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In many settings of economic interest, informa-
tion is ex ante symmetric, but one agent designs 
the informational environment—i.e., controls 
what additional information will be generated.

A number of recent papers study such situa-
tions, with applications including Internet adver-
tising (Rayo and Segal 2010), communication 
in organizations (Jehiel 2013), bank regulation 
(Gick and Pausch 2012; Goldstein and Leitner 
2013), medical testing (Schweizer and Szech 
2013), medical research (Kolotilin 2013), gov-
ernment control of the media (Gehlbach and 
Sonin 2013), entertainment (Ely, Frankel, and 
Kamenica 2013), and price discrimination 
(Bergemann, Brooks, and Morris 2013).

Identifying the optimal information struc-
ture in such settings is a difficult problem if 
approached by brute force. Given a state space 
Ω, the set of all1 information structures, or sig-
nals, is as large as ​​( Δ​( Ω )​ )​​​| Ω |​​.2 Moreover, in 

1 Brocas and Carrillo (2007) consider a much simpler 
version of informational design where Sender only chooses 
how many i.i.d. draws from a particular signal will be 
generated. 

2 Kamenica and Gentzkow (2011) show that it is without 
loss of generality to set the cardinality of the signal real-
ization space to be the same as the cardinality of the state 
space. Then, the set of all signals has the same cardinality 
as ​​( Δ​( Ω )​ )​​​| Ω |​​. 
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many applications the objective function is not 
continuous in the choice of the signal.

Kamenica and Gentzkow (2011)—hence-
forth, KG—provide a way to simplify the prob-
lem of choosing optimal signals. They consider 
the following model of “Bayesian persuasion.” 
One agent, call him Sender, wishes to persuade 
another agent, call her Receiver, to change her 
action. The two agents share a common prior. 
Sender chooses a signal (a map from the true 
state of the world to a distribution over some 
signal realization space). Receiver observes the 
signal realization and takes an action that affects 
the welfare of both players. Signals are assumed 
to be costless.

KG simplify Sender’s problem by making 
two observations. First, it is possible to express 
Sender’s payoff as a value function over the pos-
terior belief induced by the signal realization. 
Second, given any distribution of posteriors 
whose expectation is the prior, there exists a sig-
nal that induces that distribution of posteriors. 
From these two observations it follows that one 
can derive the optimal signal from the concavifi-
cation of Sender’s value function.3

This concavification approach, however, is 
not generally feasible if signals are costly. In 
that case, Sender’s payoff is not fully deter-
mined by the posterior; given the posterior, 
the payoff also depends on the signal (due to 
its cost). Since one cannot express Sender’s 
payoff as a value function over beliefs, the 
concavification approach cannot be used. All 
of the aforementioned papers assume costless 
signals.

The contribution of this paper is to introduce 
a family of cost functions that is compatible 
with the concavification approach to deriving 
the optimal signal. A leading example is cost 

3 Given a function f, its concavification is the smallest 
concave function everywhere above f. 
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proportional to expected reduction in entropy 
(Shannon 1948). We thus expand the set of set-
tings where the problem of designing the opti-
mal informational environment is tractable.

I.  The Model

A. Costly Signals

There is a finite state space Ω with a typi-
cal state denoted ω. A signal π consists of a 
finite signal realization space S and a family of 
distributions ​​{ π​(  · | ω )​ }​​ω∈Ω​ over S. We denote 
the cost of a signal π by c​( π )​.

Given a signal π and some prior μ, each 
signal realization s leads to a posterior belief ​
μ​s​ ∈ Δ​( Ω )​. Hence, given a prior μ each sig-
nal π induces some distribution of posteriors 
τ ∈ Δ​( Δ​( Ω )​ )​. We denote this distribution of 
posteriors by 〈π | μ〉.

A function H : Δ​( Ω )​ → ​ℝ​+​ that assigns 
nonnegative numbers to beliefs is a measure of 
uncertainty if it is concave (Ely, Frankel, and 
Kamenica 2013). This definition is motivated 
by Blackwell’s (1953) theorem: ​피​〈π  |  μ〉​H​( ​μ​s​ )​  
≤ H​( μ )​ for all π and μ if and only if H is con-
cave. Hence, assuming that H is concave is 
equivalent to assuming that receiving informa-
tion must on average reduce uncertainty.

Our main assumption is that the cost of a 
signal is proportional to the expected reduction 
in uncertainty relative to some fixed reference 
belief:

ASSUMPTION 1: There exists an interior belief 
μ and a measure of uncertainty H such that for 
all signals π  :

	 c​( π )​  = ​ 피​〈π  |  μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​.

B. Bayesian Persuasion

Receiver has a continuous utility function 
u​( a, ω )​ that depends on her action a ∈ A and the 
state of the world. Sender has a continuous util-
ity function v​( a, ω )​ that depends on Receiver’s 
action and the state of the world. Sender and 
Receiver share an interior prior ​μ​0​. The action 
space A is compact.

The game is as follows. Sender chooses a 
signal π. Receiver observes Sender’s choice of 

the signal and a signal realization s ∈ S. She 
then takes her action.4

Receiver’s payoff is u​( a, ω )​. Sender’s payoff 
is v​( a, ω )​ − c​( π )​.

We define the value of a signal to be Sender’s 
equilibrium payoff if he chooses that signal. The 
gain from a signal is the difference between 
its value and Sender’s equilibrium payoff if he 
chooses a completely uninformative signal. We 
say Sender benefits from persuasion if there is 
a signal with a strictly positive gain. A signal 
is optimal if no other signal has a higher value. 
Clearly, in equilibrium, Sender selects an opti-
mal signal.

II.  Discussion of the Model

The model gives Sender substantial commit-
ment power as it assumes the realization of the 
signal is truthfully communicated to Receiver. 
This makes the environment effectively non-
strategic. KG discuss at length various settings 
where this assumption is suitable. In the interest 
of space, we do not repeat that discussion here.

Instead, we focus our discussion on 
Assumption 1. Note that this is a substantive 
assumption that rules out some reasonable 
cost functions. For example, suppose that the 
state space is binary, Ω = ​{ L, R }​, and that the 
cost of a signal π​( l | L )​ = ​ρ​L​, π​( r | R )​ = ​ρ​R​ is 
​ρ​L​ + ​ρ​R​. In this case, there does not exist 
a function H​( · )​ and a belief μ such that 
c​( π )​ = ​피​〈π  |  μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​.

One natural measure of uncertainty that 
can serve as a basis for a cost function that 
satisfies Assumption 1 is entropy: H​( μ )​  
≡ −​∑​ ω​ 

 
 ​ μ​( ω )​  ln ​( μ​( ω )​ )​ (Shannon 1948). In 

fact, the economics literature on limited atten-
tion typically assumes that the cost of process-
ing information is related to expected reduction 
in entropy. Sims (2003) develops a model where 
a decision maker faces information-processing 
limitations that impose a constraint on the 
expected reduction in entropy. Dessein, Galeotti, 
and Santos (2013) study organizational design 
when communication is constrained by a budget 

4 Gentzkow and Kamenica (2012) show that, when 
Receiver has a unique optimal action at each belief, this 
game has the same set of equilibrium outcomes as the game 
where Sender privately observes the signal realization and 
then sends a verifiable message about the signal realization 
to Receiver. 
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of entropy reduction. Martin (2012) considers a 
model where buyers choose how much informa-
tion to obtain about the quality of a firm’s prod-
uct and assumes that the cost of information is 
proportional to the reduction in entropy. Yang 
(2013) studies coordination games with such 
costs of information acquisition. Caplin and 
Dean (2013) derive behavioral implications of 
entropy-based costs of information-processing 
and contrast those implications with behavior of 
subjects in a lab experiment.

While entropy is a natural measure of uncer-
tainty that satisfies a rich set of appealing prop-
erties (Cover and Thomas 2006), Assumption 1 
also admits many other measures. For instance, 
residual variance H​( μ )​ = ​∑​ ω​ 

 
 ​ μ​( ω )​ ​( 1 − μ​( ω )​ )​ 

is an alternative, intuitive measure of uncertainty.
Given any measure of uncertainty H​( · )​ 

and any affine function f  ​( · )​, ​H′​ = H + f is 
another measure of uncertainty. Moreover, 
​피​〈π  |  μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​ = ​피​〈π  |  μ〉​​[ ​H′​​( μ )​ − 
​H′​​( ​μ​s​ )​ ]​ for any μ and π. Hence, it is helpful to 
normalize H​( · )​ by setting H​( ​μ​s​ )​ = 0 for all 
degenerate ​μ​s​.5 With this normalization, there 
is a unique measure of uncertainty implied by a 
given cost function.

Finally, note that the belief μ in the state-
ment of Assumption 1 is not assumed to be 
​μ​0​, the prior held by Sender and Receiver. 
Making the stronger assumption that there 
exists a measure of uncertainty H such that 
c​( π )​ = ​피​〈π  |  ​μ​0​〉​​[ H​( ​μ​0​ )​ − H​( ​μ​s​ )​ ]​ would make 
our analysis easier, but this stronger assumption 
would be incompatible with many interpreta-
tions of signal costs. In particular, the stronger 
assumption implies that the cost of a particular 
signal depends on the prior, i.e., on what previ-
ous information was observed. Even the answer 
to the question of whether one signal or another 
is more costly could depend on the prior. Thus, 
if c​( π )​ represents some fixed cost of resources 
required to conduct an experiment that generates 
π (e.g., a drug trial), the stronger assumption is 
inappropriate. Accordingly, we stipulate a fixed 
reference belief relative to which the reduction 
in uncertainty is measured.

5 Note that both entropy and residual variance satisfy this 
normalization. 

III.  Main Result

As KG show, when signals are costless there 
is a simple way of deriving the optimal signal. 
Their approach builds on two observations.

First, Sender’s payoff is fully determined 
by the posterior induced by the signal  
realization. Let ​  v ​​( ​μ​s​ )​ = ​피​​μ​s​​​[ v​( ​a​∗​​( ​μ​s​ )​, ω )​ ]​ 
where ​a​∗​​( ​μ​s​ )​ denotes some selection6 from 
arg ma​x​a∈A​​피​​μ​s​​u​( a, ω )​. If the posterior belief is 
​μ​s​, Sender’s payoff is ​  v ​​( ​μ​s​ )​.

The second observation is that for any τ such 
that ​피​τ​​[ ​μ​s​ ]​ = ​μ​0​, there exists a π such that 
τ = 〈π | ​μ​0​〉. Hence, we can express Sender’s 
problem as

(1)	 ma​x​τ s.t. ​피​τ​ [  ​μ​s​] = ​μ​0​​ [​피​τ​ ​  v​(​μ​s​)].

This problem has a simple geometric interpreta-
tion. Let V denote the concavification of ​  v ​—the 
smallest concave function that is everywhere 
weakly greater than ​  v ​. From the formulation of 
Sender’s problem as equation ​( 1 )​, we can see 
that the value of an optimal signal is V​( ​μ​0​ )​ and 
that Sender benefits from persuasion if and only 
if V​( ​μ​0​ )​ > ​  v ​​( ​μ​0​ )​.

We wish to extend this approach to the case 
where signals are costly. The key obstacle to 
doing so is the fact that the first observation 
above—Sender’s payoff is fully determined by 
the posterior—does not necessarily hold for an 
arbitrary cost function c​( π )​. Sender’s payoff at a 
posterior may depend on the signal that induced 
this belief. The key import of Assumption 1 
is that it allows us to represent Sender’s pay-
off from signal π as ​피​〈π |  ​μ​0​〉​​[ ​​  v ​​c​​( ​μ​s​ )​ ]​ where ​​  v ​​c​ 
denotes value of ​μ​s​ suitably adjusted for the cost 
of inducing this belief.

At first glance, it may not be obvious that 
Assumption 1 will suffice for the existence of 
such a representation. Since the reference belief 
μ may be different from ​μ​0​, all that Assumption 1 
implies directly is that the payoff from π is ​
피​〈π | ​μ​0​〉​​[ ​  v ​​( ​μ​s​ )​ ]​ − ​피​〈π  |  μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​.  

6 In general, Receiver might have multiple optimal 
actions at a given belief. Each optimal map from Receiver’s 
belief to her action defines a separate ​  v ​​( · )​ and a separate 
maximization problem for Sender. Some of these maximiza-
tion problems may not have a solution and thus Receiver’s 
actions that lead to those cannot be part of an equilibrium. 
An equilibrium always exists, however, because if Receiver 
chooses a Sender-optimal action at each belief, ​  v ​​( · )​ is guar-
anteed to be upper semicontinuous. 
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Thus, one remaining step in our argument 
is to show that for any μ and H, there exists 
a function ​​  v ​​c​ such that ​피​〈π | ​μ​0​〉​​[ ​  v ​​( ​μ​s​ )​ ]​ − 
​피​〈π |μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​ = ​피​〈π  |  ​μ​0​〉​​[ ​​  v ​​c​​( ​μ​s​ )​ ]​ for 
all π.

To complete this final step, we draw on an 
insight from Alonso and Câmara’s (2013) 
extension of KG to a setting with heterogeneous 
priors. In particular, suppose there are two indi-
viduals a and b, with interior priors ​μ​ 0​ a​ and ​μ​ 0​ b​, 
respectively. Suppose we know both individuals 
observed the same signal realization from the 
same signal, but we do not know what the signal 
was or what the signal realization was. Can we 
determine b’s posterior from a’s posterior? The 
answer is yes. In particular, if a’s posterior is 
​μ​ s​ a​, b’s posterior must be

​μ​ s​ b​​( ω )​  = ​ μ​ s​ a​​( ω )​ ​ 
​μ​ 0​ b​​( ω )​/​μ​ 0​ a​​( ω )​

  __   
​∑​ 

​ω​ ′​​ 
 
 ​ ​μ​ s​ a​​( ​ω′​ )​ ​μ​ 0​ b​​( ​ω′​ )​/​μ​ 0​ a​​( ​ω′​ )​

 ​.

Accordingly, we can define a function 
m​( · | ​μ​ 0​ a​; ​μ​ 0​ b​ )​ such that if an agent with the prior ​
μ​ 0​ a​ has the posterior ​μ​ s​ a​, then an agent with the 
prior ​μ​ 0​ b​ has the posterior m​( ​μ​ s​ a​ | ​μ​ 0​ a​; ​μ​ 0​ b​ )​.

Given any cost function c​( π )​ that satis-
fies Assumption 1, let ​​  v ​​c​​( ​μ​s​ )​ = ​  v ​​( ​μ​s​ )​ − 
​[ H​( μ )​ − H​( m​( ​μ​s​ | ​μ​0​, μ )​ )​ ]​. We then have that ​
피​〈π  |  ​μ​0​〉​​[ ​​  v ​​c​​( ​μ​s​ )​ ]​ = ​피​〈π  |  ​μ​0​〉​​[ ​  v ​​( ​μ​s​ )​ ]​ − c​( π )​ for all 
π. Let ​V​c​ be the concavification of ​​  v ​​c​. We then 
have our main result:

PROPOSITION 1: Suppose the cost function 
satisfies Assumption A1. The value of an optimal 
signal is ​V​c​​( ​μ​0​ )​. Sender benefits from persua-
sion if and only if ​V​c​​( ​μ​0​ )​ > ​​  v ​​c​​( ​μ​0​ )​.

The main implication of Proposition 1 is that 
one can derive the optimal signal by drawing 
the value function ​​  v ​​c​​( · )​ and its concave closure 
​V​c​​( · )​ and then “reading off” the optimal τ from 
the picture.

For example, if ​​  v ​​c​​( · )​ has the shape as in 
Figure 1, the optimal τ induces ​μ​L​ and ​μ​R​. Given 
the optimal τ, the optimal π is determined by the 
following equation:

(2)	 π​( s | ω )​  = ​ 
​μ​s​​( ω )​ τ ​( ​μ​s​ )​ _ 

​μ​0​​( ω )​
 ​ ,

which implies that 〈π | ​μ​0​〉 = τ.

IV.  Example

To illustrate the main result above, we con-
sider an extension of the motivating example in 
KG. A prosecutor (Sender) is trying to convince 
a judge that a defendant is guilty. The judge 
(Receiver) chooses whether to acquit or convict 
the defendant. There are two states of the world: 
the defendant is either guilty or innocent. The 
judge gets utility 1 for choosing the just action 
(convict when guilty and acquit when innocent) 
and utility 0 for choosing the unjust action. The 
prosecutor gets utility 1 if the judge convicts and 
utility 0 if the judge acquits (minus the signal 
cost), regardless of the state. The prosecutor and 
the judge share a prior belief Pr ​( guilty )​ = 0.3.

The prosecutor conducts an investigation 
and is required by law to report its full out-
come. One can think of the investigation as 
a choice of how to structure the arguments, 
whom to subpoena, what forensic tests to con-
duct, etc. Formally, an investigation is a signal 
π that specifies distributions π​( · | guilty )​ and 
π​( · | innocent )​ on signal realizations ​{ i, g }​. The 
cost of investigation π is k​피​〈π  |  ​μ​∗​〉​​[ H​( ​μ​∗​ )​ − 
H​( ​μ​s​ )​ ]​ where H denotes entropy (H​( μ )​  
≡ −​∑​ ω​ 

 
 ​  μ​( ω )​  ln ​( μ​( ω )​ )​), ​μ​∗​ denotes the uni-

form belief (​μ​∗​​( guilty )​ = ​μ​∗​​( innocent )​ = ​ 1 _ 2 ​), 
and k ≥ 0 is a cost parameter.

What is the prosecutor’s optimal investiga-
tion? If he conducts no investigation (π is per-
fectly uninformative), his payoff is zero because 
the judge acquits under her prior (and the cost 
of a completely uninformative signal is zero). A 
very informative investigation might be overly 
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Figure 1. Geometric Derivation of the Optimal Signal
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costly but is suboptimal even when signals are 
costless. In fact, as KG show, when k = 0, the 
optimal investigation is partially informative 
with

	 π​( i | innocent )​ = ​ 4 _ 7 ​	 π​( i | guilty )​ = 0

	 π​( g | innocent )​ = ​ 3 _ 7 ​	 π​( g | guilty )​ = 1,

which yields a payoff of 0.6 to the prosecutor. 
Panel A of Figure 2 shows the value function 
and its concavification under costless signals.

Panel B of the figure depicts ​​  v ​​c​​( · )​ and its 
concavification when k = 2. In this case, the 
optimal investigation induces beliefs ​μ​i​ = 0.15 
and ​μ​g​ = ​ 1 _ 2 ​. Since ​피​τ​​[ ​μ​s​ ]​ = 0.3, we know that 
τ ​( ​μ​i​ )​ = 0.57 and τ  ​( ​μ​g​ )​ = 0.43. Thus, apply-
ing equation ​( 2 )​, we derive the optimal signal as

  π​( i | innocent )​ = 0.69	 π​( i | guilty )​ = 0.28

  π​( g | innocent )​ = 0.31	 π​( g | guilty )​ = 0.72.

Since τ  ​( ​μ​g​ )​ = 0.43, the prosecutor induces 
conviction in 43 percent of the cases. Note 
that the costs reduce the likelihood of convic-
tion because a definitive proof of innocence 
has become prohibitively costly (which in turn 
increases the probability that innocence is indi-
cated by the signal realization.)

If investigations are very costly, e.g., k = 10, 
the optimal choice is a completely uninforma-
tive investigation which yields a payoff of zero 
to the prosecutor. Panel C of Figure 2 depicts 
the value function when k = 10. The concavi-
fication coincides with the value function at the 
prior, so the prosecutor cannot benefit from con-
ducting an investigation.

V.  Comparative Statics

This example above illustrates how the con-
cavification approach can be used to solve for 
the equilibrium even when signals are costly. It 
also illustrates some implications of the mag-
nitude of signal costs. First, the optimal signal 
under k = 0 is Blackwell more informative than 
the optimal signal when k = 2, which is in turn 
Blackwell more informative than the uninforma-
tive signal that arises when k = 10. In fact, it is 
easy to see that in this example, a lower k always 

leads to a Blackwell more informative signal. 
Second, since the optimal signal never induces 
a belief that would make Receiver strictly prefer 
a nondefault action, Receiver’s payoff is unaf-
fected by k. Finally, Sender’s payoff decreases 
as the cost of signals increases.

In this final section, we consider the extent 
to which these comparative statics hold in gen-
eral. Specifically, consider the general version of 
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the model (with an arbitrary state space, action 
space, preferences, and prior) and suppose that 
c​( π )​ = k​피​〈π | μ〉​​[ H​( μ )​ − H​( ​μ​s​ )​ ]​ for some refer-
ence belief μ and some measure of uncertainty H. 
How do outcomes vary with the cost parameter k ?

It is easy to see that as k increases, Sender’s 
payoff must decrease. In fact, even if we ignore 
the signal-cost component of Sender’s payoff, 
the expected value of v​( a, ω )​ is weakly lower 
when k is higher.

It is less clear how Receiver’s payoff varies 
with k. Receiver’s payoff can clearly decrease 
when signals become more expensive. For exam-
ple, if u = v, Sender and Receiver’s payoffs 
are perfectly aligned, so higher k must reduce 
Receiver’s payoff. It is also possible, however, 
for Receiver’s payoff to strictly increase when 
signals become more costly.

The last observation implies that, unlike in 
the example above, lower costs do not gener-
ally induce Blackwell more informative sig-
nals. That said, the concavity of H implies that 
if there is a uniquely optimal signal ​π​l​ when 
the cost parameter is ​k​l​ and a distinct uniquely 
optimal signal ​π​h​ when the cost parameter is 
​k​h​ > ​k​l​, it cannot be the case that ​π​h​ is Blackwell 
more informative than ​π​l​.7
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