
representation and segmentation using spherical wavelets. Trans. on Medical
Imaging, 26(4), 2007.

[22] S. Pizer, G. Gerig, S. Joshi, and S. Aylward. Multiscalemedial shape-based analysis
of image objects. InEmerging Medical Imaging Technology, volume 91, 2003.

[23] K. Pohl, J. Fisher, S. Bouix, M. Shenton, R. McCarley, W.Grimson, R. Kikinis,
and W. Wells. Using the logarithm of odds to define a vector space on probabilistic
atlases.Medical Image Analysis, 11(5):465–477, 2007.

[24] T. Rohlfing, D.B. Russakoff, M.J. Murphy, and C.R. Maurer Jr. An intensity-based
registration algorithm for probabilistic images and its application for 2-D to 3-D
image registration. InProc. SPIE, volume 4683, pages 581–591, 2002.

[25] ME Shenton, R. Kikinis, FA Jolesz, SD Pollak, M. LeMay, CG Wible, H. Hokama,
J. Martin, D. Metcalf, M. Coleman, et al. Abnormalities of the left temporal lobe
and thought disorder in schizophrenia. A quantitative magnetic resonance imaging
study. New England Journal of Medicine, 327(9):604–612, 1992.

[26] M. Styner, J. Lieberman, D. Pantazis, and G. Gerig. Boundary and medial shape
analysis of the hippocampus in schizophrenia.Medical Image Analysis, 8(3), 2004.

[27] M.A. Styner, K.T. Rajamani, L.P. Nolte, G. Zsemlye, G. Szekely, C.J. Taylor, and
R.H. Davies. Evaluation of 3D correspondence methods for model building.Lecture
Notes in Computer Science, pages 63–75, 2003.

[28] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. Grimson, and
A. Willsky. A shape-based approach to the segmentation of medical imagery using
level sets.Trans. on Medical Imaging, 22(2), 2003.

[29] A. Tsai, W. Wells, C. Tempany, E. Grimson, and A. Willsky. Mutual information
in coupled multi-shape model for medical image segmentation. Medical Image
Analysis, 8(4), 2004.

[30] C.J. Twining, S. Marsland, and CJ Taylor. Groupwise non-rigid registration: The
minimum description length approach. InProceedings of the British Machine Vision
Conference (BMVC, volume 1, pages 417–426, 2004.

[31] S.K. Warfield, J. Rexilius, P.S. Huppi, T.E. Inder, E.G.Miller, WM Wells, G.P.
Zientara, F.A. Jolesz, and R. Kikinis. A binary entropy measure to assess nonrigid
registration algorithms.Lecture Notes in Computer Science, pages 266–274, 2001.

[32] L. Zollei, E. Learned-Miller, E. Grimson, and W. Wells.Efficient population
registration of 3D data.Lecture Notes in Computer Science, 3765:291–301, 2005.


	Introduction
	Our contributions

	Related representations
	Shape representation
	Registration

	Label space
	Probabilistic Interpretation
	Other Properties

	Variational Registration
	Coarse Registration
	What doesn't work
	A Solution
	Aligning to the Mean
	A Faster Alternative

	Experiments with 3D images
	Registration
	Multi-label Shape Learning using PCA

	Discussion
	Proof of Convergence

